
# **Vehicle Dynamics Blockset™**

Reference



# MATLAB&SIMULINK®



#### **How to Contact MathWorks**



Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales\_and\_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact\_us

T

Phone: 508-647-7000



The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098

Vehicle Dynamics Blockset<sup>™</sup> Reference

© COPYRIGHT 2018-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

#### **Trademarks**

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

#### Patents

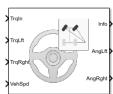
 $MathWorks\ products\ are\ protected\ by\ one\ or\ more\ U.S.\ patents.\ Please\ see\ www.mathworks.com/patents\ for\ more\ information.$ 

#### **Revision History**

| March 2018     | Online only | New for Version 1.0 (Release 2018a)     |
|----------------|-------------|-----------------------------------------|
| September 2018 | Online only | Revised for Version 1.1 (Release 2018b) |
| March 2019     | Online only | Revised for Version 1.2 (Release 2019a) |
| September 2019 | Online only | Revised for Version 1.3 (Release 2019b) |
| March 2020     | Online only | Revised for Version 1.4 (Release 2020a) |

# Contents

| Steering and Suspension Bloc | cks        |
|------------------------------|------------|
|                              |            |
| Drivetrain Bloo              | cks        |
| Wheel and Tire Bloo          | cks        |
|                              |            |
| Propulsion Bloo              | <u>cks</u> |
| Vehicle Dynamics Bloo        | <u>cks</u> |
| Vehicle Scenario Bloo        | <u>cks</u> |
| 3D Simulation Bloo           | <u>cks</u> |
| Scen                         | nes        |
| Vehicle Dimension            | ons        |


|          | Blocks in Reference Applications |
|----------|----------------------------------|
| 10       |                                  |
| <b>.</b> | Classes                          |
| 11       |                                  |

# **Steering and Suspension Blocks**

# **Dynamic Steering**

Dynamic steering for Ackerman, rack-and-pinion, and parallel steering mechanisms

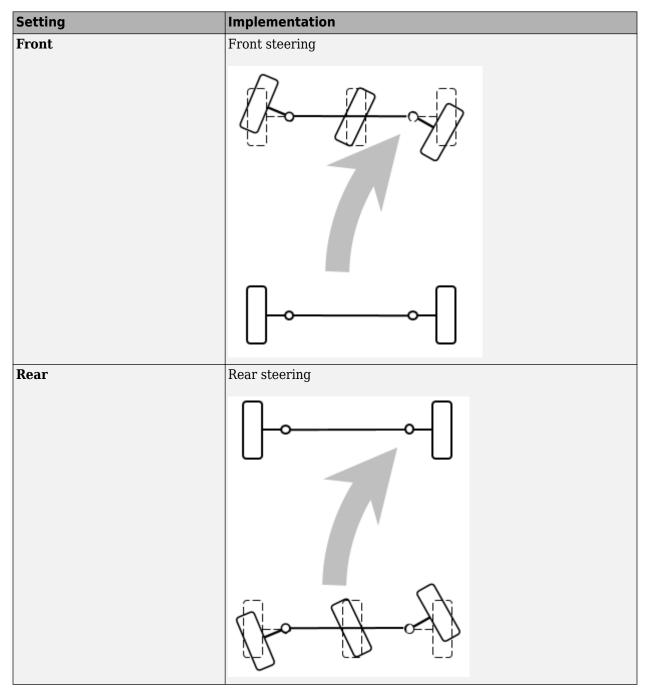
**Library:** Vehicle Dynamics Blockset / Steering



# **Description**

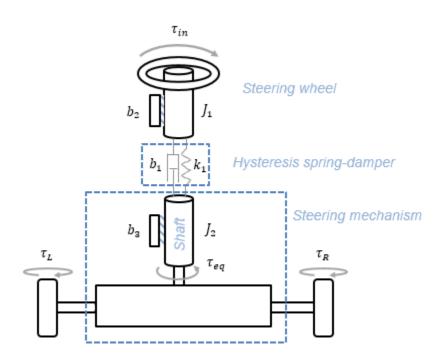
The Dynamic Steering block implements dynamic steering to calculate the wheel angles for Ackerman, rack-and-pinion, and parallel steering mechanisms. The block uses the steering wheel input torque, right wheel torque, and left wheel torque to calculate the wheel angles. The block uses the vehicle coordinate system.

If you select **Power assist**, you can specify a torque assist lookup table that is a function of the vehicle speed and steering wheel input torque. The block uses the steering wheel input torque and torque assist to calculate the steering dynamics.


To specify the steering type, use the **Type** parameter.

| Setting         | Block Implementation                                                                    |
|-----------------|-----------------------------------------------------------------------------------------|
| Ackerman        | Ideal Ackerman steering. Wheel angles have a common turning circle center.              |
| Rack and pinion | Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion. |
| Parallel        | Parallel steering. Wheel angles are equal.                                              |

To specify the type of data for the steering mechanism, use the **Parametrized by** parameter.


| Setting      | Block Implementation                                     |  |
|--------------|----------------------------------------------------------|--|
| Constant     | Steering mechanism uses constant parameter data.         |  |
| Lookup table | Steering mechanism implements tables for parameter data. |  |

Use the **Location** parameter to specify front or rear steering.



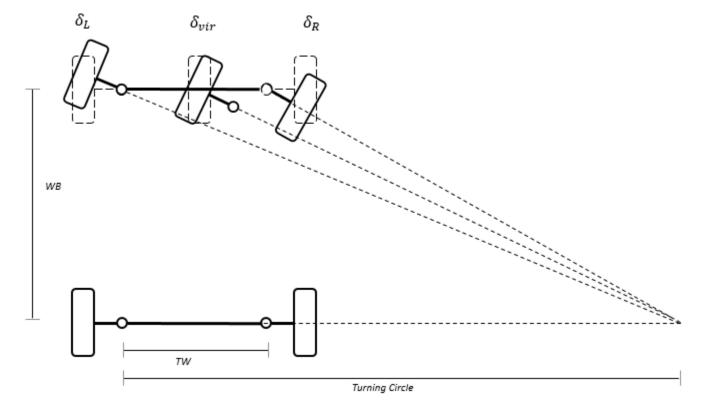
# **Dynamics**

To calculate the steering dynamics, the Dynamic Steering block models the steering wheel, shaft, steering mechanism, hysteresis, and, optionally, power assist.



| Calculation                                 | Equations                                                                                                                  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Steering column and steering shaft dynamics | $J_1\ddot{\theta}_1 = \tau_{in} - b_2\dot{\theta}_1 - \tau_{hys}$                                                          |
|                                             | $J_2\ddot{\theta}_2 = \tau_{eq} - b_3\dot{\theta}_2 + \tau_{hys} - \tau_{fric}$                                            |
| Hysteresis spring damper                    | $\delta = \theta_1 - \theta_2$                                                                                             |
|                                             | $\Delta \delta = \delta_{current} - \delta_{previous}$                                                                     |
|                                             | $\tau_{hys} = \left(b_1 \dot{\delta} - k_1 \delta\right) \left(1 + \exp\left(-\frac{ \Delta \delta }{\beta}\right)\right)$ |
|                                             | $\beta = \begin{cases} \beta_u & \text{when } \delta > 0 \\ \beta_l & \text{when } \delta \le 0 \end{cases}$               |
|                                             | $\beta - \{\beta_l \text{ when } \delta \leq 0\}$                                                                          |
| Optional power assist                       | $\tau_{ast} = f_{trq}(v, \tau_{in})$                                                                                       |
|                                             | $J_1\ddot{\theta}_1 = \tau_{in} + \tau_{ast} - b_2\dot{\theta}_1 - \tau_{hys}$                                             |
|                                             | $J_2\ddot{\theta}_2 = \tau_{eq} + \tau_{ast} - b_3\dot{\theta}_2 + \tau_{hys} - \tau_{fric}$                               |

The illustration and equations use these variables.


| $J_1$                                       | Steering wheel inertia                                                         |
|---------------------------------------------|--------------------------------------------------------------------------------|
| $J_2$                                       | Steering mechanism inertia                                                     |
| $\theta_1,\dot{\theta}_1,\ddot{\theta}_1$   | Steering wheel angle, angular velocity, and angular acceleration, respectively |
| $\theta_2, \dot{\theta}_2, \ddot{\theta}_2$ | Shaft angle, angular velocity, and angular acceleration, respectively          |
| $b_1$ , $k_1$                               | Hysteresis spring and viscous damping coefficients, respectively               |

| $b_2$                                   | Steering wheel viscous damping coefficient         |
|-----------------------------------------|----------------------------------------------------|
| $b_3$                                   | Steering mechanism damping coefficient             |
| $	au_{hys}$                             | Hysteresis spring damping torque                   |
| $	au_{fric}$                            | Steering mechanism friction torque                 |
| $	au_{eq}$                              | Wheel equivalent torque                            |
| $	au_{ast}$                             | Torque assist                                      |
| $oldsymbol{eta}_u$ , $oldsymbol{eta}_l$ | Upper and lower hysteresis modifiers, respectively |
| ν                                       | Vehicle speed                                      |
| $f_{tra}$                               | Torque assist lookup table                         |

## **Steering Types**

#### Ackerman

For ideal Ackerman steering, the wheel angles have a common turning circle.

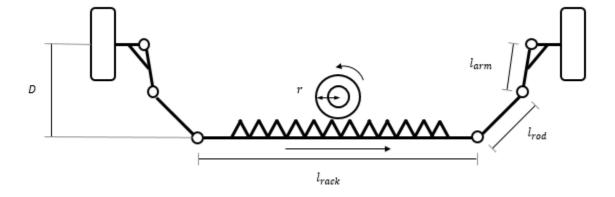


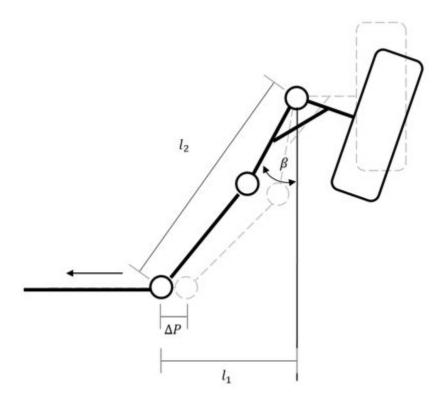
To calculate the steering angles, the block uses these equations.

$$\cot(\delta_L) - \cot(\delta_R) = \frac{TW}{WB}$$

$$\delta_{vir} = \frac{\delta_{in}}{\gamma}$$

$$\delta_L = \tan^{-1} \left( \frac{WB \tan(\delta_{vir})}{WB - 0.5TW \tan(\delta_{vir})} \right)$$


$$\delta_R = \tan^{-1} \left( \frac{WB \tan(\delta_{vir})}{WB + 0.5TW \tan(\delta_{vir})} \right)$$


The illustration and equations use these variables.

| $\delta_{in}$  | Steering angle      |
|----------------|---------------------|
| $\delta_L$     | Left wheel angle    |
| $\delta_R$     | Right wheel angle   |
| $\delta_{vir}$ | Virtual wheel angle |
| TW             | Track width         |
| WB             | Wheel base          |
| γ              | Steering ratio      |

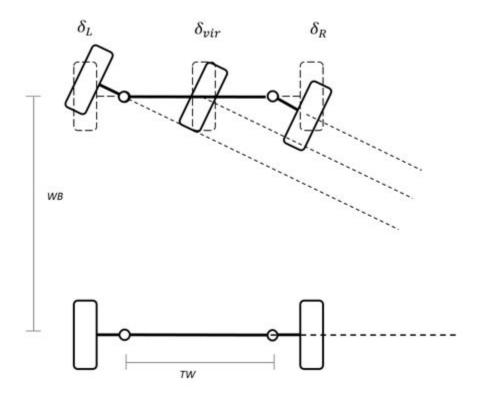
#### **Rack-and-Pinion**

For ideal rack-and-pinion steering, the gears convert the steering rotation into linear motion.





To calculate the steering angles, the block uses these equations.


$$\begin{split} l_1 &= \frac{TW - l_{rack}}{2} - \Delta P \\ l_2^2 &= l_1^2 + D^2 \\ \Delta P &= r\delta_{in} \\ \beta &= \frac{\pi}{2} - \tan^{-1} \left[ \frac{D}{l_1} \right] - \cos^{-1} \left[ \frac{l_{arm}^2 + l_2^2 - l_{rod}^2}{2l_{arm}l_2} \right] \end{split}$$

The illustration and equations use these variables.

| $\delta_{in}$ | Steering wheel angle                 |
|---------------|--------------------------------------|
| $\delta_L$    | Left wheel angle                     |
| $\delta_R$    | Right wheel angle                    |
| TW            | Track width                          |
| r             | Pinion radius                        |
| $\Delta P$    | Linear change in rack position       |
| D             | Distance between front axis and rack |
| $l_{rack}$    | Rack casing length                   |
| $l_{arm}$     | Steering arm length                  |
| $l_{rod}$     | Tie rod length                       |
|               |                                      |

#### **Parallel**

For parallel steering, the wheel angles are equal.



To calculate the steering angles, the block uses this equation.

$$\delta_R = \delta_L = \frac{\delta_{in}}{\gamma}$$

The illustration and equations use these variables.

| $\delta_{in}$ | Steering wheel angle |
|---------------|----------------------|
| $\delta_L$    | Left wheel angle     |
| $\delta_R$    | Right wheel angle    |
| γ             | Steering ratio       |

## **Ports**

#### Input

# $\mathbf{TrqIn}-\mathbf{Torque}$

scalar

Torque,  $\tau_{in}$ , in N·m.

# ${\bf TrqLft-Left\ wheel\ torque}$

scalar

Left wheel torque,  $\tau_L$ , in N·m.

#### TrqRght — Right wheel torque

scalar

Right wheel torque,  $\tau_R$ , in N·m.

#### VehSpd — Vehicle speed

scalar

Vehicle speed, v, in m/s.

#### **Dependencies**

To create VehSpd, select **Power assist**.

#### **Output**

#### Info — Bus signal

bus

Bus signal contains these block calculations.

| Signal        | Description                     | Unit  |
|---------------|---------------------------------|-------|
| StrgWhlAng    | Steering wheel angle            | rad   |
| StrgWhlSpd    | Steering wheel angular velocity | rad/s |
| ShftAng       | Shaft angle                     | rad   |
| ShftSpd       | Shaft angular velocity          | rad/s |
| AngLft        | Left wheel angle                | rad   |
| SpdLft        | Left wheel angular velocity     | rad/s |
| AngRght       | Right wheel angle               | rad   |
| SpdRght       | Right wheel angular velocity    | rad/s |
| TrqAst        | Torque assist                   | N·m   |
| PwrAst        | Power assist                    | W     |
| PwrLoss       | Power loss                      | W     |
| InstStrgRatio | Instantaneous steering ratio    | NA    |

#### AngLft — Left wheel angle

scalar

Left wheel angle,  $\delta_L$ , in rad.

#### AngRght — Right wheel angle

scalar

Right wheel angle,  $\delta_R$ , in rad.

## **Parameters**

## Type — Select steering type

Rack and pinion (default) | Ackerman | Parallel

To specify the steering type, use the  $\ensuremath{\mathbf{Type}}$  parameter.

| Setting         | Block Implementation                                                                    |
|-----------------|-----------------------------------------------------------------------------------------|
| Ackerman        | Ideal Ackerman steering. Wheel angles have a common turning circle center.              |
| Rack and pinion | Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion. |
| Parallel        | Parallel steering. Wheel angles are equal.                                              |

#### **Dependencies**

This table summarizes the **Type** and **Parametrized by** parameter dependencies.

| Туре     | Parameterized By | Creates Parameters                      |
|----------|------------------|-----------------------------------------|
| Ackerman | Constant         | Track width, TrckWdth                   |
|          |                  | Wheel base, WhlBase                     |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering ratio, StrgRatio               |
|          | Lookup table     | Track width, TrckWdth                   |
|          |                  | Wheel base, WhlBase                     |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering ratio table, StrgRatioTbl      |
| Rack and | Constant         | Track width, TrckWdth                   |
| pinion   |                  | Steering range, StrgRng                 |
|          |                  | Steering arm length, StrgArmLngth       |
|          |                  | Rack casing length, RckCsLngth          |
|          |                  | Tie rod length, TieRodLngth             |
|          |                  | Distance between front axis and rack, D |
|          |                  | Pinion radius, PnnRadius                |

| Туре     | Parameterized By | Creates Parameters                      |
|----------|------------------|-----------------------------------------|
|          | Lookup table     | Track width, TrckWdth                   |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering arm length, StrgArmLngth       |
|          |                  | Rack casing length, RckCsLngth          |
|          |                  | Tie rod length, TieRodLngth             |
|          |                  | Distance between front axis and rack, D |
|          |                  | Pinion radius, PnnRadiusTbl             |
| Parallel | Constant         | Steering range, StrgRng                 |
|          |                  | Steering ratio, StrgRatio               |
|          | Lookup table     | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering ratio table, StrgRatioTbl      |

# Parametrized by — Select parameterization Lookup table (default) | Constant

To specify the type of data for the steering mechanism, use the **Parametrized by** parameter.

| Setting      | Block Implementation                                     |
|--------------|----------------------------------------------------------|
| Constant     | Steering mechanism uses constant parameter data.         |
| Lookup table | Steering mechanism implements tables for parameter data. |

#### **Dependencies**

This table summarizes the **Type** and **Parametrized by** parameter dependencies.

| Туре     | Parameterized By | Creates Parameters        |
|----------|------------------|---------------------------|
| Ackerman | Constant         | Track width, TrckWdth     |
|          |                  | Wheel base, WhlBase       |
|          |                  | Steering range, StrgRng   |
|          |                  | Steering ratio, StrgRatio |

| Туре     | Parameterized By | Creates Parameters                      |
|----------|------------------|-----------------------------------------|
|          | Lookup table     | Track width, TrckWdth                   |
|          |                  | Wheel base, WhlBase                     |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering ratio table, StrgRatioTbl      |
| Rack and | Constant         | Track width, TrckWdth                   |
| pinion   |                  | Steering range, StrgRng                 |
|          |                  | Steering arm length, StrgArmLngth       |
|          |                  | Rack casing length, RckCsLngth          |
|          |                  | Tie rod length, TieRodLngth             |
|          |                  | Distance between front axis and rack, D |
|          |                  | Pinion radius, PnnRadius                |
|          | Lookup table     | Track width, TrckWdth                   |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering arm length, StrgArmLngth       |
|          |                  | Rack casing length, RckCsLngth          |
|          |                  | Tie rod length, TieRodLngth             |
|          |                  | Distance between front axis and rack, D |
|          |                  | Pinion radius, PnnRadiusTbl             |
| Parallel | Constant         | Steering range, StrgRng                 |
|          |                  | Steering ratio, StrgRatio               |
|          | Lookup table     | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering ratio table, StrgRatioTbl      |

# Power assist — Specify power assist

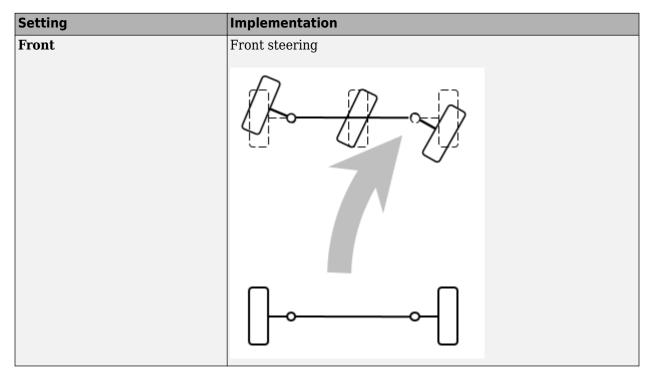
on (default) | off

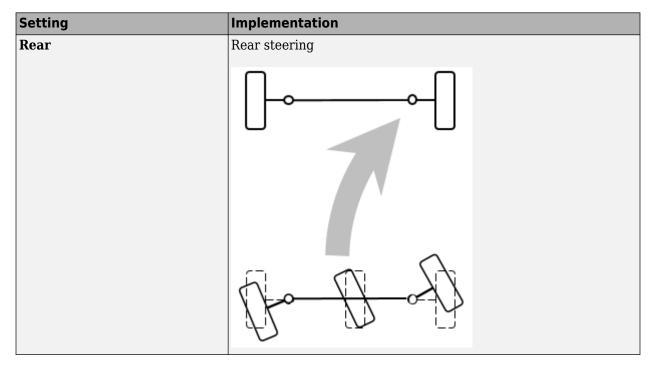
If you select **Power assist**, you can specify a torque assist lookup table,  $f_{trq}$ , that is a function of the vehicle speed,  $\nu$ , and steering wheel input torque,  $\tau_{in}$ .

$$\tau_{ast} = f_{trq}(v, \tau_{in})$$

The block uses the steering wheel input torque and torque assist to calculate the steering dynamics.

#### **Dependencies**


Selecting **Power assist** creates the VehSpd input port and these parameters.


| Power Assist | Parameters                                 |
|--------------|--------------------------------------------|
| on           | Steering wheel torque breakpoints, TrqBpts |
|              | Vehicle speed breakpoints, VehSpdBpts      |
|              | Assisting torque table, TrqTbl             |
|              | Assisting torque limit, TrqLmt             |
|              | Assisting power limit, PwrLmt              |
|              | Assisting torque efficiency, Eta           |
|              | Cutoff frequency, omega_c                  |

#### Location — Select location

Front (default) | Rear

Use the **Location** parameter to specify front or rear steering.





#### General

#### Track width, TrckWdth — Width

1 | scalar

Track width, TW, in m.

#### **Dependencies**

To create this parameter, set **Type** to Ackerman or Rack and pinion.

#### Wheel base, WhlBase — Base

1.524 (default) | scalar

Wheel base, WB, in m.

#### **Dependencies**

To create this parameter, set **Type** to Ackerman.

#### Steering range, StrgRng — Range

1.25\*pi (default) | scalar

Steering range, in rad. The block limits the wheel angles to remain within the steering range.

#### Steering ratio, StrgRatio — Ratio

13.5 (default) | scalar

Steering ratio,  $\gamma$ , dimensionless.

#### **Dependencies**

To create this parameter:

- Set **Type** to Ackerman or Parallel.
- Set Parametrized by to Constant.

#### Steering angle breakpoints, StrgAngBpts — Breakpoints

[-6.2832 -5.0265 -3.7699 -2.5133 -1.2566 0 1.2566 2.5133 3.7699 5.0265 6.2832] (default) | vector

Steering angle breakpoints, in rad.

#### **Dependencies**

To create this parameter, set **Parametrized by** to Lookup table.

#### Steering ratio table, StrgRatioTbl — Table

[13.5000 13.3750 13.2500 13.1250 13.0000 13.0000 13.0000 13.1250 13.2500 13.3750 13.5000] (default) | vector

Steering ratio table,  $\gamma$ , dimensionless.

#### **Dependencies**

To create this parameter:

- Set **Type** to Ackerman or Parallel.
- Set Parametrized by to Lookup table.

#### **Rack-and-Pinion**

#### Steering arm length, StrgArmLngth — Length

0.1 (default) | scalar

Steering arm length,  $l_{arm}$ , in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Rack casing length, RckCsLngth — Length

0.5 (default) | scalar

Rack casing length,  $l_{rack}$ , in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Tie rod length, TieRodLngth - Length

0.248 (default) | scalar

Tie rod length,  $l_{rod}$ , in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Distance between front axis and rack, D — Distance

0.2 (default) | scalar

Distance between front axis and rack, D, in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Pinion radius, PnnRadius — Radius

0.0057 (default) | scalar

Pinion radius, *r*, in m.

#### **Dependencies**

To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Constant.

#### Pinion radius table, PnnRadiusTbl — Table

[0.0055 0.0055 0.0056 0.0057 0.0057 0.0057 0.0058 0.0057 0.0056 0.0055 0.0055] (default) | vector

Pinion radius table, r, in m.

#### **Dependencies**

To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Lookup table.

#### **Dynamics**

#### Steering wheel inertia, J1 — Inertia

0.1 (default) | scalar

Steering wheel inertia,  $J_1$ , in kg\*m^2.

#### Steering mechanism inertia, J2 — Inertia

0.01 (default) | scalar

Steering mechanism inertia,  $J_2$ , in kg\*m^2.

#### Upper hysteresis modifier, beta\_u - Upper hysteresis modifier

0.1 (default) | scalar

Upper hysteresis modifier,  $\beta_{\nu}$ , dimensionless.

#### Lower hysteresis modifier, beta\_l — Lower hysteresis modifier

0.1 (default) | scalar

Lower hysteresis modifier,  $\beta_l$ , dimensionless.

#### Hysteresis viscous damping, b1 — Damping

0.001 (default) | scalar

Hysteresis damping,  $b_1$ , in N·m·s/rad.

#### Hysteresis stiffness, k1 — Stiffness

30 (default) | scalar

Hysteresis stiffness,  $k_1$ , in N·m/rad.

#### Steering wheel damping, b2 — Damping

1 (default) | scalar

Steering wheel damping,  $b_2$ , in N·m·s/rad.

#### Steering mechanism damping, b3 — Damping

0.001 (default) | scalar

Steering mechanism damping,  $b_3$ , in N·m·s/rad.

#### Initial steering angle, theta o — Angle

0 (default) | scalar

Initial steering angle,  $\theta_0$ , in rad.

#### Initial steering angular velocity, omega\_o — Angular velocity

0 (default) | scalar

Initial steering angular velocity,  $\omega_o$ , in rad/s.

#### Friction torque, FricTrq — Torque

0 (default) | scalar

Friction torque,  $\tau_{fric}$ , in N·m.

#### **Power Assist**

#### Steering wheel torque breakpoints, TrqBpts — Breakpoints

[-100 0 100] (default) | 1-by-M vector

Steering wheel torque breakpoints, in N·m.

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |
|--------------|--------------------------------------------|
| on           | Steering wheel torque breakpoints, TrqBpts |
|              | Vehicle speed breakpoints, VehSpdBpts      |
|              | Assisting torque table, TrqTbl             |
|              | Assisting torque limit, TrqLmt             |
|              | Assisting power limit, PwrLmt              |
|              | Assisting torque efficiency, Eta           |
|              | Cutoff frequency, omega_c                  |

#### Vehicle speed breakpoints, VehSpdBpts — Breakpoints

[0 20] (default) | 1-by-N vector

Vehicle speed breakpoints, in m/s.

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |
|--------------|--------------------------------------------|
| on           | Steering wheel torque breakpoints, TrqBpts |
|              | Vehicle speed breakpoints, VehSpdBpts      |
|              | Assisting torque table, TrqTbl             |
|              | Assisting torque limit, TrqLmt             |
|              | Assisting power limit, PwrLmt              |
|              | Assisting torque efficiency, Eta           |
|              | Cutoff frequency, omega_c                  |

#### Assisting torque table, TrqTbl — 2D torque table

[0 -100;0 0;0 100] (default) | M-by-N matrix

Assisting torque table,  $f_{tra}$ , in N·m.

The torque assist lookup table is a function of the vehicle speed, *v*, and steering wheel input torque,  $\tau_{in}$ .

$$\tau_{ast} = f_{trq}(v, \tau_{in})$$

The block uses the steering wheel input torque and torque assist to calculate the steering dynamics.

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |
|--------------|--------------------------------------------|
| on           | Steering wheel torque breakpoints, TrqBpts |
|              | Vehicle speed breakpoints, VehSpdBpts      |
|              | Assisting torque table, TrqTbl             |
|              | Assisting torque limit, TrqLmt             |
|              | Assisting power limit, PwrLmt              |
|              | Assisting torque efficiency, Eta           |
|              | Cutoff frequency, omega_c                  |

#### Assisting torque limit, TrqLmt — Torque limit

100 (default) | scalar

Assisting torque limit, in  $N \cdot m$ .

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |
|--------------|--------------------------------------------|
| on           | Steering wheel torque breakpoints, TrqBpts |
|              | Vehicle speed breakpoints, VehSpdBpts      |
|              | Assisting torque table, TrqTbl             |
|              | Assisting torque limit, TrqLmt             |
|              | Assisting power limit, PwrLmt              |
|              | Assisting torque efficiency, Eta           |
|              | Cutoff frequency, omega_c                  |

## Assisting power limit, PwrLmt — Power limit

1000 (default) | scalar

Assisting power limit, in  $N \cdot m/s$ .

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |  |
|--------------|--------------------------------------------|--|
| on           | Steering wheel torque breakpoints, TrqBpts |  |
|              | Vehicle speed breakpoints, VehSpdBpts      |  |
|              | Assisting torque table, TrqTbl             |  |
|              | Assisting torque limit, TrqLmt             |  |
|              | Assisting power limit, PwrLmt              |  |
|              | Assisting torque efficiency, Eta           |  |
|              | Cutoff frequency, omega_c                  |  |

#### Assisting torque efficiency, Eta — Efficiency

1 (default) | scalar

Assisting torque efficiency, dimensionless.

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |  |
|--------------|--------------------------------------------|--|
| on           | Steering wheel torque breakpoints, TrqBpts |  |
|              | Vehicle speed breakpoints, VehSpdBpts      |  |
|              | Assisting torque table, TrqTbl             |  |
|              | Assisting torque limit, TrqLmt             |  |
|              | Assisting power limit, PwrLmt              |  |
|              | Assisting torque efficiency, Eta           |  |
|              | Cutoff frequency, omega_c                  |  |

Cutoff frequency, omega\_c — Cutoff frequency

200 (default) | scalar

Cutoff frequency, in rad/s.

#### **Dependencies**

Selecting **Power assist** creates the VehSpd input port and these parameters.

| Power Assist | Parameters                                 |  |
|--------------|--------------------------------------------|--|
| on           | Steering wheel torque breakpoints, TrqBpts |  |
|              | Vehicle speed breakpoints, VehSpdBpts      |  |
|              | Assisting torque table, TrqTbl             |  |
|              | Assisting torque limit, TrqLmt             |  |
|              | Assisting power limit, PwrLmt              |  |
|              | Assisting torque efficiency, Eta           |  |
|              | Cutoff frequency, omega_c                  |  |

#### References

- [1] Crolla, David, David Foster, et al. Encyclopedia of Automotive Engineering. Volume 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems). Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2015.
- [2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [3] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

# **Extended Capabilities**

## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

# **See Also**

Kinematic Steering | Mapped Steering

#### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2018a

# **Kinematic Steering**

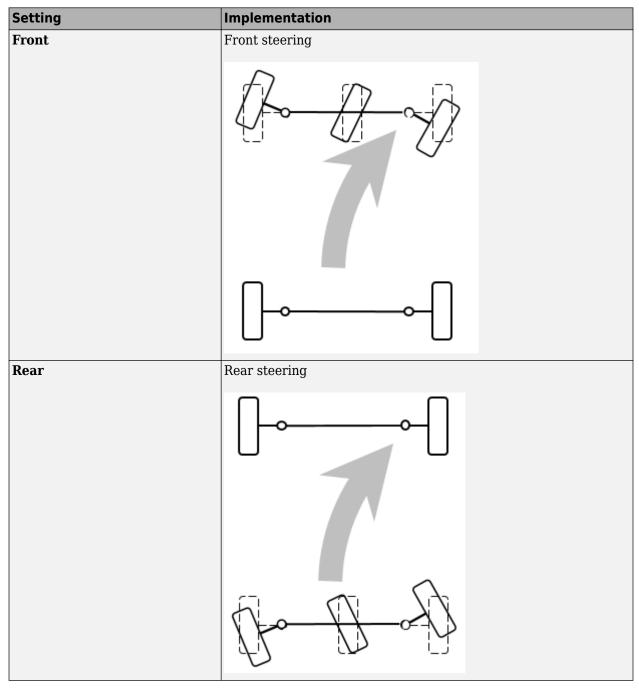
Kinematic steering for Ackerman, rack-and-pinion, and parallel steering mechanisms

Library: Vehicle Dynamics Blockset / Steering

# Anglin AngRght

# **Description**

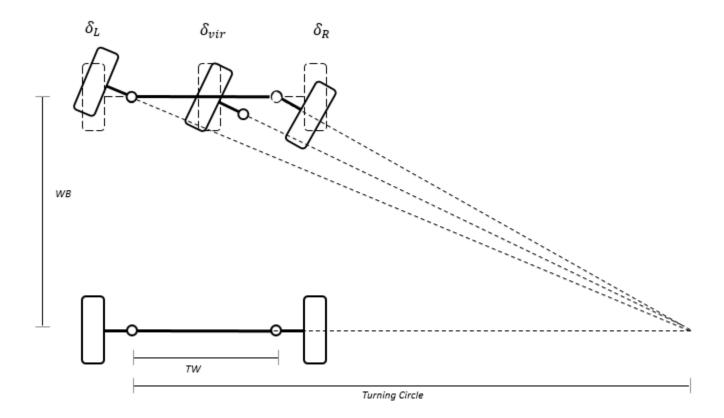
The Kinematic Steering block implements a steering model to determine the left and right wheel angles for Ackerman, rack-and-pinion, and parallel steering mechanisms. The block uses the vehicle coordinate system.


To specify the steering type, use the **Type** parameter.

| Setting         | Block Implementation                                                                    |  |
|-----------------|-----------------------------------------------------------------------------------------|--|
| Ackerman        | Ideal Ackerman steering. Wheel angles have a common turning circle center.              |  |
| Rack and pinion | Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion. |  |
| Parallel        | Parallel steering. Wheel angles are equal.                                              |  |

To specify the type of data for the steering mechanism, use the **Parametrized by** parameter.

| Setting                                                               | Block Implementation                             |  |
|-----------------------------------------------------------------------|--------------------------------------------------|--|
| Constant                                                              | Steering mechanism uses constant parameter data. |  |
| Lookup table Steering mechanism implements tables for parameter data. |                                                  |  |


Use the **Location** parameter to specify front or rear steering.



# **Steering Types**

#### **Ackerman**

For ideal Ackerman steering, the wheel angles have a common turning circle.

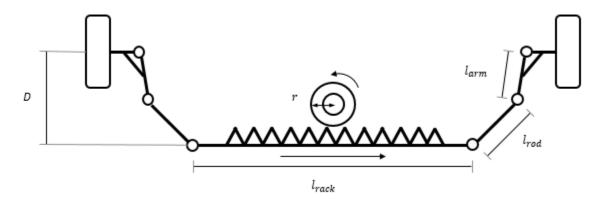


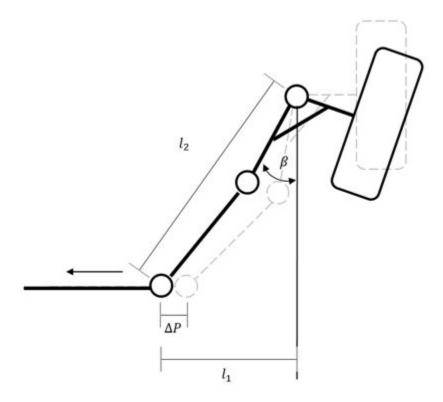
To calculate the steering angles, the block uses these equations.

$$\cot(\delta_L) - \cot(\delta_R) = \frac{TW}{WB}$$

$$\delta_{vir} = \frac{\delta_{in}}{\gamma}$$

$$\delta_L = \tan^{-1} \left( \frac{WB \tan(\delta_{vir})}{WB - 0.5TW \tan(\delta_{vir})} \right)$$


$$\delta_R = \tan^{-1} \left( \frac{WB \tan(\delta_{vir})}{WB + 0.5TW \tan(\delta_{vir})} \right)$$


The illustration and equations use these variables.

| $\delta_{in}$     | Steering angle      |
|-------------------|---------------------|
| $\delta_L$        | Left wheel angle    |
| $\delta_R$        | Right wheel angle   |
| $\delta_{ m vir}$ | Virtual wheel angle |
| TW                | Track width         |
| WB                | Wheel base          |
| γ                 | Steering ratio      |

#### **Rack-and-Pinion**

For ideal rack-and-pinion steering, the gears convert the steering rotation into linear motion.



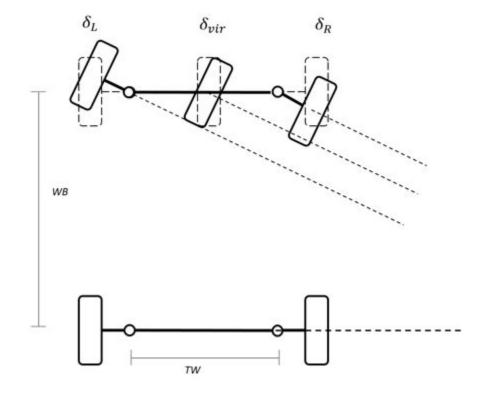


To calculate the steering angles, the block uses these equations.

$$l_1 = \frac{TW - l_{rack}}{2} - \Delta P$$

$$l_2^2 = l_1^2 + D^2$$

$$\Delta P = r\delta_{in}$$


$$\beta = \frac{\pi}{2} - \tan^{-1} \left[ \frac{D}{l_1} \right] - \cos^{-1} \left[ \frac{l_{arm}^2 + l_2^2 - l_{rod}^2}{2l_{arm} l_2} \right]$$

The illustration and equations use these variables.

| $\delta_{in}$ | Steering wheel angle                 |
|---------------|--------------------------------------|
| $\delta_L$    | Left wheel angle                     |
| $\delta_R$    | Right wheel angle                    |
| TW            | Track width                          |
| r             | Pinion radius                        |
| $\Delta P$    | Linear change in rack position       |
| D             | Distance between front axis and rack |
| $l_{rack}$    | Rack casing length                   |
| $l_{arm}$     | Steering arm length                  |
| $l_{rod}$     | Tie rod length                       |

#### **Parallel**

For parallel steering, the wheel angles are equal.



To calculate the steering angles, the block uses this equation.

$$\delta_R = \delta_L = \frac{\delta_{in}}{\gamma}$$

The illustration and equations use these variables.

| $\delta_{in}$ | Steering wheel angle |
|---------------|----------------------|
| $\delta_L$    | Left wheel angle     |
| $\delta_R$    | Right wheel angle    |
| γ             | Steering ratio       |

#### **Ports**

#### Input

#### AngIn — Steering angle

scalar

Steering angle,  $\delta_{in}$ , in rad.

#### Output

#### Info — Bus signal

bus

Bus signal contains this block calculation.

| Signal | Description                  | Variable | Unit |
|--------|------------------------------|----------|------|
| _      | Instantaneous steering ratio | γ        | NA   |

#### AngLft — Left wheel angle

scalar

Left wheel angle,  $\delta_L$ , in rad.

#### AngRght — Right wheel angle

scalar

Right wheel angle,  $\delta_R$ , in rad.

## **Parameters**

#### Type — Select steering type

Ackerman (default) | Rack and pinion | Parallel

To specify the steering type, use the **Type** parameter.

| Setting         | Block Implementation                                                                    |  |
|-----------------|-----------------------------------------------------------------------------------------|--|
| Ackerman        | Ideal Ackerman steering. Wheel angles have a common turning circle center.              |  |
| Rack and pinion | Ideal rack-and-pinion steering. Gears convert the steering rotation into linear motion. |  |
| Parallel        | Parallel steering. Wheel angles are equal.                                              |  |

# **Dependencies**

This table summarizes the  $\mbox{\bf Type}$  and  $\mbox{\bf Parametrized}$  by parameter dependencies.

| Туре            | Parameterized By | Creates Parameters                      |
|-----------------|------------------|-----------------------------------------|
| Ackerman        | Constant         | Track width, TrckWdth                   |
|                 |                  | Wheel base, WhlBase                     |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering ratio, StrgRatio               |
|                 | Lookup table     | Track width, TrckWdth                   |
|                 |                  | Wheel base, WhlBase                     |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering angle breakpoints, StrgAngBpts |
|                 |                  | Steering ratio table, StrgRatioTbl      |
| Rack and pinion | Constant         | Track width, TrckWdth                   |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering arm length, StrgArmLngth       |
|                 |                  | Rack casing length, RckCsLngth          |
|                 |                  | Tie rod length, TieRodLngth             |
|                 |                  | Distance between front axis and rack, D |
|                 |                  | Pinion radius, PnnRadius                |

| Туре     | Parameterized By | Creates Parameters                      |
|----------|------------------|-----------------------------------------|
|          | Lookup table     | Track width, TrckWdth                   |
|          |                  | Deadband, Db                            |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering arm length, StrgArmLngth       |
|          |                  | Rack casing length, RckCsLngth          |
|          |                  | Tie rod length, TieRodLngth             |
|          |                  | Distance between front axis and rack, D |
|          |                  | Pinion radius, PnnRadiusTbl             |
| Parallel | Constant         | Deadband, Db                            |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering ratio, StrgRatio               |
|          | Lookup table     | Deadband, Db                            |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering ratio table, StrgRatioTbl      |

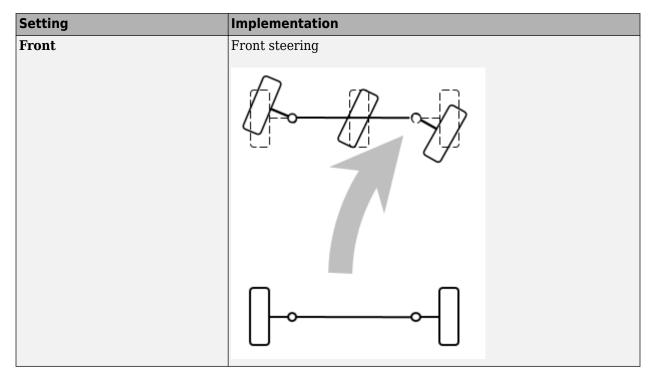
# Parametrized by — Select parameterization Constant (default) | Lookup table

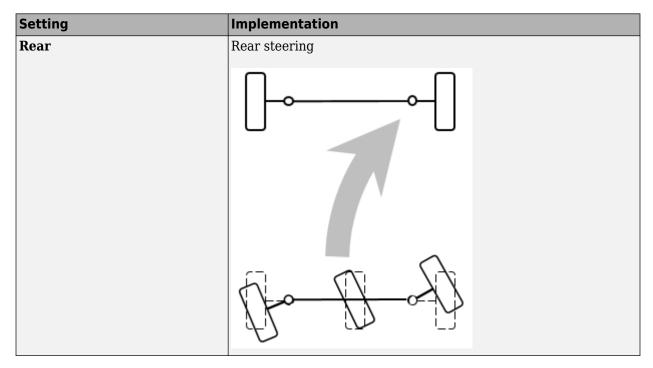
To specify the type of data for the steering mechanism, use the **Parametrized by** parameter.

| Setting      | Block Implementation                                     |  |
|--------------|----------------------------------------------------------|--|
| Constant     | Steering mechanism uses constant parameter data.         |  |
| Lookup table | Steering mechanism implements tables for parameter data. |  |

#### **Dependencies**

This table summarizes the **Type** and **Parametrized by** parameter dependencies.


| Туре            | Parameterized By | Creates Parameters                      |
|-----------------|------------------|-----------------------------------------|
| Ackerman        | Constant         | Track width, TrckWdth                   |
|                 |                  | Wheel base, WhlBase                     |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering ratio, StrgRatio               |
|                 | Lookup table     | Track width, TrckWdth                   |
|                 |                  | Wheel base, WhlBase                     |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering angle breakpoints, StrgAngBpts |
|                 |                  | Steering ratio table, StrgRatioTbl      |
| Rack and pinion | Constant         | Track width, TrckWdth                   |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering arm length, StrgArmLngth       |
|                 |                  | Rack casing length, RckCsLngth          |
|                 |                  | Tie rod length, TieRodLngth             |
|                 |                  | Distance between front axis and rack, D |
|                 |                  | Pinion radius, PnnRadius                |
|                 | Lookup table     | Track width, TrckWdth                   |
|                 |                  | Deadband, Db                            |
|                 |                  | Steering range, StrgRng                 |
|                 |                  | Steering angle breakpoints, StrgAngBpts |
|                 |                  | Steering arm length, StrgArmLngth       |
|                 |                  | Rack casing length, RckCsLngth          |
|                 |                  | Tie rod length, TieRodLngth             |
|                 |                  | Distance between front axis and rack, D |
|                 |                  | Pinion radius, PnnRadiusTbl             |


| Туре     | Parameterized By | Creates Parameters                      |
|----------|------------------|-----------------------------------------|
| Parallel | Constant         | Deadband, Db                            |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering ratio, StrgRatio               |
|          | Lookup table     | Deadband, Db                            |
|          |                  | Steering range, StrgRng                 |
|          |                  | Steering angle breakpoints, StrgAngBpts |
|          |                  | Steering ratio table, StrgRatioTbl      |

## **Location** — **Select location**

Front (default) | Rear

Use the **Location** parameter to specify front or rear steering.





Normalization factor, NrmFctr — Adjust the steering angle scalar

Factor,  $Nrm_{Fctr}$ , that the block uses to adjust the steering ratio,  $\gamma$  or pinion radius, r. The block can only normalize if you have **Parametrized by** set to Constant.

To adjust the steering ratio or pinion radius, click **Normalize**.

| Steering Type   | Normalization                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| Ackerman        | Block updates the Steering ratio, StrgRatio                                                                   |
| Parallel        | parameter to the normalized value, $\gamma_{nrm}$ , specified by this equation.                               |
|                 | $\gamma_{nrm} = \frac{1}{Nrm_{Fctr}}$                                                                         |
| Rack and pinion | Block updates the <b>Pinion radius, PnnRadius</b> parameter to using the normalization factor, $Nrm_{Fctr}$ . |

#### General

### Track width, TrckWdth - Width

1 (default) | scalar

Track width, TW, in m.

## **Dependencies**

To create this parameter, set **Type** to Ackerman or Rack and pinion.

## Wheel base, WhlBase — Base

1.524 (default) | scalar

Wheel base, WB, in m.

### **Dependencies**

To create this parameter, set **Type** to Ackerman.

#### Deadband, Db — Deadband

0 (default) | scalar

Deadband steering angle before pinion engages the gear, in rad.

#### Steering range, StrgRng — Range

1.25\*pi (default) | scalar

Steering range, in rad. The block limits the wheel angles to remain within the steering range.

#### Steering ratio, StrgRatio — Ratio

100 (default) | scalar

Steering ratio,  $\gamma$ , dimensionless.

## **Dependencies**

To create this parameter:

- Set **Type** to Ackerman or Parallel.
- Set Parametrized by to Constant.

### Steering angle breakpoints, StrgAngBpts — Breakpoints

[-6.2832 -5.0265 -3.7699 -2.5133 -1.2566 0 1.2566 2.5133 3.7699 5.0265 6.2832] (default) | vector

Steering angle breakpoints, in rad.

#### **Dependencies**

To create this parameter, set **Parametrized by** to Lookup table.

#### Steering ratio table, StrgRatioTbl — Table

[13.5000 13.3750 13.2500 13.1250 13.0000 13.0000 13.0000 13.1250 13.2500 13.3750 13.5000] (default) | vector

Steering ratio table,  $\gamma$ , dimensionless.

## Dependencies

To create this parameter:

- Set Type to Ackerman or Parallel.
- Set **Parametrized by** to Lookup table.

#### **Rack-and-Pinion**

## Steering arm length, StrgArmLngth — Length

0.1 (default) | scalar

Steering arm length,  $l_{arm}$ , in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

## Rack casing length, RckCsLngth — Length

0.5 (default) | scalar

Rack casing length,  $l_{rack}$ , in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Tie rod length, TieRodLngth — Length

0.248 (default) | scalar

Tie rod length,  $l_{rod}$ , in m.

#### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Distance between front axis and rack, D — Distance

0.2 (default) | scalar

Distance between front axis and rack, D, in m.

### **Dependencies**

To create this parameter, set **Type** to Rack and pinion.

#### Pinion radius, PnnRadius — Radius

0.0057 (default) | scalar

Pinion radius, r, in m.

#### **Dependencies**

To create this parameter:

- Set Type to Rack and pinion.
- Set **Parametrized by** to Constant.

#### Pinion radius table, PnnRadiusTbl — Table

 $[0.0055 \ 0.0055 \ 0.0056 \ 0.0057 \ 0.0057 \ 0.0057 \ 0.0058 \ 0.0057 \ 0.0056 \ 0.0055 \\$ 0.0055] (default) | vector

Pinion radius table, r, in m.

#### **Dependencies**

To create this parameter:

- Set Type to Rack and pinion.
- Set Parametrized by to Lookup table.

## References

- [1] Crolla, David, David Foster, et al. *Encyclopedia of Automotive Engineering*. Volume 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems). Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2015.
- [2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [3] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

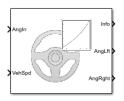
## **Extended Capabilities**

### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

## See Also

Dynamic Steering | Mapped Steering


### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2018a

## **Mapped Steering**

Mapped steering with speed-dependent option Library: Vehicle Dynamics Blockset / Steering



## **Description**

The Mapped Steering block implements lookup tables to calculate the right and left wheel angles. Use the **Speed dependent** parameter to implement a speed-dependent table for the angle calculations. The block uses the vehicle coordinate system.

| Speed<br>Dependen<br>t | Implementation                                                                                                                                                                  | Calculations                                                                                                                                                  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on<br>(default)        | Block uses three tables:  • $f_s$ — Function of vehicle speed  • $f_L$ — Function of superimposed steering wheel angle  • $f_R$ — Function of superimposed steering wheel angle | $\delta_{SpdF} = f_{S}(v)$ $\delta_{SuprImp} = \delta_{SpdF} \cdot \delta_{in}$ $\delta_{L} = f_{L}(\delta_{SuprImp})$ $\delta_{R} = f_{R}(\delta_{SuprImp})$ |
| off                    | Block uses two tables:  • $f_L$ — Function of steering wheel angle  • $f_R$ — Function of steering wheel angle                                                                  | $\delta_L = f_L(\delta_{in})$ $\delta_R = f_R(\delta_{in})$                                                                                                   |

The equations use these variables.

| $\delta_{in}$           | Steering wheel angle                      |
|-------------------------|-------------------------------------------|
| $\delta_{SpdF}$         | Steering wheel angle speed factor         |
| $\delta_{SuprImp}$      | Superimposed steering wheel angle         |
| $\delta_L$ , $\delta_R$ | Left and right wheel angles, respectively |

### **Ports**

### Input

## AngIn — Steering angle

scalar

Steering angle,  $\delta_{in}$ , in rad.

## VehSpd — Vehicle speed

scalar

Vehicle speed, Veh<sub>spd</sub>, in m/s.

#### **Dependencies**

To enable this port, select **Speed dependent**.

#### **Output**

#### Info - Bus signal

bus

Bus signal containing these block calculations.

| Signal  | Description      | Variable   | Unit |
|---------|------------------|------------|------|
| AngLft  | Left wheel angle | $\delta_L$ | rad  |
| AngRght | Left wheel angle | $\delta_R$ | rad  |

### AngLft — Left wheel angle

scalar

Left wheel angle,  $\delta_L$ , in rad.

## AngRght — Right wheel angle

scalar

Right wheel angle,  $\delta_R$ , in rad.

#### **Parameters**

# Steering angle breakpoints, StrgAngBpts — Steering angle breakpoints [-1.5\*pi 1.5\*pi] (default) | vector

Steering angle breakpoints, in rad.

## Left wheel angle table, WhlLftTbl — Left wheel angle table

[-1.5\*pi 1.5\*pi]/13.5] (default) | vector

Left wheel angle table,  $\delta_L$ , in rad.

## Right wheel angle table, WhlRghtTbl — Right wheel angle table

[-1.5\*pi 1.5\*pi]/13.5] (default) | vector

Right wheel angle table,  $\delta_R$ , in rad.

## Vehicle speed breakpoints, VehSpdBpts — Vehicle speed breakpoints

[-1 1] (default) | vector

Vehicle speed breakpoints, in m/s.

### **Dependencies**

To create this parameter, select **Speed dependent**.

## Superimposed speed factor table, SpdFctTbl — Speed factor

[1 1] (default) | vector

Superimposed speed factor table,  $f_s$ , dimensionless. The table is a factor of vehicle speed, v.

#### **Dependencies**

To create this parameter, select **Speed dependent**.

#### References

- [1] Crolla, David, David Foster, et al. *Encyclopedia of Automotive Engineering*. Volume 4, Part 5 (*Chassis Systems*) and Part 6 (*Electrical and Electronic Systems*). Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2015.
- [2] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [3] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

## **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

### See Also

Dynamic Steering | Kinematic Steering

#### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2018a

## **Independent Suspension - Double Wishbone**

Double wishbone independent suspension

**Library:** Vehicle Dynamics Blockset / Suspension



## **Description**

The Independent Suspension - Double Wishbone block implements an independent double wishbone suspension for multiple axles with multiple tracks per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the relative positions and velocities of the vehicle and wheel carrier with axle-specific compliance and damping parameters. Using the suspension compliance and damping, the block calculates the suspension force on the vehicle and wheel. The block uses the Z-down coordinate system (defined in SAE J670).

| For Each | You Can Specify                            |
|----------|--------------------------------------------|
| Axle     | Multiple tracks                            |
|          | An anti-sway bar for axles with two tracks |
|          | Suspension parameters                      |
| Track    | Steering angles                            |

The block contains energy-storing spring elements and energy-dissipating damper elements. It does not contain energy-storing mass elements. The block assumes that the vehicle (sprung) and wheel (unsprung) blocks connected to the block store the mass-related suspension energy.

This table summarizes the block parameter settings for a vehicle with:

- · Two axles
- Two tracks per axle
- Steering angle input for both tracks on the front axle
- · An anti-sway bar on the front axle

| Parameter                                         | Setting |
|---------------------------------------------------|---------|
| Number of axles, NumAxl                           | 2       |
| Number of tracks by axle, NumTracksByAxl          | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl          | [1 0]   |
| Anti-sway axle enable by axle,<br>AntiSwayEnByAxl | [1 0]   |

#### **Suspension Compliance and Damping**

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system. Using the relative positions and velocities of the vehicle and wheel carrier, the block

calculates the vertical suspension forces on the wheel and vehicle. The block uses a linear equation that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and absolute value of the steering angles.

The block implements this equation.

$$F_{wz_{a,t}} = F_{z0_a} + k_{z_a}(z_{v_{a,t}} - z_{w_{a,t}} + m_{hsteer_a} |\delta_{steer_{a,t}}|) + c(\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}) + F_{zhstop_{a,t}} + F_{zaswy_{a,t}}$$

The damping coefficient, c, depends on the **Enable active damping** parameter setting.

| Enable active damping Setting | Damping                                                                                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| off                           | Constant, $c = c_{z_a}$                                                                                                                             |
| on                            | Lookup table that is a function of active damper duty cycle and actuator velocity $c = f \Big( duty, (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}) \Big)$ |

The block assumes that the suspension elements have no mass. Therefore, the suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,t}} &= F_{wx_{a,t}} \\ F_{vy_{a,t}} &= F_{wy_{a,t}} \\ F_{vz_{a,t}} &= -F_{wz_{a,t}} \\ M_{vx_{a,t}} &= M_{wx_{a,t}} + F_{wy_{a,t}} (Re_{wy_{a,t}} + H_{a,t}) \\ M_{vy_{a,t}} &= M_{wy_{a,t}} + F_{wx_{a,t}} (Re_{wx_{a,t}} + H_{a,t}) \\ M_{vz_{a,t}} &= M_{wz_{a,t}} \end{split}$$

The block sets the wheel positions and velocities equal to the vehicle lateral and longitudinal positions and velocities.

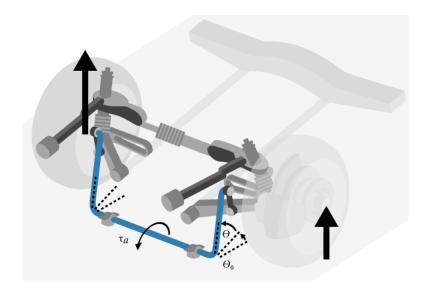
$$x_{w_{a,t}} = x_{v_{a,t}}$$
$$y_{w_{a,t}} = y_{v_{a,t}}$$
$$\dot{x}_{w_{a,t}} = \dot{x}_{v_{a,t}}$$
$$\dot{y}_{w_{a,t}} = \dot{y}_{v_{a,t}}$$

The equations use these variables.

| $F_{wz_{a,t'}} M_{wz_{a,t}}$          | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$              |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $F_{w_{X_{a,t}}}$ , $M_{w_{X_{a,t}}}$ | Suspension force and moment applied to the wheel on axle ${\bf a}$ , track ${\bf t}$ along wheel-fixed ${\bf x}\text{-}{\bf a}{\bf x}$ is |
| $F_{wy_{a,t'}}M_{wy_{a,t}}$           | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed ${\it y}\text{-}{\it axis}$        |

| $F_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ , $M_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ | Suspension force and moment applied to the vehicle on axle a, track ${\tt t}$ along wheel-fixed $z\text{-}{\rm axis}$          |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $F_{{\scriptscriptstyle { m VX}}_{a,t'}} M_{{\scriptscriptstyle { m VX}}_{a,t}}$                                      | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $x\text{-}{\tt axis}$ |
| $F_{{ u y}_{a,t'}} M_{{ u y}_{a,t}}$                                                                                  | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $y\text{-}{\tt axis}$ |
| $F_{z0_a}$                                                                                                            | Vertical suspension spring preload force applied to the wheels on axle a                                                       |
| $k_{z_a}$                                                                                                             | Vertical spring constant applied to tracks on axle a                                                                           |
| $m_{hsteer_a}$                                                                                                        | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a                                           |
| $\delta_{steer_{a,t}}$                                                                                                | Steering angle input for axle a, track t                                                                                       |
| $C_{Z_a}$                                                                                                             | Vertical damping constant applied to tracks on axle a                                                                          |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius for axle a, track t                                                                                     |
| $F_{zhstop_{a,t}}$                                                                                                    | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                            |
| $F_{zaswy_{a,t}}$                                                                                                     | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                           |
| $z_{{ m v}_{a,t}}$ , $\dot{z}_{{ m v}_{a,t}}$                                                                         | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $X_{v_{a,t'}}$ $\dot{X}_{v_{a,t}}$                                                                                    | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $X_{w_{a,t}}$ , $\dot{X}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $y_{ u_{a,t'}}$ $\dot{y}_{ u_{a,t}}$                                                                                  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                  |
| $y_{w_{a,t}}$ , $\dot{y}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle a, track t, along the vehicle-fixed y-axis                                             |
| $H_{a,t}$                                                                                                             | Suspension height at axle a, track t                                                                                           |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius at axle a, track t                                                                                      |

#### **Hardstop Forces**


The hardstop feedback force,  $F_{zhstop_{a,t}}$ , that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the Suspension maximum height, Hmax parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the **Suspension maximum height, Hmax** parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

#### **Anti-Sway Bar**

Optionally, the block implements an anti-sway bar force,  $F_{zaswy_a,t'}$  for axles that have two tracks. This figure shows how the anti-sway bar transmits torque between two independent suspension tracks on a shared axle. Each independent suspension applies a torque to the anti-sway bar via a radius arm that extends from the anti-sway bar back to the independent suspension connection point.



To calculate the sway bar force, the block implements these equations.

| Calculation                                                                           | Equation                                                                                                                                                                            |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anti-sway bar angular deflection for a given axle and track, $\Delta \Theta_{a,t}$    | $\theta_{0a} = \tan^{-1} \left(\frac{z_0}{r}\right)$                                                                                                                                |
|                                                                                       | $\Delta\theta_{a,t} = \tan^{-1} \left( \frac{r \tan\theta_{0a} - z_{w_{a,t}} + z_{v_{a,t}}}{r} \right)$                                                                             |
| Anti-sway bar twist angle, $\Theta_a$                                                 | $\theta_a = -\tan^{-1} \left( \frac{r \tan \theta_{0a} - z_{w_{a,1}} + z_{v_{a,1}}}{r} \right) - \tan^{-1} \left( \frac{r \tan \theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r} \right)$ |
|                                                                                       | $-\tan^{-1}\left(\frac{r\tan\theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r}\right)$                                                                                                     |
| Anti-sway bar torque, $	au_a$                                                         | $\tau_a = k_a \theta_a$                                                                                                                                                             |
| Anti-sway bar forces applied to the wheel on axle a, track t along wheel-fixed z-axis | $F_{zaswy_{a,1}} = \left(\frac{\tau_a}{r}\right)\cos\left(\theta_{0a} - \tan^{-1}\left(\frac{\operatorname{rtan}\theta_{0a} - z_{w_{a,1}} + z_{v_{a,1}}}{r}\right)\right)$          |
| diong wheel-madu 2-dais                                                               | $F_{zaswy_{a,2}} = \left(\frac{\tau_a}{r}\right)\cos\left(\theta_{0a} - \tan^{-1}\left(\frac{r\tan\theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r}\right)\right)$                        |

The equations and figure use these variables.

| Anti-sway bar torque                                                                         |
|----------------------------------------------------------------------------------------------|
| Anti-sway bar twist angle                                                                    |
| Initial anti-sway bar twist angle                                                            |
| Anti-sway bar angular deflection at axle a, track t                                          |
| Anti-sway bar arm radius                                                                     |
| Vertical distance from anti-sway bar connection point to anti-sway bar centerline            |
| Anti-sway bar force applied to the wheel on axle $a$ , track $t$ along wheel-fixed $z$ -axis |
| Vehicle displacement at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis             |
| Wheel displacement at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis               |
|                                                                                              |

#### Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$\begin{aligned} \xi_{a,\,t} &= \xi_{0a} + m_{hcamber_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{cambersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \eta_{a,\,t} &= \eta_{0a} + m_{hcaster_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{castersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \zeta_{a,\,t} &= \zeta_{0a} + m_{htoe_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{toesteer_a} \big| \delta_{steer_{a,\,t}} \big| \end{aligned}$$

The equations use these variables.

 $\xi_{a,t}$  Camber angle of wheel on axle a, track t  $\eta_{a,t}$  Caster angle of wheel on axle a, track t  $\zeta_{a,t}$  Toe angle of wheel on axle a, track t

 $\xi_{0a}$ ,  $\eta_{0a}$ ,  $\zeta_{0a}$  Nominal suspension axle a camber, caster, and toe angles, respectively, at

zero steering angle

 $m_{hcamber,r}, m_{hcaster,r}$  Camber, caster, and toe angles, respectively, versus suspension height slope

 $m_{htoe_a}$  for axle a

 $m_{cambersteer_a}$ ,  $m_{castersteer_a}$ , Camber, caster, and toe angles, respectively, versus steering angle slope for

 $m_{toesteer_a}$  axle a

 $m_{hsteer_a}$  Steering angle versus vertical force slope for axle a

 $\delta_{steer.}$  Steering angle input for axle a, track t

 $z_{\nu_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

#### **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$\delta_{whlsteer_{a,\,t}} = \delta_{steer_{a,\,t}} + m_{htoe_a} \left( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \middle| \delta_{steer_{a,\,t}} \middle| \right) + m_{toesteer_a} \middle| \delta_{steer_{a,\,t}} \middle|$$

The equation uses these variables.

 $m_{toesteer_a}$  Axle a toe angle versus steering angle slope  $m_{hsteer_a}$  Axle a steering angle versus vertical force slope  $m_{htoe_a}$  Axle a toe angle versus suspension height slope

 $\delta_{whlsteer_{a,t}}$  Wheel steering angle for axle a, track t  $\delta_{steer_{a,t}}$  Steering angle input for axle a, track t

 $z_{v_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

## **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                                               | Equation                                                                                                                               |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$                        | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$                         | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Suspension height, $H_{a,t}$                              | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} + \frac{F_{z0_a}}{k_{z_a}} + m_{hsteer_a} \left  \delta_{steer_{a,t}} \right  \right)$     |
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$                                                                                               |

The equations use these variables.

| $m_{hsteer_a}$                                                                                                          | Steering angle to vertical force slope applied at wheel carrier for tracks on axle ${\tt a}$  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$                                                                                                  | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                                                                                                          | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| $F_{z0_a}$                                                                                                              | Vertical suspension spring preload force applied to the wheels on axle a                      |
| $\mathcal{Z}_{wtr_{a,t}}$                                                                                               | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $oldsymbol{\mathcal{Z}}_{oldsymbol{\mathcal{V}}_{a,t}}$ , $\dot{oldsymbol{\mathcal{Z}}}_{oldsymbol{\mathcal{V}}_{a,t}}$ | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $\pmb{z}_{w_{a,t}}$ , $\dot{\pmb{z}}_{w_{a,t}}$                                                                         | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

## **Ports**

#### Input

## WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlPz = 
$$z_w = \begin{bmatrix} z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

### WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhiRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

#### WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

$$\text{WhlVz} = \dot{z}_w = \left[ \dot{z}_{w_{1,\,1}} \; \dot{z}_{w_{1,\,2}} \; \dot{z}_{w_{2,\,1}} \; \dot{z}_{w_{2,\,2}} \right]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

#### WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

## WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFy = 
$$F_{wy} = [F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

#### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

WhlM = 
$$M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlM(2,2)     | 1    | 2     |                                     |
| WhlM(2,3)     | 2    | 1     |                                     |
| WhlM(2,4)     | 2    | 2     |                                     |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlM(3,2)     | 1    | 2     |                                     |
| WhlM(3,3)     | 2    | 1     |                                     |
| WhlM(3,4)     | 2    | 2     |                                     |

## VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_v$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

### VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_v$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v} \end{bmatrix} = \begin{bmatrix} \dot{x}_{v_{1,1}} \ \dot{x}_{v_{1,2}} \ \dot{x}_{v_{2,1}} \ \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} \ \dot{y}_{v_{1,2}} \ \dot{y}_{v_{2,1}} \ \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} \ \dot{z}_{v_{1,2}} \ \dot{z}_{v_{2,1}} \ \dot{z}_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehV(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)     | 1    | 2     |                      |
| VehV(1,3)     | 2    | 1     |                      |
| VehV(1,4)     | 2    | 2     |                      |
| VehV(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)     | 1    | 2     |                      |
| VehV(2,3)     | 2    | 1     |                      |
| VehV(2,4)     | 2    | 2     |                      |
| VehV(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)     | 1    | 2     |                      |
| VehV(3,3)     | 2    | 1     |                      |
| VehV(3,4)     | 2    | 2     |                      |

## StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

#### **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - · Suspension height vs steering angle slope, StrgHgtSlp

#### **Output**

#### Info — Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

| Array Element | Axle | Track |
|---------------|------|-------|
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                              | Array Signal | Variable                                     | Units |
|--------|------------------------------------------|--------------|----------------------------------------------|-------|
| Camber | Wheel angles according                   | 1D           | WhlAng[1,] = $\xi = [\xi_{a,t}]$             | rad   |
| Caster | to the axle and track location.          |              | WhlAng[2,] = $\eta = [\eta_{a,t}]$           |       |
| Toe    |                                          |              | WhlAng[3,] = $\zeta = [\zeta_{a,t}]$         |       |
| Height | Suspension height                        | 1D           | Н                                            | m     |
| Power  | Suspension power dissipation             | 1D           | $P_{susp}$                                   | W     |
| Energy | Suspension absorbed energy               | 1D           | $E_{susp}$                                   | J     |
| VehF   | Suspension forces applied to the vehicle | 3D           | For a two-axle, two tracks per axle vehicle: | 2     |

| Signal | Description                           | Array Signal | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units         |
|--------|---------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| VehM   | Suspension moments applied to vehicle | 3D           | For a two-axle, two tracks per axle vehicle: $VehM = M_{v} = \\ \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{v} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{v} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{v} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W2, 2         |
| WhlF   | Suspension force applied to wheel     | 3D           | For a two-axle, two tracks per axle vehicle: $WhlF = F_{w} = $ $\begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} $ | 2,2           |
| WhlP   | Track displacement                    | 3D           | For a two-axle, two tracks per axle vehicle: $WhlP = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} x_{w1,1} & x_{w1,2} & x_{w2,1} & x_w \\ y_{w1,1} & y_{w1,2} & y_{w2,1} & y_w \\ z_{wtr_{1,1}} & z_{wtr_{1,2}} & z_{wtr_{2,1}} & z_{wt} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2, 2<br>V2, 2 |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                                                                                                        | Units |
|--------|----------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| WhlV   | Track velocity                   | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | m/s   |
|        |                                  |              | $WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix}$                                                                                                                                                                                                      |       |
|        |                                  |              | =                                                                                                                                                                                                                                                                               |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \dot{y} \ \dot{y} \ \dot{y} \ \dot{y} \end{bmatrix}$                                                                                                                          |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} \ \dot{y}_{w_{1,2}} \ \dot{y}_{w_{2,1}} \ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}} \end{bmatrix}$ |       |
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | rad   |
|        |                                  |              | WhlAng = $\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$ $= \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \end{bmatrix}$                                                                              |       |
|        |                                  |              | $= \begin{bmatrix} \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$                                                                                                                                    |       |

#### VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed *z*-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

## VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed *y*-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |

| Array Element | Axle | Track | Moment Axis                     |
|---------------|------|-------|---------------------------------|
| VehM(2,3)     | 2    | 1     |                                 |
| VehM(2,4)     | 2    | 2     |                                 |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| VehM(3,2)     | 1    | 2     |                                 |
| VehM(3,3)     | 2    | 1     |                                 |
| VehM(3,4)     | 2    | 2     |                                 |

#### WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\text{WhlF} = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,2}} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy_{2,2}} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)     | 1    | 2     |                                     |
| WhlF(1,3)     | 2    | 1     |                                     |
| WhlF(1,4)     | 2    | 2     |                                     |
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlF(2,2)     | 1    | 2     |                                     |
| WhlF(2,3)     | 2    | 1     |                                     |
| WhlF(2,4)     | 2    | 2     |                                     |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlF(3,2)     | 1    | 2     |                                     |
| WhlF(3,3)     | 2    | 1     |                                     |
| WhlF(3,4)     | 2    | 2     |                                     |

## WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed *y*-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

WhIV = 
$$\begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlV(1,2)     | 1    | 2     |                                     |
| WhlV(1,3)     | 2    | 1     |                                     |
| WhlV(1,4)     | 2    | 2     |                                     |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlV(2,2)     | 1    | 2     |                                     |
| WhlV(2,3)     | 2    | 1     |                                     |
| WhlV(2,4)     | 2    | 2     |                                     |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlV(3,2)     | 1    | 2     |                                     |
| WhlV(3,3)     | 2    | 1     |                                     |
| WhlV(3,4)     | 2    | 2     |                                     |

## WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |
| WhlF(3,3)     | 2    | 1     |        |
| WhlF(3,4)     | 2    | 2     |        |

### **Parameters**

Enable active damping — Include damping

off (default) | off

Include damping

#### **Dependencies**

Selecting this parameter creates:

- Damping coefficient map, f\_act\_susp\_cz
- Damping actuator duty cycle breakpoints, f\_act\_susp\_duty\_bpt
- Damping actuator velocity breakpoints, f\_act\_susp\_zdot\_bpt

Number of axles, NumAxl — Number of axles

2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2] (default) | vector

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

Steered axle enable by axle, StrgEnByAxl — Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0] For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1] For a two-axle vehicle, enables axle 1 and axle 2 steering

#### **Dependencies**

Setting any element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

# Anti-sway axle enable by axle, AntiSwayEnByAxl — Boolean vector to enable axle anti-sway

[0 0] (default) | vector

Boolean vector that enables axle anti-sway for axle a, dimensionless. For example, [1 0] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles,  $N_a$ .

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- · Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

#### Suspension

**Compliance and Damping - Passive** 

**Suspension spring constant, Kz — Suspension spring constant** 64370 (default) | scalar | vector

Linear vertical spring constant for independent suspension tracks on axle a,  $k_{z,i}$  in N/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Suspension spring preload, F0z — Suspension spring preload

9810 (default) | scalar | vector

Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates,  $F_{70}$ , in N. Positive preload forces:

- · Cause the vehicle to lift.
- Point along the negative vehicle-fixed *z*-axis.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Suspension shock damping constant, Cz — Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension tracks on axle a,  $c_{z_{\sigma'}}$  in Ns/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

To create this parameter, clear **Enable active damping**.

## Suspension maximum height, Hmax — Height

0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height,  $H_{max}$ , for axle **a** before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Compliance and Damping - Active**

## Damping coefficient map, f\_act\_susp\_cz — Lookup table

[10000 10000;10000 10000] (default) | M-by-N array

Damping coefficient table as a function of active duty cycle and actuator compression velocity, in  $N\cdot s/m$ . Each value specifies the damping for a specific combination of actuator duty cycle and velocity. The array dimensions must match the duty cycle, M, and actuator velocity, N, breakpoint vector dimensions.

#### **Dependencies**

To create this parameter, clear **Enable active damping**.

# Damping actuator duty cycle breakpoints, f\_act\_susp\_duty\_bpt — Duty cycle breakpoints

```
[0 1] (default) | 1-by-M vector
```

Damping actuator duty cycle breakpoints, dimensionless.

#### **Dependencies**

To create this parameter, clear **Enable active damping**.

## Damping actuator velocity breakpoints, f\_act\_susp\_zdot\_bpt — Velocity breakpoints

[-1 1] (default) | 1-by-N vector

Damping actuator velocity breakpoints, in m/s.

#### **Dependencies**

To create this parameter, clear **Enable active damping**.

#### Geometry

## Toe angle at steering center, Toe — Toe angle

0.0349 (default) | scalar

Nominal suspension to angle at zero steering angle,  $\zeta_{0a}$ , in rad.

# Roll steer vs suspension height slope, RollStrgSlp — Steer angle suspension slope -0.2269 (default) | scalar | vector

Roll steer angle versus suspension height,  $m_{htoe_a}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Toe angle vs steering angle slope, ToeStrgSlp — Toe angle steering slope 0.01 (default) | scalar | vector

Toe angle versus steering angle slope,  $m_{toesteer}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - · Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Caster angle at steering center, Caster — Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle,  $\eta_{0a}$ , in rad.

# Caster angle vs suspension height slope, CasterHslp — Caster angle versus suspension height slope

-0.2269 (default) | scalar | vector

Caster angle versus suspension height,  $m_{heaster}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Caster angle vs steering angle slope, CasterStrgSlp — Caster angle versus steering angle slope

0.01 (default) | scalar | vector

Caster angle versus steering angle slope,  $m_{castersteer}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Camber angle at steering center, Camber — Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle,  $\xi_{0a}$ , in rad.

# Camber angle vs suspension height slope, CamberHslp — Camber angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Camber angle versus suspension height,  $m_{hcamber_{e'}}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Camber angle vs steering angle slope, CamberStrgSlp — Camber angle versus steering angle slope

```
0.01 (default) | scalar | vector
```

Camber angle versus steering angle slope,  $m_{cambersteer, \prime}$  dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Suspension height vs steering angle slope, StrgHgtSlp — Suspension height versus steering angle slope

```
0.1432 (default) | scalar | vector
```

Steering angle to vertical force slope applied at suspension wheel carrier reference point,  $m_{hsteer_a}$ , in m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

#### **Anti-Sway**

# Anti-sway arm radius, AntiSwayR — Anti-sway arm radius 0.2 (default) | scalar | vector

Anti-sway arm radius, r, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

# Anti-sway arm neutral angle, AntiSwayNtrlAng — Anti-sway arm neutral angle 0.5236 (default) | scalar | vector

Anti-sway arm neutral angle,  $\theta_{0a}$ , at nominal suspension height, in rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- · Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

## Anti-sway torsion spring constant, AntiSwayTrsK — Anti-sway torsion spring constant

5.7296e+03 (default) | scalar | vector

Anti-sway bar torsion spring constant,  $k_a$ , in N·m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

#### References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## **Extended Capabilities**

#### C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

## See Also

Independent Suspension - MacPherson | Independent Suspension - Mapped

## Introduced in R2018a

## **Independent Suspension - MacPherson**

MacPherson independent suspension

**Library:** Vehicle Dynamics Blockset / Suspension



## **Description**

The Independent Suspension - MacPherson block implements an independent MacPherson suspension for multiple axles with multiple tracks per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the relative positions and velocities of the vehicle and wheel carrier with axle-specific compliance and damping parameters. Using the suspension compliance and damping, the block calculates the suspension force on the vehicle and wheel. The block uses the Z-down coordinate system (defined in SAE J670).

| For Each | You Can Specify                            |
|----------|--------------------------------------------|
| Axle     | Multiple tracks                            |
|          | An anti-sway bar for axles with two tracks |
|          | Suspension parameters                      |
| Track    | Steering angles                            |

The block contains energy-storing spring elements and energy-dissipating damper elements. It does not contain energy-storing mass elements. The block assumes that the vehicle (sprung) and wheel (unsprung) blocks connected to the block store the mass-related suspension energy.

This table summarizes the block parameter settings for a vehicle with:

- · Two axles
- · Two tracks per axle
- · Steering angle input for both tracks on the front axle
- · An anti-sway bar on the front axle

| Parameter                                         | Setting |
|---------------------------------------------------|---------|
| Number of axles, NumAxl                           | 2       |
| Number of tracks by axle, NumTracksByAxl          | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl          | [1 0]   |
| Anti-sway axle enable by axle,<br>AntiSwayEnByAxl | [1 0]   |

#### **Suspension Compliance and Damping**

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system. Using the relative positions and velocities of the vehicle and wheel carrier, the block

calculates the vertical suspension forces on the wheel and vehicle. The block uses a linear equation that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and absolute value of the steering angles.

The block implements this equation.

$$F_{wz_{a,t}} = F_{z0_a} + k_{z_a}(z_{v_{a,t}} - z_{w_{a,t}} + m_{hsteer_a} |\delta_{steer_{a,t}}|) + c(\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}) + F_{zhstop_{a,t}} + F_{zaswy_{a,t}}$$

The damping coefficient, c, depends on the **Enable active damping** parameter setting.

| Enable active damping Setting | Damping                                                                                                                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| off                           | Constant, $c = c_{z_a}$                                                                                                                             |
| on                            | Lookup table that is a function of active damper duty cycle and actuator velocity $c = f \big( duty, (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}) \big)$ |

The block assumes that the suspension elements have no mass. Therefore, the suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,t}} &= F_{wx_{a,t}} \\ F_{vy_{a,t}} &= F_{wy_{a,t}} \\ F_{vz_{a,t}} &= -F_{wz_{a,t}} \\ M_{vx_{a,t}} &= M_{wx_{a,t}} + F_{wy_{a,t}} (Re_{wy_{a,t}} + H_{a,t}) \\ M_{vy_{a,t}} &= M_{wy_{a,t}} + F_{wx_{a,t}} (Re_{wx_{a,t}} + H_{a,t}) \\ M_{vz_{a,t}} &= M_{wz_{a,t}} \end{split}$$

The block sets the wheel positions and velocities equal to the vehicle lateral and longitudinal positions and velocities.

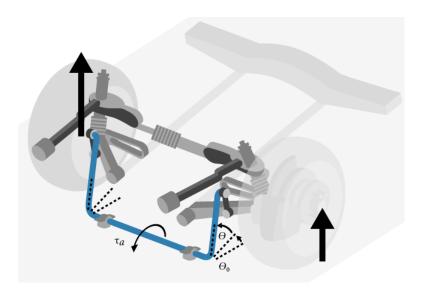
$$\begin{aligned} x_{w_{a,t}} &= x_{v_{a,t}} \\ y_{w_{a,t}} &= y_{v_{a,t}} \\ \dot{x}_{w_{a,t}} &= \dot{x}_{v_{a,t}} \\ \dot{y}_{w_{a,t}} &= \dot{y}_{v_{a,t}} \end{aligned}$$

The equations use these variables.

| $F_{wz_{a,t'}}M_{wz_{a,t}}$           | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$       |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $F_{w_{X_{a,t}}}$ , $M_{w_{X_{a,t}}}$ | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $x\text{-}{\tt axis}$       |
| $F_{wy_{a,t}}$ , $M_{wy_{a,t}}$       | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed ${\tt y}\text{-}{\tt axis}$ |

| $F_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}, M_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ | Suspension force and moment applied to the vehicle on axle a, track ${\tt t}$ along wheel-fixed $z\text{-}{\rm axis}$          |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $F_{{\scriptscriptstyle VX}_{a,t'}}M_{{\scriptscriptstyle VX}_{a,t}}$                                              | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $x\text{-}{\tt axis}$ |
| $F_{ u y_{a,t'}} M_{ u y_{a,t}}$                                                                                   | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $y\text{-}{\tt axis}$ |
| $F_{z0_a}$                                                                                                         | Vertical suspension spring preload force applied to the wheels on axle a                                                       |
| $k_{z_a}$                                                                                                          | Vertical spring constant applied to tracks on axle a                                                                           |
| $m_{hsteer_a}$                                                                                                     | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a                                           |
| $\delta_{steer_{a,t}}$                                                                                             | Steering angle input for axle a, track t                                                                                       |
| $C_{Z_a}$                                                                                                          | Vertical damping constant applied to tracks on axle a                                                                          |
| $Re_{w_{a,t}}$                                                                                                     | Effective wheel radius for axle a, track t                                                                                     |
| $F_{zhstop_{a,t}}$                                                                                                 | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                            |
| $F_{zaswy_{a,t}}$                                                                                                  | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                           |
| $\pmb{z}_{\pmb{\mathcal{V}}_{a,t}}$ , $\dot{\pmb{z}}_{\pmb{\mathcal{V}}_{a,t}}$                                    | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$                                                                                | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $X_{v_{a,t'}}$ $\dot{X}_{v_{a,t}}$                                                                                 | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $X_{w_{a,t}}$ , $\dot{X}_{w_{a,t}}$                                                                                | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $y_{ u_{a,t'}} \ \dot{y}_{ u_{a,t}}$                                                                               | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                  |
| $y_{w_{a,t}}$ , $\dot{y}_{w_{a,t}}$                                                                                | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                    |
| $H_{a,t}$                                                                                                          | Suspension height at axle a, track t                                                                                           |
| $Re_{w_{a,t}}$                                                                                                     | Effective wheel radius at axle a, track t                                                                                      |

#### **Hardstop Forces**


The hardstop feedback force,  $F_{zhstop_{a,t}}$ , that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the **Suspension maximum height, Hmax** parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the Suspension maximum height, Hmax parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

#### **Anti-Sway Bar**

Optionally, the block implements an anti-sway bar force,  $F_{zaswy_a,t'}$  for axles that have two tracks. This figure shows how the anti-sway bar transmits torque between two independent suspension tracks on a shared axle. Each independent suspension applies a torque to the anti-sway bar via a radius arm that extends from the anti-sway bar back to the independent suspension connection point.



To calculate the sway bar force, the block implements these equations.

| Calculation                                                                           | Equation                                                                                                                                                                            |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Anti-sway bar angular deflection for a given axle and track, $\Delta \Theta_{a,t}$    | $\theta_{0a} = \tan^{-1} \left( \frac{z_0}{r} \right)$                                                                                                                              |  |
|                                                                                       | $\Delta\theta_{a,t} = \tan^{-1} \left( \frac{r \tan\theta_{0a} - z_{w_{a,t}} + z_{v_{a,t}}}{r} \right)$                                                                             |  |
| Anti-sway bar twist angle, $\Theta_a$                                                 | $\theta_a = -\tan^{-1} \left( \frac{r \tan \theta_{0a} - z_{w_{a,1}} + z_{v_{a,1}}}{r} \right) - \tan^{-1} \left( \frac{r \tan \theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r} \right)$ |  |
|                                                                                       | $-\tan^{-1}\left(\frac{r\tan\theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r}\right)$                                                                                                     |  |
| Anti-sway bar torque, $	au_a$                                                         | $\tau_a = k_a \theta_a$                                                                                                                                                             |  |
| Anti-sway bar forces applied to the wheel on axle a, track t along wheel-fixed z-axis | $F_{zaswy_{a,1}} = \left(\frac{\tau_a}{r}\right)\cos\left(\theta_{0a} - \tan^{-1}\left(\frac{\operatorname{rtan}\theta_{0a} - z_{w_{a,1}} + z_{v_{a,1}}}{r}\right)\right)$          |  |
| along wheel-lixed 2-axis                                                              | $F_{zaswy_{a,2}} = \left(\frac{\tau_a}{r}\right)\cos\left(\theta_{0a} - \tan^{-1}\left(\frac{r\tan\theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r}\right)\right)$                        |  |

The equations and figure use these variables.

| $\tau_a$                            | Anti-sway bar torque                                                                         |
|-------------------------------------|----------------------------------------------------------------------------------------------|
| $\theta$                            | Anti-sway bar twist angle                                                                    |
| $	heta_{0a}$                        | Initial anti-sway bar twist angle                                                            |
| $\Delta \Theta_{a,t}$               | Anti-sway bar angular deflection at axle a, track t                                          |
| r                                   | Anti-sway bar arm radius                                                                     |
| $z_0$                               | Vertical distance from anti-sway bar connection point to anti-sway bar centerline            |
| $F_{zsway_{a,t}}$                   | Anti-sway bar force applied to the wheel on axle $a$ , track $t$ along wheel-fixed $z$ -axis |
| ${\mathcal Z}_{{\mathcal V}_{a,t}}$ | Vehicle displacement at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis             |
| $\mathcal{Z}_{W_{a,t}}$             | Wheel displacement at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis               |

### Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$\begin{aligned} \xi_{a,\,t} &= \xi_{0a} + m_{hcamber_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{cambersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \eta_{a,\,t} &= \eta_{0a} + m_{hcaster_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{castersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \zeta_{a,\,t} &= \zeta_{0a} + m_{htoe_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{toesteer_a} \big| \delta_{steer_{a,\,t}} \big| \end{aligned}$$

The equations use these variables.

 $\xi_{a,t}$  Camber angle of wheel on axle a, track t  $\eta_{a,t}$  Caster angle of wheel on axle a, track t  $\zeta_{a,t}$  Toe angle of wheel on axle a, track t

 $\xi_{0a}$ ,  $\eta_{0a}$ ,  $\zeta_{0a}$  Nominal suspension axle a camber, caster, and toe angles, respectively, at

zero steering angle

 $m_{hcamber,r}, m_{hcaster,r}$  Camber, caster, and toe angles, respectively, versus suspension height slope

 $m_{htoe_a}$  for axle a

 $m_{cambersteer_a}$ ,  $m_{castersteer_a}$ , Camber, caster, and toe angles, respectively, versus steering angle slope for

 $m_{toesteer_a}$  axle a

 $m_{hsteer_a}$  Steering angle versus vertical force slope for axle a

 $\delta_{steer.}$  Steering angle input for axle a, track t

 $z_{\nu_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

### **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$\delta_{whlsteer_{a,\,t}} = \delta_{steer_{a,\,t}} + m_{htoe_a} \left( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \middle| \delta_{steer_{a,\,t}} \middle| \right) + m_{toesteer_a} \middle| \delta_{steer_{a,\,t}} \middle|$$

The equation uses these variables.

 $m_{toesteer_a}$  Axle a toe angle versus steering angle slope  $m_{hsteer_a}$  Axle a steering angle versus vertical force slope  $m_{htoe_a}$  Axle a toe angle versus suspension height slope

 $\delta_{whlsteer_{a,t}}$  Wheel steering angle for axle a, track t  $\delta_{steer_{a,t}}$  Steering angle input for axle a, track t

 $z_{v_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

# **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                                               | Equation                                                                                                                               |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$                        | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$                         | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Suspension height, $H_{a,t}$                              | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} + \frac{F_{z0_a}}{k_{z_a}} + m_{hsteer_a} \left  \delta_{steer_{a,t}} \right  \right)$     |
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$                                                                                               |

The equations use these variables.

| $m_{hsteer_a}$                                  | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a          |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$                          | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                                  | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| $F_{z0_a}$                                      | Vertical suspension spring preload force applied to the wheels on axle a                      |
| $\mathcal{Z}_{wtr_{a,t}}$                       | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $z_{v_{a,t}}$ , $\dot{z}_{v_{a,t}}$             | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $\pmb{z}_{w_{a,t}}$ , $\dot{\pmb{z}}_{w_{a,t}}$ | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

# **Ports**

# Input

# WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlPz = 
$$z_w = \begin{bmatrix} z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

## WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

### WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed *z*-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlVz = 
$$\dot{z}_w = [\dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

### WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

## WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFy = 
$$F_{wy} = [F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

#### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

WhlM = 
$$M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlM(2,2)     | 1    | 2     |                                     |
| WhlM(2,3)     | 2    | 1     |                                     |
| WhlM(2,4)     | 2    | 2     |                                     |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlM(3,2)     | 1    | 2     |                                     |
| WhlM(3,3)     | 2    | 1     |                                     |
| WhlM(3,4)     | 2    | 2     |                                     |

### VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_{\nu}$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

## VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_v$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v} \end{bmatrix} = \begin{bmatrix} \dot{x}_{v_{1,1}} \ \dot{x}_{v_{1,2}} \ \dot{x}_{v_{2,1}} \ \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} \ \dot{y}_{v_{1,2}} \ \dot{y}_{v_{2,1}} \ \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} \ \dot{z}_{v_{1,2}} \ \dot{z}_{v_{2,1}} \ \dot{z}_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehV(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)     | 1    | 2     |                      |
| VehV(1,3)     | 2    | 1     |                      |
| VehV(1,4)     | 2    | 2     |                      |
| VehV(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)     | 1    | 2     |                      |
| VehV(2,3)     | 2    | 1     |                      |
| VehV(2,4)     | 2    | 2     |                      |
| VehV(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)     | 1    | 2     |                      |
| VehV(3,3)     | 2    | 1     |                      |
| VehV(3,4)     | 2    | 2     |                      |

# StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### **Output**

### Info - Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

| Array Element | Axle | Track |
|---------------|------|-------|
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                              | Array Signal | Variable                                     | Units |
|--------|------------------------------------------|--------------|----------------------------------------------|-------|
| Camber | Wheel angles according                   | 1D           | WhlAng[1,] = $\xi = [\xi_{a,t}]$             | rad   |
| Caster | to the axle and track location.          |              | WhlAng[2,] = $\eta = [\eta_{a,t}]$           |       |
| Toe    |                                          |              | WhlAng[3,] = $\zeta = [\zeta_{a,t}]$         |       |
| Height | Suspension height                        | 1D           | Н                                            | m     |
| Power  | Suspension power dissipation             | 1D           | $P_{susp}$                                   | W     |
| Energy | Suspension absorbed energy               | 1D           | $E_{susp}$                                   | J     |
| VehF   | Suspension forces applied to the vehicle | 3D           | For a two-axle, two tracks per axle vehicle: | 2     |

| Signal | Description                           | Array Signal | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units         |
|--------|---------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| VehM   | Suspension moments applied to vehicle | 3D           | For a two-axle, two tracks per axle vehicle: $VehM = M_{v} = \\ \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{v} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{v} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{v} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V2,2          |
| WhlF   | Suspension force applied to wheel     | 3D           | For a two-axle, two tracks per axle vehicle: $WhlF = F_w = $ $\begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & $ | 2, 2<br>2, 2  |
| WhlP   | Track displacement                    | 3D           | For a two-axle, two tracks per axle vehicle: $WhlP = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_w \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_w \\ z_{wtr_{1,1}} & z_{wtr_{1,2}} & z_{wtr_{2,1}} & z_{wt} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2, 2<br>V2, 2 |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                                                                                                        | Units |
|--------|----------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| WhlV   | Track velocity                   | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | m/s   |
|        |                                  |              | $WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix}$                                                                                                                                                                                                      |       |
|        |                                  |              | =                                                                                                                                                                                                                                                                               |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y} & \dot{y} & \dot{y} & \dot{y} \end{bmatrix}$                                                                                                                          |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} \ \dot{y}_{w_{1,2}} \ \dot{y}_{w_{2,1}} \ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}} \end{bmatrix}$ |       |
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | rad   |
|        |                                  |              | WhlAng = $\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$ $= \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \end{bmatrix}$                                                                              |       |
|        |                                  |              | $= \begin{bmatrix} \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$                                                                                                                                    |       |

### VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed *z*-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

# VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed *y*-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |

| Array Element | Axle | Track | Moment Axis                     |
|---------------|------|-------|---------------------------------|
| VehM(2,3)     | 2    | 1     |                                 |
| VehM(2,4)     | 2    | 2     |                                 |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| VehM(3,2)     | 1    | 2     |                                 |
| VehM(3,3)     | 2    | 1     |                                 |
| VehM(3,4)     | 2    | 2     |                                 |

## WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed *y*-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\text{WhlF} = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,2}} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy_{2,2}} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)     | 1    | 2     |                                     |
| WhlF(1,3)     | 2    | 1     |                                     |
| WhlF(1,4)     | 2    | 2     |                                     |
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlF(2,2)     | 1    | 2     |                                     |
| WhlF(2,3)     | 2    | 1     |                                     |
| WhlF(2,4)     | 2    | 2     |                                     |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlF(3,2)     | 1    | 2     |                                     |
| WhlF(3,3)     | 2    | 1     |                                     |
| WhlF(3,4)     | 2    | 2     |                                     |

# WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed y-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

WhIV = 
$$\begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlV(1,2)     | 1    | 2     |                                     |
| WhlV(1,3)     | 2    | 1     |                                     |
| WhlV(1,4)     | 2    | 2     |                                     |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlV(2,2)     | 1    | 2     |                                     |
| WhlV(2,3)     | 2    | 1     |                                     |
| WhlV(2,4)     | 2    | 2     |                                     |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlV(3,2)     | 1    | 2     |                                     |
| WhlV(3,3)     | 2    | 1     |                                     |
| WhlV(3,4)     | 2    | 2     |                                     |

# WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |
| WhlF(3,3)     | 2    | 1     |        |
| WhlF(3,4)     | 2    | 2     |        |

## **Parameters**

Enable active damping — Include damping

off (default) | off

Include damping

### **Dependencies**

Selecting this parameter creates:

- Damping coefficient map, f\_act\_susp\_cz
- Damping actuator duty cycle breakpoints, f\_act\_susp\_duty\_bpt
- Damping actuator velocity breakpoints, f\_act\_susp\_zdot\_bpt

Number of axles, NumAxl — Number of axles

2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2]  $(default) \mid vector$ 

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

Steered axle enable by axle, StrgEnByAxl - Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0] For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1] For a two-axle vehicle, enables axle 1 and axle 2 steering

### **Dependencies**

Setting any element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

# Anti-sway axle enable by axle, AntiSwayEnByAxl — Boolean vector to enable axle anti-sway

[0 0] (default) | vector

Boolean vector that enables axle anti-sway for axle a, dimensionless. For example, [1 0] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles,  $N_a$ .

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- · Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

#### Suspension

**Compliance and Damping - Passive** 

**Suspension spring constant, Kz — Suspension spring constant** 64370 (default) | scalar | vector

Linear vertical spring constant for independent suspension tracks on axle a,  $k_{z_n}$  in N/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Suspension spring preload, F0z — Suspension spring preload

9810 (default) | scalar | vector

Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates,  $F_{z_0,r}$ , in N. Positive preload forces:

- · Cause the vehicle to lift.
- Point along the negative vehicle-fixed *z*-axis.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Suspension shock damping constant, Cz — Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension tracks on axle a,  $c_{z_{\sigma'}}$  in Ns/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## **Dependencies**

To create this parameter, clear **Enable active damping**.

# Suspension maximum height, Hmax — Height

0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height,  $H_{max}$ , for axle **a** before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Compliance and Damping - Active**

# Damping coefficient map, f\_act\_susp\_cz — Lookup table

[10000 10000; 10000 10000] (default) | M-by-N array

Damping coefficient table as a function of active duty cycle and actuator compression velocity, in  $N \cdot s/m$ . Each value specifies the damping for a specific combination of actuator duty cycle and velocity. The array dimensions must match the duty cycle, M, and actuator velocity, N, breakpoint vector dimensions.

#### **Dependencies**

To create this parameter, clear **Enable active damping**.

# Damping actuator duty cycle breakpoints, f\_act\_susp\_duty\_bpt — Duty cycle breakpoints

```
[0 1] (default) | 1-by-M vector
```

Damping actuator duty cycle breakpoints, dimensionless.

### **Dependencies**

To create this parameter, clear **Enable active damping**.

# Damping actuator velocity breakpoints, f\_act\_susp\_zdot\_bpt — Velocity breakpoints

[-1 1] (default) | 1-by-N vector

Damping actuator velocity breakpoints, in m/s.

### **Dependencies**

To create this parameter, clear **Enable active damping**.

#### Geometry

## Toe angle at steering center, Toe — Toe angle

0.0349 (default) | scalar

Nominal suspension to angle at zero steering angle,  $\zeta_{0a}$ , in rad.

# Roll steer vs suspension height slope, RollStrgSlp — Steer angle suspension slope -0.2269 (default) | scalar | vector

Roll steer angle versus suspension height,  $m_{htoe_a}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Toe angle vs steering angle slope, ToeStrgSlp — Toe angle steering slope 0.01 (default) | scalar | vector

Toe angle versus steering angle slope,  $m_{toesteer}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - · Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Caster angle at steering center, Caster — Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle,  $\eta_{0a}$ , in rad.

# Caster angle vs suspension height slope, CasterHslp — Caster angle versus suspension height slope

-0.2269 (default) | scalar | vector

Caster angle versus suspension height,  $m_{heaster}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Caster angle vs steering angle slope, CasterStrgSlp — Caster angle versus steering angle slope

0.01 (default) | scalar | vector

Caster angle versus steering angle slope,  $m_{castersteer}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Camber angle at steering center, Camber — Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle,  $\xi_{0a}$ , in rad.

# Camber angle vs suspension height slope, CamberHslp — Camber angle versus suspension height slope

-0.2269 (default) | scalar | vector

Camber angle versus suspension height,  $m_{hcamber_{e'}}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Camber angle vs steering angle slope, CamberStrgSlp — Camber angle versus steering angle slope

0.01 (default) | scalar | vector

Camber angle versus steering angle slope,  $m_{cambersteer, \prime}$  dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Suspension height vs steering angle slope, StrgHgtSlp — Suspension height versus steering angle slope

```
0.1432 (default) | scalar | vector
```

Steering angle to vertical force slope applied at suspension wheel carrier reference point,  $m_{hsteer_a}$ , in m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Anti-Sway

# Anti-sway arm radius, AntiSwayR — Anti-sway arm radius

```
0.2 (default) | scalar | vector
```

Anti-sway arm radius, *r*, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

# Anti-sway arm neutral angle, AntiSwayNtrlAng — Anti-sway arm neutral angle 0.5236 (default) | scalar | vector

Anti-sway arm neutral angle,  $\theta_{0a}$ , at nominal suspension height, in rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- · Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

# Anti-sway torsion spring constant, AntiSwayTrsK — Anti-sway torsion spring constant

5.7296e+03 (default) | scalar | vector

Anti-sway bar torsion spring constant,  $k_a$ , in N·m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

### References

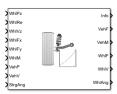
- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

# **Extended Capabilities**

## C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

# See Also


Independent Suspension - Double Wishbone | Independent Suspension - Mapped

# Introduced in R2018a

# **Independent Suspension - Mapped**

Mapped independent suspension

**Library:** Vehicle Dynamics Blockset / Suspension



# **Description**

The Independent Suspension - Mapped block implements a mapped independent suspension for multiple axles with multiple tracks per axle. You can use the block to model suspension geometry, compliance, and damping effects from measured or simulated suspension response data.

The block models the suspension compliance, damping, and geometric effects as functions of the relative positions and velocities of the vehicle and wheel carrier with axle-specific compliance and damping parameters. Using the suspension compliance and damping, the block calculates the suspension force on the vehicle and wheel. The block uses the Z-down coordinate system (defined in SAE J670).

| For Each | You Can Specify                            |
|----------|--------------------------------------------|
| Axle     | Multiple tracks                            |
|          | An anti-sway bar for axles with two tracks |
|          | Suspension parameters                      |
| Track    | Steering angles                            |

The block contains energy-storing spring elements and energy-dissipating damper elements. It does not contain energy-storing mass elements. The block assumes that the vehicle (sprung) and wheel (unsprung) blocks connected to the block store the mass-related suspension energy.

This table summarizes the block parameter settings for a vehicle with:

- Two axles
- Two tracks per axle
- Steering angle input for both tracks on the front axle
- · An anti-sway bar on the front axle

| Parameter                                         | Setting |
|---------------------------------------------------|---------|
| Number of axles, NumAxl                           | 2       |
| Number of tracks by axle, NumTracksByAxl          | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl          | [1 0]   |
| Anti-sway axle enable by axle,<br>AntiSwayEnByAxl | [1 0]   |

## **Suspension Compliance and Damping**

The block uses a lookup table that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and steering angle. You can calibrate the wheel force lookup table so that steering angle changes from the nominal center position generate a force that increases the vehicle height.

The block implements these equations.

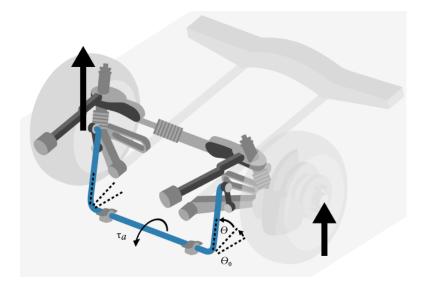
$$\begin{split} F_{wzlookup_{a}} &= f(z_{v_{a,\,t}} - z_{w_{a,\,t}}, \dot{z}_{v_{a,\,t}} - \dot{z}_{w_{a,\,t}}, \delta_{steer_{a,\,t}}) \\ F_{wz_{a,\,t}} &= F_{wzlookup_{a}} + F_{zaswy_{a,\,t}} \end{split}$$

The block assumes that the suspension elements have no mass. Therefore, the suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,\,t}} &= F_{wx_{a,\,t}} \\ F_{vy_{a,\,t}} &= F_{wy_{a,\,t}} \\ F_{vz_{a,\,t}} &= -F_{wz_{a,\,t}} \\ M_{vx_{a,\,t}} &= M_{wx_{a,\,t}} + F_{wy_{a,\,t}} (Re_{wy_{a,\,t}} + H_{a,\,t}) \\ M_{vy_{a,\,t}} &= M_{wy_{a,\,t}} + F_{wx_{a,\,t}} \Big( Re_{wx_{a,\,t}} + H_{a,\,t} \Big) \\ M_{vz_{a,\,t}} &= M_{wz_{a,\,t}} \end{split}$$

The block sets the wheel positions and velocities equal to the vehicle lateral and longitudinal positions and velocities.

$$\begin{aligned} x_{w_{a,t}} &= x_{v_{a,t}} \\ y_{w_{a,t}} &= y_{v_{a,t}} \\ \dot{x}_{w_{a,t}} &= \dot{x}_{v_{a,t}} \\ \dot{y}_{w_{a,t}} &= \dot{y}_{v_{a,t}} \end{aligned}$$


The equations use these variables.

| $F_{wz_{a,t'}}M_{wz_{a,t}}$                                                                                       | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $z$ -axis                           |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $F_{w_{X_{a,t'}}}M_{w_{X_{a,t}}}$                                                                                 | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $x$ -axis                           |
| $F_{wy_{a,t'}}M_{wy_{a,t}}$                                                                                       | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $y$ -axis                           |
| $F_{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}$ , $M_{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}$ | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$ |
| $F_{{\scriptscriptstyle { m VX}}_{a,t}}$ , $M_{{\scriptscriptstyle { m VX}}_{a,t}}$                               | Suspension force and moment applied to the vehicle on axle ${\sf a}$ , track ${\sf t}$ along wheel-fixed $x\text{-}{\sf axis}$ |
| $F_{ u y_{a,t}}$ , $M_{ u y_{a,t}}$                                                                               | Suspension force and moment applied to the vehicle on axle $a$ , track $t$ along wheel-fixed $y$ -axis                         |

| $F_{z0_a}$                          | Vertical suspension spring preload force applied to the wheels on axle a                      |
|-------------------------------------|-----------------------------------------------------------------------------------------------|
| $k_{z_a}$                           | Vertical spring constant applied to tracks on axle a                                          |
| $m_{hsteer_a}$                      | Steering angle to vertical force slope applied at wheel carrier for tracks on axle ${\sf a}$  |
| $\delta_{steer_{a,t}}$              | Steering angle input for axle a, track t                                                      |
| $C_{z_a}$                           | Vertical damping constant applied to tracks on axle a                                         |
| $Re_{w_{a,t}}$                      | Effective wheel radius for axle a, track t                                                    |
| $F_{zhstop_{a,t}}$                  | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis           |
| $F_{zaswy_{a,t}}$                   | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis          |
| $z_{v_{a,t'}}$ $\dot{z}_{v_{a,t}}$  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$ | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |
| $X_{v_{a,t'}}$ $\dot{X}_{v_{a,t}}$  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $X_{w_{a,t}}, \dot{X}_{w_{a,t}}$    | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |
| $y_{v_{a,t'}}$ $\dot{y}_{v_{a,t}}$  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis |
| $y_{w_{a,t}}$ , $\dot{y}_{w_{a,t}}$ | Track displacement and velocity at axle a, track t, along the vehicle-fixed y-axis            |
| $H_{a,t}$                           | Suspension height at axle a, track t                                                          |
| $Re_{w_{a,t}}$                      | Effective wheel radius at axle a, track t                                                     |

# **Anti-Sway Bar**

Optionally, the block implements an anti-sway bar force,  $F_{zaswy_a,r'}$  for axles that have two tracks. This figure shows how the anti-sway bar transmits torque between two independent suspension tracks on a shared axle. Each independent suspension applies a torque to the anti-sway bar via a radius arm that extends from the anti-sway bar back to the independent suspension connection point.



To calculate the sway bar force, the block implements these equations.

| Calculation                                                                           | Equation                                                                                                                                                                              |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anti-sway bar angular deflection for a given axle and track, $\Delta \Theta_{a,t}$    | $\theta_{0a} = \tan^{-1} \left(\frac{z_0}{r}\right)$                                                                                                                                  |
|                                                                                       | $\Delta\theta_{a,t} = \tan^{-1} \left( \frac{r \tan\theta_{0a} - z_{w_{a,t}} + z_{v_{a,t}}}{r} \right)$                                                                               |
| Anti-sway bar twist angle, $\Theta_a$                                                 | $\theta_{a} = -\tan^{-1} \left( \frac{r \tan \theta_{0a} - z_{w_{a,1}} + z_{v_{a,1}}}{r} \right) - \tan^{-1} \left( \frac{r \tan \theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r} \right)$ |
|                                                                                       | $-\tan^{-1}\left(\frac{r\tan\theta_{0a}-z_{w_{a,2}}+z_{v_{a,2}}}{r}\right)$                                                                                                           |
| Anti-sway bar torque, $	au_a$                                                         | $\tau_a = k_a \theta_a$                                                                                                                                                               |
| Anti-sway bar forces applied to the wheel on axle a, track t along wheel-fixed z-axis | $F_{zaswy_{a,1}} = \left(\frac{\tau_a}{r}\right)\cos\left(\theta_{0a} - \tan^{-1}\left(\frac{r\tan\theta_{0a} - z_{w_{a,1}} + z_{v_{a,1}}}{r}\right)\right)$                          |
| diolig wheel-liven 5-gyls                                                             | $F_{zaswy_{a,2}} = \left(\frac{\tau_a}{r}\right)\cos\left(\theta_{0a} - \tan^{-1}\left(\frac{r\tan\theta_{0a} - z_{w_{a,2}} + z_{v_{a,2}}}{r}\right)\right)$                          |

The equations and figure use these variables.

| $	au_a$                 | Anti-sway bar torque                                                                         |
|-------------------------|----------------------------------------------------------------------------------------------|
| $\theta$                | Anti-sway bar twist angle                                                                    |
| $	heta_{0a}$            | Initial anti-sway bar twist angle                                                            |
| $\Delta \Theta_{a,t}$   | Anti-sway bar angular deflection at axle a, track t                                          |
| r                       | Anti-sway bar arm radius                                                                     |
| $z_0$                   | Vertical distance from anti-sway bar connection point to anti-sway bar centerline            |
| $F_{zsway_{a,t}}$       | Anti-sway bar force applied to the wheel on axle $a$ , track $t$ along wheel-fixed $z$ -axis |
| $\mathcal{Z}_{V_{a,t}}$ | Vehicle displacement at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis             |
| $\mathcal{Z}_{W_{a,t}}$ | Wheel displacement at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis               |

# **Camber, Caster, and Toe Angles**

To calculate the camber, caster, and toe angles, the block uses a lookup table,  $G_{alookup}$ , that is a function of the suspension height and steering angle.

$$\left[\xi_{a,\,t}\ \eta_{a,\,t}\ \zeta_{a,\,t}\right] = G_{alookup}f(z_{w_{a,\,t}} - z_{v_{a,\,t}}, \delta_{steer_{a,\,t}})$$

The equations use these variables.

| $\boldsymbol{\xi}_{a,t}$          | Camber angle of wheel on axle <b>a</b> , track <b>t</b>                      |
|-----------------------------------|------------------------------------------------------------------------------|
| $\eta_{a,t}$                      | Caster angle of wheel on axle a, track t                                     |
| $\zeta_{a,t}$                     | Toe angle of wheel on axle a, track t                                        |
| $\delta_{steer_{a,t}}$            | Steering angle input for axle a, track t                                     |
| $\mathcal{Z}_{\mathcal{V}_{a,t}}$ | Vehicle displacement at axle $a$ , track $t$ , along vehicle-fixed $z$ -axis |
| $\mathcal{Z}_{\mathcal{W}_{a,t}}$ | Wheel displacement at axle $a$ , track $t$ , along vehicle-fixed $z$ -axis   |

# **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles as a function of the suspension height. For the calculation, the block uses a lookup table,  $G_{alookup}$ , that is a function of the suspension position and steering angle.

$$\delta_{whlsteer_{a,t}} = \delta_{steer_{a,t}} + G_{alookup} f(z_{w_{a,t}} - z_{v_{a,t}}, \delta_{steer_{a,t}})$$

The equation uses these variables.

 $\begin{array}{ll} \delta_{whlsteer_{a,t}} & \text{Wheel steering angle for axle a, track t} \\ \delta_{steer_{a,t}} & \text{Steering angle input for axle a, track t} \\ z_{\nu_{a,t}} & \text{Vehicle displacement at axle a, track t, along the vehicle-fixed $z$-axis} \\ z_{w_{a,t}} & \text{Wheel displacement at axle a, track t, along the vehicle-fixed $z$-axis} \end{array}$ 

### **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                                               | Equation                                                                                                                               |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$                        | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$                         | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Suspension height, $H_{a,t}$                              | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} - \text{median}(f_susp_dz_bp)\right)$                                                      |
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$                                                                                               |

The equations use these variables.

| $m_{hsteer_a}$                      | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a          |
|-------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$              | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                      | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| f_susp_dz_bp                        | Vertical axis suspension height breakpoints                                                   |
| $\mathcal{Z}_{wtr_{a,t}}$           | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $z_{v_{a,t}}$ , $\dot{z}_{v_{a,t}}$ | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $z_{w_{at}}$ , $\dot{z}_{w_{at}}$   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

#### **Ports**

### Input

# WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlPz = 
$$z_w = \begin{bmatrix} z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

### WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

### WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlVz = 
$$\dot{z}_w = [\dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

# WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

# WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlFy = 
$$F_{wy} = [F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

#### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed *x*-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

$$\text{WhlM} = M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlM(2,2)     | 1    | 2     |                                     |
| WhlM(2,3)     | 2    | 1     |                                     |
| WhlM(2,4)     | 2    | 2     |                                     |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlM(3,2)     | 1    | 2     |                                     |
| WhlM(3,3)     | 2    | 1     |                                     |
| WhlM(3,4)     | 2    | 2     |                                     |

### VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_{\nu}$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_{v}$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

Signal dimensions are [3x4].

• Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

### VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_v$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v} \end{bmatrix} = \begin{bmatrix} \dot{x}_{v_{1,1}} \ \dot{x}_{v_{1,2}} \ \dot{x}_{v_{2,1}} \ \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} \ \dot{y}_{v_{1,2}} \ \dot{y}_{v_{2,1}} \ \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} \ \dot{z}_{v_{1,2}} \ \dot{z}_{v_{2,1}} \ \dot{z}_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehV(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)     | 1    | 2     |                      |
| VehV(1,3)     | 2    | 1     |                      |

| <b>Array Element</b> | Axle | Track | Axis                 |
|----------------------|------|-------|----------------------|
| VehV(1,4)            | 2    | 2     |                      |
| VehV(2,1)            | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)            | 1    | 2     |                      |
| VehV(2,3)            | 2    | 1     |                      |
| VehV(2,4)            | 2    | 2     |                      |
| VehV(3,1)            | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)            | 1    | 2     |                      |
| VehV(3,3)            | 2    | 1     |                      |
| VehV(3,4)            | 2    | 2     |                      |

## StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - · Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### **Output**

# Info — Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                     | Array Signal | Variable                             | Units |
|--------|---------------------------------|--------------|--------------------------------------|-------|
| Camber | Wheel angles according          | 1D           | WhlAng[1,] = $\xi = [\xi_{a,t}]$     | rad   |
| Caster | to the axle and track location. |              | WhlAng[2,] = $\eta = [\eta_{a,t}]$   |       |
| Toe    |                                 |              | WhlAng[3,] = $\zeta = [\zeta_{a,t}]$ |       |
| Height | Suspension height               | 1D           | Н                                    | m     |
| Power  | Suspension power dissipation    | 1D           | $P_{susp}$                           | W     |
| Energy | Suspension absorbed energy      | 1D           | $E_{susp}$                           | J     |

| Signal | Description                              | Array Signal | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units                      |
|--------|------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| VehF   | Suspension forces applied to the vehicle | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                          |
| VehM   | Suspension moments applied to vehicle    | 3D           | For a two-axle, two tracks per axle vehicle: $VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{v} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{v} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{v} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>×</sup> 2, 2<br>¥2, 2 |
| WhlF   | Suspension force applied to wheel        | 3D           | For a two-axle, two tracks per axle vehicle: $WhlF = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{$ | 2, 2<br>2, 2               |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                                                                                                            | Units              |
|--------|----------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| WhlP   | Track displacement               | 3D           | For a two-axle, two tracks per axle vehicle: $WhlP = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} x_{w1,1} & x_{w1,2} & x_{w2,1} & x_w \\ y_{w1,1} & y_{w1,2} & y_{w2,1} & y_w \\ z_{wtr_{1,1}} & z_{wtr_{1,2}} & z_{wtr_{2,1}} & z_{wtr_{2,1}} \end{bmatrix}$ | m<br>2, 2<br>72, 2 |
| WhlV   | Track velocity                   | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                        | m/s                |
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                        | rad                |

# VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed *y*-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed *z*-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

#### VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed y-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |
| VehM(2,3)     | 2    | 1     |                                     |
| VehM(2,4)     | 2    | 2     |                                     |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehM(3,2)     | 1    | 2     |                                     |
| VehM(3,3)     | 2    | 1     |                                     |
| VehM(3,4)     | 2    | 2     |                                     |

## WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\text{WhlF} = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,2}} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy_{2,2}} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz_{2,2}} \end{bmatrix}$$

| <b>Array Element</b> | Axle | Track | Force Axis                          |
|----------------------|------|-------|-------------------------------------|
| WhlF(1,1)            | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)            | 1    | 2     |                                     |
| WhlF(1,3)            | 2    | 1     |                                     |
| WhlF(1,4)            | 2    | 2     |                                     |

| Array Element | Axle | Track | Force Axis                      |
|---------------|------|-------|---------------------------------|
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)  |
| WhlF(2,2)     | 1    | 2     |                                 |
| WhlF(2,3)     | 2    | 1     |                                 |
| WhlF(2,4)     | 2    | 2     |                                 |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| WhlF(3,2)     | 1    | 2     |                                 |
| WhlF(3,3)     | 2    | 1     |                                 |
| WhlF(3,4)     | 2    | 2     |                                 |

## WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed *y*-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlV(1,2)     | 1    | 2     |                                     |
| WhlV(1,3)     | 2    | 1     |                                     |
| WhlV(1,4)     | 2    | 2     |                                     |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlV(2,2)     | 1    | 2     |                                     |
| WhlV(2,3)     | 2    | 1     |                                     |
| WhlV(2,4)     | 2    | 2     |                                     |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlV(3,2)     | 1    | 2     |                                     |
| WhlV(3,3)     | 2    | 1     |                                     |
| WhlV(3,4)     | 2    | 2     |                                     |

## WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |
| WhlF(3,3)     | 2    | 1     |        |
| WhlF(3,4)     | 2    | 2     |        |

## **Parameters**

#### **Axles**

Number of axles, NumAxl — Number of axles

2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2] (default) | vector

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

# Steered axle enable by axle, StrgEnByAxl - Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0] For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1] For a two-axle vehicle, enables axle 1 and axle 2 steering

#### **Dependencies**

Setting any element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer}$$
 = [ $\delta_{steer_{1.1}}$   $\delta_{steer_{1.2}}$ ]

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

## Anti-sway axle enable by axle, AntiSwayEnByAxl — Boolean vector to enable axle anti-sway

[0 0] (default) | vector

Boolean vector that enables axle anti-sway for axle a, dimensionless. For example, [1 0] enables axle 1 anti-sway and disables axle 2 anti-sway. Vector is 1 by the number of vehicle axles,  $N_a$ .

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- · Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

### Suspension

#### Mapped

Axle breakpoints, f\_susp\_axl\_bp — Breakpoints

[1 2] (default) | 1-by-P array

Axle breakpoints, dimensionless.

Vertical axis suspension height breakpoints, f\_susp\_dz\_bp — Breakpoints 1-by-M array

Vertical axis suspension height breakpoints, in m.

Vertical axis suspension height velocity breakpoints, f\_susp\_dzdot\_bp — Breakpoints

1-by-N array

Vertical axis suspension height velocity breakpoints, in m/s.

Vertical axis suspension force and moment responses, f\_susp\_fmz — Output array zeros(31,31,61,2,4) (default) | M-by-N-by-O-by-P-by-4 array

Array of output values as a function of:

- Vertical suspension height, M
- Vertical suspension height velocity, N
- Steering angle, O
- Axle, P
- 4 output types
  - 1 Vertical force, in N·m
  - 2 User-defined
  - 3 Stored energy, in J
  - 4 Absorbed power, in W

The array dimensions must match the breakpoint dimensions

Suspension geometry responses, f\_susp\_geom — Suspension geometry responses zeros(31,61,2,3) (default) | M-by-O-by-P-by-3 array

Array of geometric suspension values as a function of:

- Vertical suspension height, M
- Steering angle, O
- Axle, P
- 3 output types
  - 1 Camber angle, in rad
  - 2 Caster angle, in rad
  - 3 Toe angle, in rad

The array dimensions must match the breakpoint dimensions

# Steering angle breakpoints, f\_susp\_strgdelta\_bp — Steering angle breakpoints 1-by-0 array

Steering angle breakpoints, in rad.

#### **Anti-Sway**

#### Anti-sway arm radius, AntiSwayR — Anti-sway arm radius

0.2 (default) | scalar | vector

Anti-sway arm radius, r, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

# Anti-sway arm neutral angle, AntiSwayNtrlAng — Anti-sway arm neutral angle 0.5236 (default) | scalar | vector

Anti-sway arm neutral angle,  $\theta_{0a}$ , at nominal suspension height, in rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- Anti-sway arm radius, AntiSwayR
- Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

## Anti-sway torsion spring constant, AntiSwayTrsK — Anti-sway torsion spring constant

5.7296e+03 (default) | scalar | vector

Anti-sway bar torsion spring constant,  $k_a$ , in N·m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the **Anti-sway axle enable by axle, AntiSwayEnByAxl** vector to 1 creates these anti-sway parameters:

- · Anti-sway arm radius, AntiSwayR
- · Anti-sway arm neutral angle, AntiSwayNtrlAng
- Anti-sway torsion spring constant, AntiSwayTrsK

## References

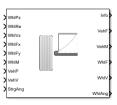
- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. *Road vehicles Vehicle dynamics and road-holding ability Vocabulary*. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

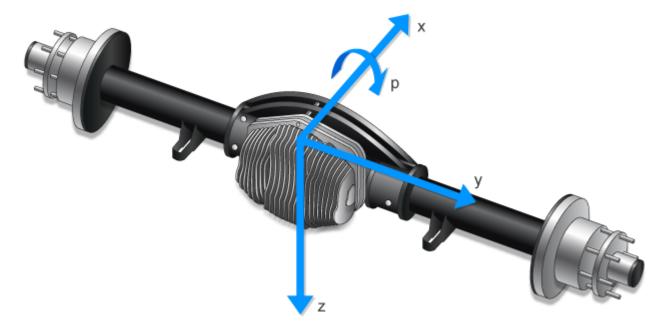
#### See Also


Independent Suspension - Double Wishbone | Independent Suspension - MacPherson

#### Introduced in R2018a

## **Solid Axle Suspension - Mapped**

Mapped solid axle suspension


**Library:** Vehicle Dynamics Blockset / Suspension



## **Description**

The Solid Axle Suspension - Mapped block implements a mapped solid axle suspension for multiple axles with multiple tracks per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the track positions and velocities, with axle-specific compliance and damping parameters. Using the track position and velocity, the block calculates the vertical track position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the x-axis in the direction of forward vehicle motion.



| For Each | You Can Specify        |  |
|----------|------------------------|--|
| Axle     | Multiple tracks.       |  |
|          | Suspension parameters. |  |
| Track    | Steering angles.       |  |

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- · Two axles.
- · Two tracks per axle.
- · Steering angle input for both tracks on the front axle.

| Parameter                                | Setting |
|------------------------------------------|---------|
| Number of axles, NumAxl                  | 2       |
| Number of tracks by axle, NumTracksByAxl | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl | [1 0]   |

### **Suspension Compliance and Damping**

The block uses a lookup table that relates the vertical damping and compliance to the suspension height, suspension height rate of change, and steering angle. You can calibrate the wheel force lookup table so that steering angle changes from the nominal center position generate a force that increases the vehicle height. Specifically, the block:

| Uses                                                                                     | To Calculate                                                                                                         |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Longitudinal and lateral displacement and velocity of the vehicle.                       | <ul><li>Suspension forces applied to the axle center.</li><li>Vertical displacements and velocities of the</li></ul> |
| <ul> <li>Longitudinal and lateral displacement and<br/>velocity of the track.</li> </ul> | vehicle and track.  • Longitudinal, lateral, and vertical suspension                                                 |
| Vertical wheel forces applied to the vehicle.                                            | forces and moments applied to the vehicle.                                                                           |
|                                                                                          | Longitudinal, lateral, and vertical suspension forces and moments applied to the wheel.                              |

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$\begin{bmatrix} \ddot{x}_{a} \\ \ddot{y}_{a} \\ \ddot{z}_{a} \end{bmatrix} = \frac{1}{Ma} \begin{bmatrix} F_{xa} \\ F_{ya} \\ F_{za} \end{bmatrix} + \begin{bmatrix} \dot{x}_{a} \\ \dot{y}_{a} \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{Ma} \begin{bmatrix} 0 \\ 0 \\ F_{za} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ p\dot{z}_{a} \\ \frac{F_{za}}{Ma} + g \end{bmatrix}$$

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} M_{X} \\ M_{y} \\ M_{z} \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \begin{bmatrix} I_{XX} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} p \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} I_{XX} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} M_{X} \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} p \\ q \\ 0 \end{bmatrix} \times \begin{bmatrix} I_{XX} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{XX} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{M_{X}}{I_{XX}} \\ 0 \\ 0 \end{bmatrix}$$

For the forces and moments, the block uses lookup tables.

$$\begin{split} F_{wz_{a,\,t}} &= f(z_{v_{a,\,t}} - z_{w_{a,\,t}}, \dot{z}_{v_{a,\,t}} - \dot{z}_{w_{a,\,t}}, \delta_{steer_{a,\,t}}) \\ M_{vz_{a,\,t}} &= f(z_{v_{a,\,t}} - z_{w_{a,\,t}}, \dot{z}_{v_{a,\,t}} - \dot{z}_{w_{a,\,t}}, \delta_{steer_{a,\,t}}) \end{split}$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,\,t}} &= F_{wx_{a,\,t}} \\ F_{vy_{a,\,t}} &= F_{wy_{a,\,t}} \\ F_{vz_{a,\,t}} &= -F_{wz_{a,\,t}} \\ M_{vx_{a,\,t}} &= M_{wx_{a,\,t}} + F_{wy_{a,\,t}} (Re_{wy_{a,\,t}} + H_{a,\,t}) \\ M_{vy_{a,\,t}} &= M_{wy_{a,\,t}} + F_{wx_{a,\,t}} \Big( Re_{wx_{a,\,t}} + H_{a,\,t} \Big) \\ M_{vz_{a,\,t}} &= M_{wz_{a,\,t}} \end{split}$$

The equations use these variables.

| $F_{wz_{a,t'}}M_{wz_{a,t}}$                                                                                           | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $z$ -axis                                 |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $F_{w_{X_{a,t'}}}M_{w_{X_{a,t}}}$                                                                                     | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $x\text{-}{\tt axis}$         |
| $F_{wy_{a,t'}}M_{wy_{a,t}}$                                                                                           | Suspension force and moment applied to the wheel on axle ${\sf a}$ , track ${\sf t}$ along wheel-fixed ${\it y}\text{-}{\sf axis}$   |
| $F_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ , $M_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$       |
| $F_{{\scriptscriptstyle { m VX}}_{a,t}}$ , $M_{{\scriptscriptstyle { m VX}}_{a,t}}$                                   | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed x-axis                      |
| $F_{vy_{a,t'}}M_{vy_{a,t}}$                                                                                           | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed ${\it y}\text{-}{\tt axis}$ |
| $F_{z0_a}$                                                                                                            | Vertical suspension spring preload force applied to the wheels on axle a                                                             |
| $k_{z_a}$                                                                                                             | Vertical spring constant applied to tracks on axle a                                                                                 |
| $m_{hsteer_a}$                                                                                                        | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a                                                 |
| $\delta_{steer_{a,t}}$                                                                                                | Steering angle input for axle a, track t                                                                                             |
| $C_{z_a}$                                                                                                             | Vertical damping constant applied to tracks on axle a                                                                                |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius for axle a, track t                                                                                           |
| $F_{zhstop_{a,t}}$                                                                                                    | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                                  |
| $F_{zaswy_{a,t}}$                                                                                                     | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                                 |
| $z_{{ m v}_{a,t}}$ , $\dot{z}_{{ m v}_{a,t}}$                                                                         | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                        |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                          |
| $X_{v_{a,t}}, \dot{X}_{v_{a,t}}$                                                                                      | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                        |
| $X_{W_{a,t}}$ , $\dot{X}_{W_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                          |
|                                                                                                                       |                                                                                                                                      |

Vehicle displacement and velocity at axle a, track t, along the vehicle-fixed y-axis

 $y_{\nu_{a,t}}, \dot{y}_{\nu_{a,t}}$ 

 $y_{w_a}$ ,  $\dot{y}_{w_a}$  Track displacement and velocity at axle a, track t, along the vehicle-fixed y-axis

 $H_{a,t}$  Suspension height at axle a, track t  $Re_{w_{a,t}}$  Effective wheel radius at axle a, track t

#### Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, the block uses a lookup table,  $G_{alookup}$ , that is a function of the suspension height and steering angle.

$$[\xi_{a,t} \eta_{a,t} \zeta_{a,t}] = G_{alookup} f(z_{w_{a,t}} - z_{v_{a,t}}, \delta_{steer_{a,t}})$$

The equations use these variables.

 $\begin{array}{lll} \xi_{a,t} & \text{Camber angle of wheel on axle a, track t} \\ \eta_{a,t} & \text{Caster angle of wheel on axle a, track t} \\ \zeta_{a,t} & \text{Toe angle of wheel on axle a, track t} \\ \delta_{steer_{a,t}} & \text{Steering angle input for axle a, track t} \\ z_{v_{a,t}} & \text{Vehicle displacement at axle a, track t, along vehicle-fixed $z$-axis} \\ z_{w_{a,t}} & \text{Wheel displacement at axle a, track t, along vehicle-fixed $z$-axis} \end{array}$ 

## **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles as a function of the suspension height. For the calculation, the block uses a lookup table,  $G_{alookup}$ , that is a function of the suspension position and steering angle.

$$\delta_{whlsteer_{a,t}} = \delta_{steer_{a,t}} + G_{alookup} f(z_{w_{a,t}} - z_{v_{a,t}}, \delta_{steer_{a,t}})$$

The equation uses these variables.

 $\delta_{whlsteer_{a,t}}$  Wheel steering angle for axle a, track t  $\delta_{steer_{a,t}}$  Steering angle input for axle a, track t

 $z_{v_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Wheel displacement at axle a, track t, along the vehicle-fixed z-axis

#### **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                        | Equation                                                                                                                               |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$ | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$  | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$ |
| Suspension height, $H_{a,t}$       | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} - \text{median}(f_susp_dz_bp)\right)$                                                      |

| Calculation                                               | Equation                                 |
|-----------------------------------------------------------|------------------------------------------|
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$ |

The equations use these variables.

| $m_{hsteer_a}$                                | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a          |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$                        | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                                | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| f_susp_dz_bp                                  | Vertical axis suspension height breakpoints                                                   |
| $\mathcal{Z}_{wtr_{a,t}}$                     | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $z_{{ m v}_{a,t}}$ , $\dot{z}_{{ m v}_{a,t}}$ | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$           | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

## **Ports**

#### Input

## WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlPz = 
$$z_w = [z_{w_{1,1}} \ z_{w_{1,2}} \ z_{w_{2,1}} \ z_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

#### WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

• Signal array dimensions are [1x4].

· Array dimensions are axle by track.

WhlRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

## WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlVz = 
$$\dot{z}_w = [\dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

### WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

## WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

$$\text{WhlFy} = F_{wy} = \left[ F_{wy_{1,1}} \ F_{wy_{1,2}} \ F_{wy_{2,1}} \ F_{wy_{2,2}} \right]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

#### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

$$\text{WhlM} = M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |

| Array Element | Axle | Track | Moment Axis                     |
|---------------|------|-------|---------------------------------|
| WhlM(2,2)     | 1    | 2     |                                 |
| WhlM(2,3)     | 2    | 1     |                                 |
| WhlM(2,4)     | 2    | 2     |                                 |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| WhlM(3,2)     | 1    | 2     |                                 |
| WhlM(3,3)     | 2    | 1     |                                 |
| WhlM(3,4)     | 2    | 2     |                                 |

#### VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_v$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v1,1} & x_{v1,2} & x_{v2,1} & x_{v2,2} \\ y_{v1,1} & y_{v1,2} & y_{v2,1} & y_{v2,2} \\ z_{v1,1} & z_{v1,2} & z_{v2,1} & z_{v2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

## VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_v$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v} \end{bmatrix} = \begin{bmatrix} \dot{x}_{v_{1,1}} \ \dot{x}_{v_{1,2}} \ \dot{x}_{v_{2,1}} \ \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} \ \dot{y}_{v_{1,2}} \ \dot{y}_{v_{2,1}} \ \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} \ \dot{z}_{v_{1,2}} \ \dot{z}_{v_{2,1}} \ \dot{z}_{v_{2,2}} \end{bmatrix}$$

| <b>Array Element</b> | Axle | Track | Axis                 |
|----------------------|------|-------|----------------------|
| VehV(1,1)            | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)            | 1    | 2     |                      |
| VehV(1,3)            | 2    | 1     |                      |
| VehV(1,4)            | 2    | 2     |                      |
| VehV(2,1)            | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)            | 1    | 2     |                      |
| VehV(2,3)            | 2    | 1     |                      |
| VehV(2,4)            | 2    | 2     |                      |
| VehV(3,1)            | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)            | 1    | 2     |                      |
| VehV(3,3)            | 2    | 1     |                      |
| VehV(3,4)            | 2    | 2     |                      |

## StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

$$StrgAng = \delta_{steer} = \begin{bmatrix} \delta_{steer_{1,1}} & \delta_{steer_{1,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Output

#### Info — Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |

| Array Element | Axle | Track |
|---------------|------|-------|
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                              | Array Signal | Variable                                                                                                                                                                                                                                                   | Units |
|--------|------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Camber | Wheel angles according                   | 1D           | WhlAng[1,] = $\xi = [\xi_{a,t}]$                                                                                                                                                                                                                           | rad   |
| Caster | to the axle.                             |              | WhlAng[2,] = $\eta = [\eta_{a,t}]$                                                                                                                                                                                                                         |       |
| Toe    |                                          |              | WhlAng[3,] = $\zeta = [\zeta_{a,t}]$                                                                                                                                                                                                                       |       |
| Height | Suspension height                        | 1D           | Н                                                                                                                                                                                                                                                          | m     |
| Power  | Suspension power dissipation             | 1D           | $P_{susp}$                                                                                                                                                                                                                                                 | W     |
| Energy | Suspension absorbed energy               | 1D           | $E_{susp}$                                                                                                                                                                                                                                                 | J     |
| VehF   | Suspension forces applied to the vehicle | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                               | N     |
|        |                                          |              | $VehF = F_{v} =$ $\begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,1}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,1}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,1}} \end{bmatrix}$                       | 2     |
| VehM   | Suspension moments applied to vehicle    | 3D           | For a two-axle, two tracks per axle vehicle: $VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{v} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{v} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{v} \end{bmatrix}$ | W2, 2 |

| Signal | Description                       | Array Signal | Variable                                                                                                                                                               | Units   |
|--------|-----------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| WhlF   | Suspension force applied to wheel | 3D           | axle vehicle:                                                                                                                                                          | N       |
|        |                                   |              | $WhlF = F_w =$                                                                                                                                                         |         |
|        |                                   |              | $\begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,1}} \end{bmatrix}$                                                                              |         |
|        |                                   |              | $F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy}$                                                                                                                        | · ·     |
|        |                                   |              |                                                                                                                                                                        | 2, 2    |
| WhlP   | Track displacement                | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                           | m       |
|        |                                   |              | $[x_w]$                                                                                                                                                                |         |
|        |                                   |              | $WhlP = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} =$                                                                                                             |         |
|        |                                   |              |                                                                                                                                                                        |         |
|        |                                   |              | $\begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w} \end{bmatrix}$                                     |         |
|        |                                   |              | $z_{wtr_{1,1}}$ $z_{wtr_{1,2}}$ $z_{wtr_{2,1}}$ $z_{wt}$                                                                                                               |         |
|        |                                   |              |                                                                                                                                                                        | 7 2 , 2 |
| WhlV   | Track velocity                    | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                           | m/s     |
|        |                                   |              | $WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix}$                                                                                             |         |
|        |                                   |              | =                                                                                                                                                                      |         |
|        |                                   |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \end{bmatrix}$ |         |
|        |                                   |              | $\begin{vmatrix} \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$                     |         |
|        |                                   |              | $ \left[ \dot{z}_{w_{1,1}}  \dot{z}_{w_{1,2}}  \dot{z}_{w_{2,1}}  \dot{z}_{w_{2,2}} \right] $                                                                          |         |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                      | Units |
|--------|----------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                  | rad   |
|        |                                  |              | WhlAng = $\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$                                                                                                                                 |       |
|        |                                  |              | $= \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$ |       |

## VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

#### VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed *y*-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_v = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |
| VehM(2,3)     | 2    | 1     |                                     |
| VehM(2,4)     | 2    | 2     |                                     |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehM(3,2)     | 1    | 2     |                                     |
| VehM(3,3)     | 2    | 1     |                                     |
| VehM(3,4)     | 2    | 2     |                                     |

### WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed *y*-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\label{eq:whiff} \text{WhiF} = F_w = \begin{bmatrix} F_{wx_{1,\,1}} \ F_{wx_{1,\,2}} \ F_{wx_{2,\,1}} \ F_{wx_{2,\,2}} \\ F_{wy_{1,\,1}} \ F_{wy_{1,\,2}} \ F_{wy_{2,\,1}} \ F_{wy_{2,\,2}} \\ F_{wz_{1,\,1}} \ F_{wz_{1,\,2}} \ F_{wz_{2,\,1}} \ F_{wz_{2,\,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)     | 1    | 2     |                                     |
| WhlF(1,3)     | 2    | 1     |                                     |
| WhlF(1,4)     | 2    | 2     |                                     |
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlF(2,2)     | 1    | 2     |                                     |
| WhlF(2,3)     | 2    | 1     |                                     |
| WhlF(2,4)     | 2    | 2     |                                     |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlF(3,2)     | 1    | 2     |                                     |
| WhlF(3,3)     | 2    | 1     |                                     |
| WhlF(3,4)     | 2    | 2     |                                     |

### WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed *x*-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed *y*-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |

| Array Element | Axle | Track | Force Axis                      |
|---------------|------|-------|---------------------------------|
| WhlV(1,2)     | 1    | 2     |                                 |
| WhlV(1,3)     | 2    | 1     |                                 |
| WhlV(1,4)     | 2    | 2     |                                 |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)  |
| WhlV(2,2)     | 1    | 2     |                                 |
| WhlV(2,3)     | 2    | 1     |                                 |
| WhlV(2,4)     | 2    | 2     |                                 |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| WhlV(3,2)     | 1    | 2     |                                 |
| WhlV(3,3)     | 2    | 1     |                                 |
| WhlV(3,4)     | 2    | 2     |                                 |

## WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |

| Array Element | Axle | Track | Angle |
|---------------|------|-------|-------|
| WhlF(3,3)     | 2    | 1     |       |
| WhlF(3,4)     | 2    | 2     |       |

#### **Parameters**

#### **Axles**

Number of axles, NumAxl — Number of axles

2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2] (default) | vector

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

Steered axle enable by axle, StrgEnByAxl — Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0]—For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1]—For a two-axle vehicle, enables axle 1 and axle 2 steering

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1:

- Creates input port StrgAng.
- Creates these parameters
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

# Axle and wheels lumped principal moments of inertia about longitudinal axis, AxlIxx — Inertia

300 (default) | vector

Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in kg\*m^2.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Axle and wheels lumped mass, AxlM — Mass

[2 2] (default) | vector

Axle and wheels lumped mass, a, in kg.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Track hardpoint coordinates relative to axle center, TrackCoords — Point [0 0 0 0; -1 1 -1 1; 0 0 0 0] (default) | array

Track hardpoint coordinates,  $Tc_t$ , along the solid axle x, y, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Tc_{t} = \begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\ z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element     | Axle | Track | Axis                      |
|-------------------|------|-------|---------------------------|
| TrackCoords(1, 1) | 1    | 1     | Solid axle <i>x</i> -axis |
| TrackCoords(1, 2) | 1    | 2     |                           |
| TrackCoords(1, 3) | 2    | 1     |                           |
| TrackCoords(1, 4) | 2    | 2     |                           |
| TrackCoords(2, 1) | 1    | 1     | Solid axle <i>y</i> -axis |
| TrackCoords(2, 2) | 1    | 2     |                           |

| Array Element     | Axle | Track | Axis                      |
|-------------------|------|-------|---------------------------|
| TrackCoords(2, 3) | 2    | 1     |                           |
| TrackCoords(2, 4) | 2    | 2     |                           |
| TrackCoords(3, 1) | 1    | 1     | Solid axle <i>z</i> -axis |
| TrackCoords(3, 2) | 1    | 2     |                           |
| TrackCoords(3, 3) | 2    | 1     |                           |
| TrackCoords(3, 4) | 2    | 2     |                           |

## Suspension hardpoint coordinates relative to axle center, SuspCoords — Point [0 0 0 0;-1 1 -1 1;0 0 0 0] (default) | array

Suspension hardpoint coordinates,  $Sc_t$ , along the solid axle x-, y-, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the SuspCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Sc_t = \begin{bmatrix} x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\ y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\ z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}} \end{bmatrix}$$

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,1) | 1    | 1     | Solid axle <i>x</i> -axis |
| SuspCoords(1,2) | 1    | 2     |                           |
| SuspCoords(1,3) | 2    | 1     |                           |
| SuspCoords(1,4) | 2    | 2     |                           |
| SuspCoords(2,1) | 1    | 1     | Solid axle <i>y</i> -axis |
| SuspCoords(2,2) | 1    | 2     |                           |
| SuspCoords(2,3) | 2    | 1     |                           |
| SuspCoords(2,4) | 2    | 2     |                           |

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(3,1) | 1    | 1     | Solid axle <i>z</i> -axis |
| SuspCoords(3,2) | 1    | 2     |                           |
| SuspCoords(3,3) | 2    | 1     |                           |
| SuspCoords(3,4) | 2    | 2     |                           |

Wheel and axle interface compliance constant, KzWhlAxl — Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant,  $K_z$ , in N/m.

Wheel and axle interface compliance preload, F0zWhlAxl — Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload,  $F_{0z}$ , in N.

Wheel and axle interface damping constant, CzWhlAxl — Damping 10000 (default) | scalar

Wheel and axle interface damping constant,  $C_z$ , in m.

#### Suspension

#### Mapped

Axle breakpoints, f\_susp\_axl\_bp — Breakpoints [1 2] (default) | 1-by-P array

Axle breakpoints, dimensionless.

Vertical axis suspension height breakpoints, f\_susp\_dz\_bp — Breakpoints 1-by-Marray

Vertical axis suspension height breakpoints, in m.

Vertical axis suspension height velocity breakpoints, f\_susp\_dzdot\_bp — Breakpoints

1-by-N array

Vertical axis suspension height velocity breakpoints, in m/s.

Vertical axis suspension force and moment responses, f\_susp\_fmz — Output array zeros(31,31,61,2,4) (default) | M-by-N-by-O-by-P-by-4 array

Array of output values as a function of:

- Vertical suspension height, M
- ullet Vertical suspension height velocity, N

- Steering angle, O
- Axle, P
- 4 output types
  - 1 Vertical force, in N·m
  - 2 User-defined
  - 3 Stored energy, in J
  - 4 Absorbed power, in W

The array dimensions must match the breakpoint dimensions

Suspension geometry responses, f\_susp\_geom — Suspension geometry responses zeros(31,61,2,3) (default) | M-by-O-by-P-by-3 array

Array of geometric suspension values as a function of:

- Vertical suspension height, M
- Steering angle, O
- Axle, P
- 3 output types
  - 1 Camber angle, in rad
  - 2 Caster angle, in rad
  - 3 Toe angle, in rad

The array dimensions must match the breakpoint dimensions

Steering angle breakpoints, f\_susp\_strgdelta\_bp — Steering angle breakpoints 1-by-0 array

Steering angle breakpoints, in rad.

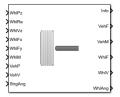
#### References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## **Extended Capabilities**

#### **C/C++ Code Generation**

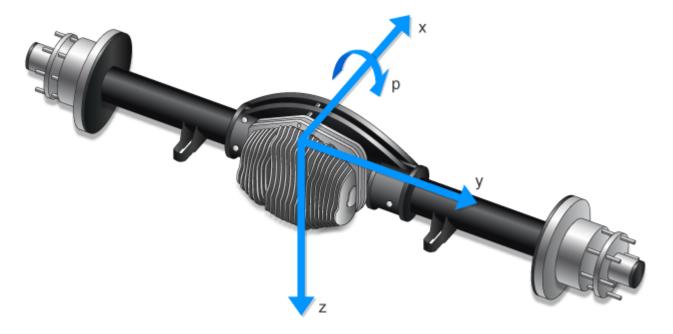
Generate C and C++ code using Simulink® Coder™.


## See Also

Solid Axle Suspension | Solid Axle Suspension - Coil Spring | Solid Axle Suspension - Leaf Spring

## Introduced in R2018a

## **Solid Axle Suspension**


Solid axle suspension for multiple axles **Library:** Vehicle Dynamics Blockset / Suspension



## **Description**

The Solid Axle Suspension block implements a solid axle suspension for multiple axles with multiple tracks per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the track positions and velocities, with axle-specific compliance and damping parameters. Using the track position and velocity, the block calculates the vertical track position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the x-axis in the direction of forward vehicle motion.



| For Each | You Can Specify        |
|----------|------------------------|
| Axle     | Multiple tracks.       |
|          | Suspension parameters. |
| Track    | Steering angles.       |

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- · Two axles.
- Two tracks per axle.
- Steering angle input for both tracks on the front axle.

| Parameter                                | Setting |
|------------------------------------------|---------|
| Number of axles, NumAxl                  | 2       |
| Number of tracks by axle, NumTracksByAxl | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl | [1 0]   |

#### **Suspension Compliance and Damping**

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system on the vehicle and wheel. Specifically, the block:

| Uses                                                                                       | To Calculate                                                                                                         |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Longitudinal and lateral displacement and<br/>velocity of the vehicle.</li> </ul> | <ul><li>Suspension forces applied to the axle center.</li><li>Vertical displacements and velocities of the</li></ul> |
| Longitudinal and lateral displacement and velocity of the track.                           | vehicle and track.  • Longitudinal, lateral and vertical suspension                                                  |
| Vertical wheel forces applied to the vehicle.                                              | forces and moments applied to the vehicle.                                                                           |
|                                                                                            | Longitudinal, lateral and vertical suspension forces and moments applied to the wheel.                               |

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$\begin{bmatrix} \ddot{x}_{a} \\ \ddot{y}_{a} \\ \ddot{z}_{a} \end{bmatrix} = \frac{1}{M_{a}} \begin{bmatrix} F_{xa} \\ F_{ya} \\ F_{za} \end{bmatrix} + \begin{bmatrix} \dot{x}_{a} \\ \dot{y}_{a} \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{M_{a}} \begin{bmatrix} 0 \\ 0 \\ F_{za} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ p\dot{z}_{a} \\ \frac{F_{za}}{M_{a}} + g \end{bmatrix}$$

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} M_{x} \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} p \\ q \\ 0 \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{M_{x}}{I_{xx}} \\ 0 \\ 0 \end{bmatrix}$$

The net vertical force on the axle center of mass is the sum of the wheel and suspension forces acting on the axle.

$$F_{za} = \sum\nolimits_{t = 1}^{Nta} \left( F_{wz_{a,\,t}} + F_{z0_{a}} + k_{z_{a}} (z_{v_{a,\,t}} - z_{s_{a,\,t}} + m_{hsteer_{a}} |\delta_{steer_{a,\,t}}|) + c_{z_{a}} (\dot{z}_{v_{a,\,t}} - \dot{z}_{s_{a,\,t}}) \right)$$

The net moment about the roll axis of the solid axle suspension accounts for the hardpoint coordinates of the suspension and tracks.

$$\begin{split} M_{X} &= \sum\nolimits_{t \,=\, 1}^{Nta} \left( F_{wz_{a,\,t}} y_{w_{t}} + \left( F_{z0_{a}} + k_{z_{a}} \! \left( z_{v_{a,\,t}} - z_{s_{a,\,t}} + m_{hsteer_{a}} \middle| \delta_{steer_{a,\,t}} \middle| \right) + c_{z_{a}} \! \left( \dot{z}_{v_{a,\,t}} - \dot{z}_{s_{a,\,t}} \right) \right) y_{s_{t}} \\ &+ M_{wx_{a,\,t}} \frac{I_{xx}}{I_{xx} + M_{a}y_{w_{t}}} \right) \end{split}$$

Block parameters provide the track and suspension hardpoints coordinates.

$$Tc_{t} = \begin{bmatrix} x_{w_{1}} & x_{w_{2}} & \dots \\ y_{w_{1}} & y_{w_{2}} & \dots \\ z_{w_{1}} & z_{w_{2}} & \dots \end{bmatrix}$$

$$Sc_{t} = \begin{bmatrix} x_{s_{1}} & x_{s_{2}} & \dots \\ y_{s_{1}} & y_{s_{2}} & \dots \\ z_{s_{1}} & z_{s_{2}} & \dots \end{bmatrix}$$

The block uses Euler angles to transform the track and suspension displacements, velocities, and accelerations to the vehicle coordinate system.

To calculate the suspension forces applied to the vehicle, the block implements this equation.

$$F_{vz_{a,t}} = -\left(F_{z0_{a}} + k_{z_{a}}(z_{v_{a,t}} - z_{s_{a,t}} + m_{hsteer_{a}}|\delta_{steer_{a,t}}|\right) + c_{z_{a}}(\dot{z}_{v_{a,t}} - \dot{z}_{s_{a,t}}) + F_{zhstop_{a,t}})$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,\,t}} &= F_{wx_{a,\,t}} \\ F_{vy_{a,\,t}} &= F_{wy_{a,\,t}} \\ F_{vz_{a,\,t}} &= -F_{wz_{a,\,t}} \\ M_{vx_{a,\,t}} &= M_{wx_{a,\,t}} + F_{wy_{a,\,t}} (Re_{wy_{a,\,t}} + H_{a,\,t}) \\ M_{vy_{a,\,t}} &= M_{wy_{a,\,t}} + F_{wx_{a,\,t}} \Big( Re_{wx_{a,\,t}} + H_{a,\,t} \Big) \\ M_{vz_{a,\,t}} &= M_{wz_{a,\,t}} \end{split}$$

To calculate the vertical force applied to the suspension at the track location, the block implements a stiff spring-damper.

$$F_{wz_{a,t}} = -Fwa_{z0} - kwa_{z}(z_{w_{a,t}} - z_{s_{a,t}}) - cwa_{z}(\dot{z}_{w_{a,t}} - \dot{z}_{s_{a,t}})$$

The equations use these variables.

| $F_{wz_{a,t'}}M_{wz_{a,t}}$                                                                                           | Suspension force and moment applied to the wheel on axle a, track ${\sf t}$ along wheel-fixed $z\text{-}{\sf axis}$            |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $F_{w_{X_{a,t}}}$ , $M_{w_{X_{a,t}}}$                                                                                 | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $x$ -axis                           |
| $F_{wy_{a,t}}$ , $M_{wy_{a,t}}$                                                                                       | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $y$ -axis                           |
| $F_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ , $M_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$ |
| $F_{{\scriptscriptstyle { m VX}}_{a,t'}} M_{{\scriptscriptstyle { m VX}}_{a,t}}$                                      | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed x-axis                |
| $F_{{ u y}_{a,t'}} M_{{ u y}_{a,t}}$                                                                                  | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $y\text{-}{\tt axis}$ |
| $F_{z0_a}$                                                                                                            | Vertical suspension spring preload force applied to the wheels on axle a                                                       |
| $k_{z_a}$                                                                                                             | Vertical spring constant applied to tracks on axle a                                                                           |
| $m_{hsteer_a}$                                                                                                        | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a                                           |
| $\delta_{steer_{a,t}}$                                                                                                | Steering angle input for axle a, track t                                                                                       |
| $C_{\mathcal{Z}_a}$                                                                                                   | Vertical damping constant applied to tracks on axle a                                                                          |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius for axle a, track t                                                                                     |
| $F_{zhstop_{a,t}}$                                                                                                    | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                            |
| $F_{zaswy_{a,t}}$                                                                                                     | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                           |
| $z_{{ m v}_{a,t}}$ , $\dot{z}_{{ m v}_{a,t}}$                                                                         | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $X_{v_{a,t'}}$ $\dot{X}_{v_{a,t}}$                                                                                    | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $X_{w_{a,t}}$ , $\dot{X}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $y_{ u_{a,t'}} \ \dot{y}_{ u_{a,t}}$                                                                                  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                  |
| $y_{w_{a,t}}$ , $\dot{y}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle a, track t, along the vehicle-fixed y-axis                                             |
| $H_{a,t}$                                                                                                             | Suspension height at axle a, track t                                                                                           |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius at axle a, track t                                                                                      |

### **Hardstop Forces**

The hardstop feedback force,  $F_{zhstop_{o,t}}$ , that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the **Suspension maximum height, Hmax** parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the **Suspension maximum height, Hmax** parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

## **Camber, Caster, and Toe Angles**

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$\begin{aligned} \xi_{a,\,t} &= \xi_{0a} + m_{hcamber_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{cambersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \eta_{a,\,t} &= \eta_{0a} + m_{hcaster_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{castersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \zeta_{a,\,t} &= \zeta_{0a} + m_{htoe_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{toesteer_a} \big| \delta_{steer_{a,\,t}} \big| \end{aligned}$$

The equations use these variables.

 $\xi_{a,t}$  Camber angle of wheel on axle a, track t  $\eta_{a,t}$  Caster angle of wheel on axle a, track t  $\zeta_{a,t}$  Toe angle of wheel on axle a, track t

 $\xi_{0a}$ ,  $\eta_{0a}$ ,  $\zeta_{0a}$  Nominal suspension axle a camber, caster, and toe angles, respectively, at

zero steering angle

 $m_{hcamber,r}, m_{hcaster,r}$  Camber, caster, and toe angles, respectively, versus suspension height slope

 $m_{htoe_a}$  for axle a

 $m_{cambersteer_a}$ ,  $m_{castersteer_a}$ , Camber, caster, and toe angles, respectively, versus steering angle slope for

 $m_{toesteer_a}$  axle a

 $m_{hsteer_a}$  Steering angle versus vertical force slope for axle a

 $\delta_{steer}$ . Steering angle input for axle a, track t

 $z_{\nu_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

#### **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$\delta_{whlsteer_{a,\,t}} = \delta_{steer_{a,\,t}} + m_{htoe_a} \left( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \middle| \delta_{steer_{a,\,t}} \middle| \right) + m_{toesteer_a} \middle| \delta_{steer_{a,\,t}} \middle|$$

The equation uses these variables.

 $m_{toesteer_a}$  Axle a toe angle versus steering angle slope  $m_{hsteer_a}$  Axle a steering angle versus vertical force slope  $m_{htoe_a}$  Axle a toe angle versus suspension height slope

 $\delta_{whlsteer_{a,t}}$  Wheel steering angle for axle a, track t  $\delta_{steer_{a,t}}$  Steering angle input for axle a, track t

 $z_{v_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

## **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                                               | Equation                                                                                                                                 |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$                        | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t'}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t'}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$                         | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$   |
| Suspension height, $H_{a,t}$                              | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} + \frac{F_{z0_a}}{k_{z_a}} + m_{hsteer_a} \left  \delta_{steer_{a,t}} \right  \right)$       |
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$                                                                                                 |

The equations use these variables.

| $m_{hsteer_a}$                                | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a          |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$                        | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                                | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| $F_{z0_a}$                                    | Vertical suspension spring preload force applied to the wheels on axle a                      |
| $\mathcal{Z}_{\mathit{wtr}_{a,t}}$            | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $z_{ u_{a,t}}$ , $\dot{z}_{ u_{a,t}}$         | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $\pmb{z}_{w_{a,t'}}, \pmb{\dot{z}}_{w_{a,t}}$ | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

## **Ports**

## Input

## WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlPz = 
$$z_w = \begin{bmatrix} z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

### WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhiRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

#### WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed *z*-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlVz = 
$$\dot{z}_w = \left[ \dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}} \right]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

#### WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

## WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFy = 
$$F_{wy} = [F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

$$\text{WhlM} = M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlM(2,2)     | 1    | 2     |                                     |
| WhlM(2,3)     | 2    | 1     |                                     |
| WhlM(2,4)     | 2    | 2     |                                     |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlM(3,2)     | 1    | 2     |                                     |
| WhlM(3,3)     | 2    | 1     |                                     |
| WhlM(3,4)     | 2    | 2     |                                     |

### VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_{\nu}$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

## VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_v$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v} \end{bmatrix} = \begin{bmatrix} \dot{x}_{v_{1,1}} \ \dot{x}_{v_{1,2}} \ \dot{x}_{v_{2,1}} \ \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} \ \dot{y}_{v_{1,2}} \ \dot{y}_{v_{2,1}} \ \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} \ \dot{z}_{v_{1,2}} \ \dot{z}_{v_{2,1}} \ \dot{z}_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehV(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)     | 1    | 2     |                      |
| VehV(1,3)     | 2    | 1     |                      |
| VehV(1,4)     | 2    | 2     |                      |
| VehV(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)     | 1    | 2     |                      |
| VehV(2,3)     | 2    | 1     |                      |
| VehV(2,4)     | 2    | 2     |                      |
| VehV(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)     | 1    | 2     |                      |
| VehV(3,3)     | 2    | 1     |                      |
| VehV(3,4)     | 2    | 2     |                      |

## StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### **Output**

### Info - Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

| Array Element | Axle | Track |
|---------------|------|-------|
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                                | Array Signal                      | Variable                                     | Units |
|--------|--------------------------------------------|-----------------------------------|----------------------------------------------|-------|
| Camber | Wheel angles according   1D   WhlAng[1,] = | WhlAng[1,] = $\xi = [\xi_{a, t}]$ | rad                                          |       |
| Caster | to the axle.                               | o the axie.                       | WhlAng[2,] = $\eta = [\eta_{a,t}]$           |       |
| Toe    |                                            |                                   | WhlAng[3,] = $\zeta = [\zeta_{a,t}]$         |       |
| Height | Suspension height                          | 1D                                | Н                                            | m     |
| Power  | Suspension power dissipation               | 1D                                | $P_{susp}$                                   | W     |
| Energy | Suspension absorbed energy                 | 1D                                | $E_{susp}$                                   | J     |
| VehF   | Suspension forces applied to the vehicle   | 3D                                | For a two-axle, two tracks per axle vehicle: |       |

| Signal | Description                           | Array Signal | Variable                                                                                                                                                                                                                                                                                                               | Units                                   |
|--------|---------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| VehM   | Suspension moments applied to vehicle | 3D           |                                                                                                                                                                                                                                                                                                                        | N·m <sup>×</sup> 2, 2 <sup>y</sup> 2, 2 |
| WhlF   | Suspension force applied to wheel     | 3D           | For a two-axle, two tracks per axle vehicle: $WhlF = F_w = $ $\begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz} \end{bmatrix}$                                                         | 2, 2<br>2, 2                            |
| WhlP   | Track displacement                    | 3D           | For a two-axle, two tracks per axle vehicle: $ \begin{aligned} WhlP &= \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \\ \begin{bmatrix} x_{w_1,1} & x_{w_1,2} & x_{w_2,1} & x_w \\ y_{w_1,1} & y_{w_1,2} & y_{w_2,1} & y_w \\ z_{wtr_{1,1}} & z_{wtr_{1,2}} & z_{wtr_{2,1}} & z_{wt} \end{bmatrix} \end{aligned} $ | y <sub>2,2</sub>                        |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                                                                                                        | Units |
|--------|----------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| WhlV   | Track velocity                   | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | m/s   |
|        |                                  |              | $WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix}$                                                                                                                                                                                                      |       |
|        |                                  |              | =                                                                                                                                                                                                                                                                               |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} \ \dot{y}_{w_{1,2}} \ \dot{y}_{w_{2,1}} \ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}} \end{bmatrix}$ |       |
|        |                                  |              | $\begin{bmatrix} ^{\sim}w_{1,1} & ^{\sim}w_{1,2} & ^{\sim}w_{2,1} & ^{\sim}w_{2,2} \end{bmatrix}$                                                                                                                                                                               |       |
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | rad   |
|        |                                  |              | WhlAng = $\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$ = $\begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$                     |       |

### VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed *z*-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

## VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed *y*-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |

| Array Element | Axle | Track | Moment Axis                     |
|---------------|------|-------|---------------------------------|
| VehM(2,3)     | 2    | 1     |                                 |
| VehM(2,4)     | 2    | 2     |                                 |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| VehM(3,2)     | 1    | 2     |                                 |
| VehM(3,3)     | 2    | 1     |                                 |
| VehM(3,4)     | 2    | 2     |                                 |

## WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\text{WhlF} = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,2}} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy_{2,2}} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)     | 1    | 2     |                                     |
| WhlF(1,3)     | 2    | 1     |                                     |
| WhlF(1,4)     | 2    | 2     |                                     |
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlF(2,2)     | 1    | 2     |                                     |
| WhlF(2,3)     | 2    | 1     |                                     |
| WhlF(2,4)     | 2    | 2     |                                     |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlF(3,2)     | 1    | 2     |                                     |
| WhlF(3,3)     | 2    | 1     |                                     |
| WhlF(3,4)     | 2    | 2     |                                     |

## WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed y-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

WhIV = 
$$\begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlV(1,2)     | 1    | 2     |                                     |
| WhlV(1,3)     | 2    | 1     |                                     |
| WhlV(1,4)     | 2    | 2     |                                     |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlV(2,2)     | 1    | 2     |                                     |
| WhlV(2,3)     | 2    | 1     |                                     |
| WhlV(2,4)     | 2    | 2     |                                     |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlV(3,2)     | 1    | 2     |                                     |
| WhlV(3,3)     | 2    | 1     |                                     |
| WhlV(3,4)     | 2    | 2     |                                     |

## WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |
| WhlF(3,3)     | 2    | 1     |        |
| WhlF(3,4)     | 2    | 2     |        |

## **Parameters**

### Axles

Number of axles, NumAxl — Number of axles 2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2] (default) | vector

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

Steered axle enable by axle, StrgEnByAxl — Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0]—For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1]—For a two-axle vehicle, enables axle 1 and axle 2 steering

## **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1:

Creates input port StrgAng.

- Creates these parameters
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

# Axle and wheels lumped principal moments of inertia about longitudinal axis, AxlIxx — Inertia

300 (default) | vector

Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in kg\*m^2.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Axle and wheels lumped mass, AxlM — Mass

Axle and wheels lumped mass, a, in kg.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Track hardpoint coordinates relative to axle center, TrackCoords — Point $[0\ 0\ 0\ 0; -1\ 1\ -1\ 1; 0\ 0\ 0\ 0]$ (default) | array

Track hardpoint coordinates,  $Tc_t$ , along the solid axle x, y, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Tc_{t} = \begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\ z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element     | Axle | Track | Axis                      |
|-------------------|------|-------|---------------------------|
| TrackCoords(1, 1) | 1    | 1     | Solid axle <i>x</i> -axis |
| TrackCoords(1, 2) | 1    | 2     |                           |
| TrackCoords(1, 3) | 2    | 1     |                           |
| TrackCoords(1, 4) | 2    | 2     |                           |
| TrackCoords(2, 1) | 1    | 1     | Solid axle <i>y</i> -axis |
| TrackCoords(2, 2) | 1    | 2     |                           |
| TrackCoords(2, 3) | 2    | 1     |                           |
| TrackCoords(2, 4) | 2    | 2     |                           |
| TrackCoords(3, 1) | 1    | 1     | Solid axle <i>z</i> -axis |
| TrackCoords(3, 2) | 1    | 2     |                           |
| TrackCoords(3, 3) | 2    | 1     |                           |
| TrackCoords(3, 4) | 2    | 2     |                           |

# Suspension hardpoint coordinates relative to axle center, SuspCoords — Point $[0\ 0\ 0\ 0; -1\ 1\ -1\ 1; 0\ 0\ 0\ 0]$ (default) | array

Suspension hardpoint coordinates,  $Sc_t$ , along the solid axle x-, y-, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the SuspCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Sc_t = \begin{bmatrix} x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\ y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\ z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}} \end{bmatrix}$$

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,1) | 1    | 1     | Solid axle <i>x</i> -axis |
| SuspCoords(1,2) | 1    | 2     |                           |

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,3) | 2    | 1     |                           |
| SuspCoords(1,4) | 2    | 2     |                           |
| SuspCoords(2,1) | 1    | 1     | Solid axle <i>y</i> -axis |
| SuspCoords(2,2) | 1    | 2     |                           |
| SuspCoords(2,3) | 2    | 1     |                           |
| SuspCoords(2,4) | 2    | 2     |                           |
| SuspCoords(3,1) | 1    | 1     | Solid axle <i>z</i> -axis |
| SuspCoords(3,2) | 1    | 2     |                           |
| SuspCoords(3,3) | 2    | 1     |                           |
| SuspCoords(3,4) | 2    | 2     |                           |

Wheel and axle interface compliance constant, KzWhlAxl — Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant,  $K_z$ , in N/m.

Wheel and axle interface compliance preload, F0zWhlAxl — Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload,  $F_{0z}$ , in N.

Wheel and axle interface damping constant, CzWhlAxl — Damping 10000 (default) | scalar

Wheel and axle interface damping constant,  $C_z$ , in m.

### Suspension

**Compliance and Damping - Passive** 

Suspension spring constant, Kz — Suspension spring constant 64370 (default) | scalar | vector

Linear vertical spring constant for independent suspension tracks on axle a,  $k_{z_o}$ , in N/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, F0z — Suspension spring preload 9810 (default) | scalar | vector

Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates,  $F_{z0_g}$ , in N. Positive preload forces:

- · Cause the vehicle to lift.
- Point along the negative vehicle-fixed *z*-axis.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Suspension shock damping constant, Cz — Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension tracks on axle a,  $c_{z,t}$  in Ns/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

To create this parameter, clear Enable active damping.

# Suspension maximum height, Hmax — Height 0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height,  $H_{max}$ , for axle a before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### Geometry

# Toe angle at steering center, Toe — Toe angle 0.0349 (default) | scalar

Nominal suspension toe angle at zero steering angle,  $\zeta_{0a}$ , in rad.

# Roll steer vs suspension height slope, RollStrgSlp — Steer angle suspension slope -0.2269 (default) | scalar | vector

Roll steer angle versus suspension height,  $m_{htoe}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Toe angle vs steering angle slope, ToeStrgSlp — Toe angle steering slope 0.01 (default) | scalar | vector

Toe angle versus steering angle slope,  $m_{toesteer_{o}}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Caster angle at steering center, Caster — Caster angle at steering center 0.0698 $(default) \mid scalar$

Nominal suspension caster angle at zero steering angle,  $\eta_{0a}$ , in rad.

# Caster angle vs suspension height slope, CasterHslp — Caster angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Caster angle versus suspension height,  $m_{hcaster}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Caster angle vs steering angle slope, CasterStrgSlp — Caster angle versus steering angle slope

```
0.01 (default) | scalar | vector
```

Caster angle versus steering angle slope,  $m_{castersteer_a}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Camber angle at steering center, Camber — Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle,  $\xi_{0a}$ , in rad.

# Camber angle vs suspension height slope, CamberHslp — Camber angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Camber angle versus suspension height,  $m_{hcamber_a}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Camber angle vs steering angle slope, CamberStrgSlp — Camber angle versus steering angle slope

0.01 (default) | scalar | vector

Camber angle versus steering angle slope,  $m_{cambersteer_{o'}}$  dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Suspension height vs steering angle slope, StrgHgtSlp — Suspension height versus steering angle slope

0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point,  $m_{hsteer_a}$ , in m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

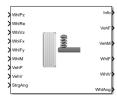
[3] Technical Committee. Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

# **Extended Capabilities**

# **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

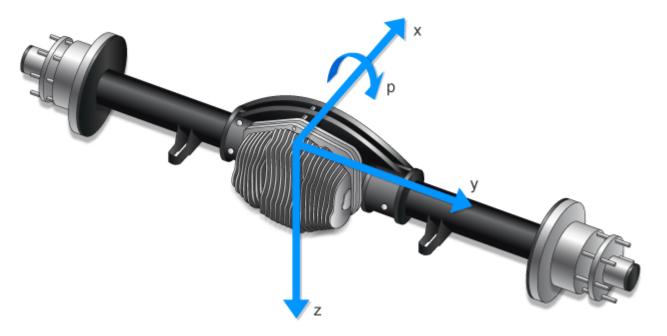
# **See Also**


Solid Axle Suspension - Coil Spring | Solid Axle Suspension - Leaf Spring | Solid Axle Suspension - Mapped

## Introduced in R2018a

# **Solid Axle Suspension - Coil Spring**

Solid axle suspension with coil spring


**Library:** Vehicle Dynamics Blockset / Suspension



# **Description**

The Solid Axle Suspension - Coil Spring block implements a solid axle suspension with a coil spring for multiple axles with multiple tracks per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the track positions and velocities, with axle-specific compliance and damping parameters. Using the track position and velocity, the block calculates the vertical track position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the x-axis in the direction of forward vehicle motion.



| For Each | You Can Specify        |
|----------|------------------------|
| Axle     | Multiple tracks.       |
|          | Suspension parameters. |
| Track    | Steering angles.       |

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- Two axles.
- · Two tracks per axle.
- Steering angle input for both tracks on the front axle.

| Parameter                                | Setting |
|------------------------------------------|---------|
| Number of axles, NumAxl                  | 2       |
| Number of tracks by axle, NumTracksByAxl | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl | [1 0]   |

### **Suspension Compliance and Damping**

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system on the vehicle and wheel. Specifically, the block:

| Uses                                                               | To Calculate                                                                                                         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Longitudinal and lateral displacement and velocity of the vehicle. | <ul><li>Suspension forces applied to the axle center.</li><li>Vertical displacements and velocities of the</li></ul> |
| Longitudinal and lateral displacement and velocity of the track.   | vehicle and track.  • Longitudinal, lateral and vertical suspension                                                  |
| Vertical wheel forces applied to the vehicle.                      | forces and moments applied to the vehicle.                                                                           |
|                                                                    | Longitudinal, lateral and vertical suspension forces and moments applied to the wheel.                               |

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$\begin{bmatrix} \ddot{x}_{a} \\ \ddot{y}_{a} \\ \ddot{z}_{a} \end{bmatrix} = \frac{1}{M_{a}} \begin{bmatrix} F_{xa} \\ F_{ya} \\ F_{za} \end{bmatrix} + \begin{bmatrix} \dot{x}_{a} \\ \dot{y}_{a} \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{M_{a}} \begin{bmatrix} 0 \\ 0 \\ F_{za} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ p\dot{z}_{a} \\ \frac{F_{za}}{M_{a}} + g \end{bmatrix}$$

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} M_{x} \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} p \\ q \\ 0 \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{M_{x}}{I_{xx}} \\ 0 \\ 0 \end{bmatrix}$$

The net vertical force on the axle center of mass is the sum of the wheel and suspension forces acting on the axle.

$$F_{za} = \sum\nolimits_{t = 1}^{Nta} \left( F_{wz_{a,\,t}} + F_{z0_{a}} + k_{z_{a}} (z_{v_{a,\,t}} - z_{s_{a,\,t}} + m_{hsteer_{a}} |\delta_{steer_{a,\,t}}|) + c_{z_{a}} (\dot{z}_{v_{a,\,t}} - \dot{z}_{s_{a,\,t}}) \right)$$

The net moment about the roll axis of the solid axle suspension accounts for the hardpoint coordinates of the suspension and tracks.

$$M_{X} = \sum_{t=1}^{Nta} \left( F_{wz_{a,t}} y_{w_{t}} + \left( F_{z0_{a}} + k_{z_{a}} (z_{v_{a,t}} - z_{s_{a,t}} + m_{hsteer_{a}} | \delta_{steer_{a,t}} | \right) + c_{z_{a}} (\dot{z}_{v_{a,t}} - \dot{z}_{s_{a,t}}) \right) y_{s_{t}} + M_{wx_{a,t}} \frac{I_{\chi\chi}}{I_{\chi\chi} + M_{a}y_{w_{t}}}$$

Block parameters provide the track and suspension hardpoints coordinates.

$$Tc_{t} = \begin{bmatrix} x_{w_{1}} & x_{w_{2}} & \dots \\ y_{w_{1}} & y_{w_{2}} & \dots \\ z_{w_{1}} & z_{w_{2}} & \dots \end{bmatrix}$$

$$Sc_{t} = \begin{bmatrix} x_{s_{1}} & x_{s_{2}} & \dots \\ y_{s_{1}} & y_{s_{2}} & \dots \\ z_{s_{1}} & z_{s_{2}} & \dots \end{bmatrix}$$

The block uses Euler angles to transform the track and suspension displacements, velocities, and accelerations to the vehicle coordinate system.

To calculate the suspension forces applied to the vehicle, the block implements this equation.

$$F_{vz_{a,t}} = -\left(F_{z0_{a}} + k_{z_{a}}(z_{v_{a,t}} - z_{s_{a,t}} + m_{hsteer_{a}}|\delta_{steer_{a,t}}|\right) + c_{z_{a}}(\dot{z}_{v_{a,t}} - \dot{z}_{s_{a,t}}) + F_{zhstop_{a,t}})$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,\,t}} &= F_{wx_{a,\,t}} \\ F_{vy_{a,\,t}} &= F_{wy_{a,\,t}} \\ F_{vz_{a,\,t}} &= -F_{wz_{a,\,t}} \\ M_{vx_{a,\,t}} &= M_{wx_{a,\,t}} + F_{wy_{a,\,t}} (Re_{wy_{a,\,t}} + H_{a,\,t}) \\ M_{vy_{a,\,t}} &= M_{wy_{a,\,t}} + F_{wx_{a,\,t}} \Big( Re_{wx_{a,\,t}} + H_{a,\,t} \Big) \\ M_{vz_{a,\,t}} &= M_{wz_{a,\,t}} \end{split}$$

To calculate the vertical force applied to the suspension at the track location, the block implements a stiff spring-damper.

$$F_{wz_{a,t}} = -Fwa_{z0} - kwa_{z}(z_{w_{a,t}} - z_{s_{a,t}}) - cwa_{z}(\dot{z}_{w_{a,t}} - \dot{z}_{s_{a,t}})$$

The equations use these variables.

| $F_{wz_{a,t}}$ , $M_{wz_{a,t}}$                                                                                       | Suspension force and moment applied to the wheel on axle a, track $t$ along wheel-fixed $z$ -axis                              |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $F_{{\scriptscriptstyle WX_{a,t}}}$ , $M_{{\scriptscriptstyle WX_{a,t}}}$                                             | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $x$ -axis                           |
| $F_{wy_{a,t}}$ , $M_{wy_{a,t}}$                                                                                       | Suspension force and moment applied to the wheel on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $y\text{-}{\tt axis}$   |
| $F_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ , $M_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$ |
| $F_{{\scriptscriptstyle { m VX}}_{a,t'}} M_{{\scriptscriptstyle { m VX}}_{a,t}}$                                      | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $x\text{-}{\tt axis}$ |
| $F_{{ u y}_{a,t'}} M_{{ u y}_{a,t}}$                                                                                  | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $y\text{-}{\tt axis}$ |
| $F_{z0_a}$                                                                                                            | Vertical suspension spring preload force applied to the wheels on axle a                                                       |
| $k_{z_a}$                                                                                                             | Vertical spring constant applied to tracks on axle a                                                                           |
| $m_{hsteer_a}$                                                                                                        | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a                                           |
| $\delta_{steer_{a,t}}$                                                                                                | Steering angle input for axle a, track t                                                                                       |
| $C_{\mathcal{Z}_a}$                                                                                                   | Vertical damping constant applied to tracks on axle a                                                                          |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius for axle a, track t                                                                                     |
| $F_{zhstop_{a,t}}$                                                                                                    | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                            |
| $F_{zaswy_{a,t}}$                                                                                                     | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                           |
| $\pmb{z}_{\pmb{\mathcal{V}}_{a,t}}$ , $\dot{\pmb{z}}_{\pmb{\mathcal{V}}_{a,t}}$                                       | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $X_{v_{a,t'}}$ $\dot{X}_{v_{a,t}}$                                                                                    | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $X_{w_{a,t}}$ , $\dot{X}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $y_{ u_{a,t'}} \ \dot{y}_{ u_{a,t}}$                                                                                  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                  |
| $y_{w_{a,t}}$ , $\dot{y}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                    |
| $H_{a,t}$                                                                                                             | Suspension height at axle a, track t                                                                                           |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius at axle a, track t                                                                                      |

### **Hardstop Forces**

The hardstop feedback force,  $F_{zhstop_{o,t}}$ , that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the **Suspension maximum height, Hmax** parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the **Suspension maximum height, Hmax** parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

## **Camber, Caster, and Toe Angles**

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$\begin{aligned} \xi_{a,\,t} &= \xi_{0a} + m_{hcamber_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{cambersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \eta_{a,\,t} &= \eta_{0a} + m_{hcaster_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{castersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \zeta_{a,\,t} &= \zeta_{0a} + m_{htoe_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{toesteer_a} \big| \delta_{steer_{a,\,t}} \big| \end{aligned}$$

The equations use these variables.

 $\xi_{a,t}$  Camber angle of wheel on axle a, track t  $\eta_{a,t}$  Caster angle of wheel on axle a, track t  $\zeta_{a,t}$  Toe angle of wheel on axle a, track t

 $\xi_{0a}$ ,  $\eta_{0a}$ ,  $\zeta_{0a}$  Nominal suspension axle a camber, caster, and toe angles, respectively, at

zero steering angle

 $m_{hcamber,r}, m_{hcaster,r}$  Camber, caster, and toe angles, respectively, versus suspension height slope

 $m_{htoe_a}$  for axle a

 $m_{cambersteer_a}$ ,  $m_{castersteer_a}$ , Camber, caster, and toe angles, respectively, versus steering angle slope for

 $m_{toesteer_a}$  axle a

 $m_{hsteer_a}$  Steering angle versus vertical force slope for axle a

 $\delta_{steer.}$  Steering angle input for axle a, track t

 $z_{\nu_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

### **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$\delta_{whlsteer_{a,\,t}} = \delta_{steer_{a,\,t}} + m_{htoe_a} \left( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \middle| \delta_{steer_{a,\,t}} \middle| \right) + m_{toesteer_a} \middle| \delta_{steer_{a,\,t}} \middle|$$

The equation uses these variables.

 $m_{toesteer_a}$  Axle a toe angle versus steering angle slope  $m_{hsteer_a}$  Axle a steering angle versus vertical force slope  $m_{htoe_a}$  Axle a toe angle versus suspension height slope

 $\delta_{whlsteer_{a,t}}$  Wheel steering angle for axle a, track t  $\delta_{steer_{a,t}}$  Steering angle input for axle a, track t

 $z_{v_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

## **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                                               | Equation                                                                                                                                 |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$                        | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t'}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t'}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$                         | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$   |
| Suspension height, $H_{a,t}$                              | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} + \frac{F_{z0_a}}{k_{z_a}} + m_{hsteer_a} \left  \delta_{steer_{a,t}} \right  \right)$       |
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$                                                                                                 |

The equations use these variables.

| $m_{hsteer_a}$                        | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a          |
|---------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$                | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                        | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| $F_{z0_a}$                            | Vertical suspension spring preload force applied to the wheels on axle a                      |
| $\mathcal{Z}_{wtr_{a,t}}$             | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $z_{ u_{a,t}}$ , $\dot{z}_{ u_{a,t}}$ | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

## **Ports**

## Input

# WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlPz = 
$$z_w = \begin{bmatrix} z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

## WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhiRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

## WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed *z*-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

$$\text{WhlVz} = \dot{z}_w = \left[ \dot{z}_{w_{1,\,1}} \; \dot{z}_{w_{1,\,2}} \; \dot{z}_{w_{2,\,1}} \; \dot{z}_{w_{2,\,2}} \right]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

### WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

# WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFy = 
$$F_{wy} = [F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

WhlM = 
$$M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlM(2,2)     | 1    | 2     |                                     |
| WhlM(2,3)     | 2    | 1     |                                     |
| WhlM(2,4)     | 2    | 2     |                                     |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlM(3,2)     | 1    | 2     |                                     |
| WhlM(3,3)     | 2    | 1     |                                     |
| WhlM(3,4)     | 2    | 2     |                                     |

# VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_v$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

## VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_v$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{\nu} \\ \dot{y}_{\nu} \\ \dot{z}_{\nu} \end{bmatrix} = \begin{bmatrix} \dot{x}_{\nu_{1,1}} \ \dot{x}_{\nu_{1,2}} \ \dot{x}_{\nu_{2,1}} \ \dot{x}_{\nu_{2,2}} \\ \dot{y}_{\nu_{1,1}} \ \dot{y}_{\nu_{1,2}} \ \dot{y}_{\nu_{2,1}} \ \dot{y}_{\nu_{2,2}} \\ \dot{z}_{\nu_{1,1}} \ \dot{z}_{\nu_{1,2}} \ \dot{z}_{\nu_{2,1}} \ \dot{z}_{\nu_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehV(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)     | 1    | 2     |                      |
| VehV(1,3)     | 2    | 1     |                      |
| VehV(1,4)     | 2    | 2     |                      |
| VehV(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)     | 1    | 2     |                      |
| VehV(2,3)     | 2    | 1     |                      |
| VehV(2,4)     | 2    | 2     |                      |
| VehV(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)     | 1    | 2     |                      |
| VehV(3,3)     | 2    | 1     |                      |
| VehV(3,4)     | 2    | 2     |                      |

# StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

### **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - · Suspension height vs steering angle slope, StrgHgtSlp

### **Output**

### Info — Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

| Array Element | Axle | Track |
|---------------|------|-------|
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                              | Array Signal | Variable                                     | Units |
|--------|------------------------------------------|--------------|----------------------------------------------|-------|
| Camber | Wheel angles according                   | rding 1D     | WhlAng[1,] = $\xi = [\xi_{a, t}]$            | rad   |
| Caster | to the axle.                             |              | WhlAng[2,] = $\eta = [\eta_{a,t}]$           |       |
| Toe    |                                          |              | WhlAng[3,] = $\zeta = [\zeta_{a,t}]$         |       |
| Height | Suspension height                        | 1D           | Н                                            | m     |
| Power  | Suspension power dissipation             | 1D           | $P_{susp}$                                   | W     |
| Energy | Suspension absorbed energy               | 1D           | $E_{susp}$                                   | J     |
| VehF   | Suspension forces applied to the vehicle | 3D           | For a two-axle, two tracks per axle vehicle: |       |

| Signal | Description                           | Array Signal | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units         |
|--------|---------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| VehM   | Suspension moments applied to vehicle | 3D           | For a two-axle, two tracks per axle vehicle: $VehM = M_{v} = \\ \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{v} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{v} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{v} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W2, 2         |
| WhlF   | Suspension force applied to wheel     | 3D           | For a two-axle, two tracks per axle vehicle: $WhlF = F_{w} = $ $\begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} $ | 2,2           |
| WhlP   | Track displacement                    | 3D           | For a two-axle, two tracks per axle vehicle: $WhlP = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} x_{w1,1} & x_{w1,2} & x_{w2,1} & x_w \\ y_{w1,1} & y_{w1,2} & y_{w2,1} & y_w \\ z_{wtr_{1,1}} & z_{wtr_{1,2}} & z_{wtr_{2,1}} & z_{wt} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2, 2<br>V2, 2 |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                                                                                                        | Units |
|--------|----------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| WhlV   | Track velocity                   | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | m/s   |
|        |                                  |              | $WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix}$                                                                                                                                                                                                      |       |
|        |                                  |              | =                                                                                                                                                                                                                                                                               |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y} & \dot{y} & \dot{y} & \dot{y} \end{bmatrix}$                                                                                                                          |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} \ \dot{y}_{w_{1,2}} \ \dot{y}_{w_{2,1}} \ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}} \end{bmatrix}$ |       |
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | rad   |
|        |                                  |              | WhlAng = $\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$ $= \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \end{bmatrix}$                                                                              |       |
|        |                                  |              | $= \begin{bmatrix} \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$                                                                                                                                    |       |

## VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed *z*-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

## VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed *y*-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |

| Array Element | Axle | Track | Moment Axis                     |
|---------------|------|-------|---------------------------------|
| VehM(2,3)     | 2    | 1     |                                 |
| VehM(2,4)     | 2    | 2     |                                 |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| VehM(3,2)     | 1    | 2     |                                 |
| VehM(3,3)     | 2    | 1     |                                 |
| VehM(3,4)     | 2    | 2     |                                 |

## WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed y-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\text{WhlF} = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,2}} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy_{2,2}} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)     | 1    | 2     |                                     |
| WhlF(1,3)     | 2    | 1     |                                     |
| WhlF(1,4)     | 2    | 2     |                                     |
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlF(2,2)     | 1    | 2     |                                     |
| WhlF(2,3)     | 2    | 1     |                                     |
| WhlF(2,4)     | 2    | 2     |                                     |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlF(3,2)     | 1    | 2     |                                     |
| WhlF(3,3)     | 2    | 1     |                                     |
| WhlF(3,4)     | 2    | 2     |                                     |

## WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed *y*-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

WhIV = 
$$\begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlV(1,2)     | 1    | 2     |                                     |
| WhlV(1,3)     | 2    | 1     |                                     |
| WhlV(1,4)     | 2    | 2     |                                     |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlV(2,2)     | 1    | 2     |                                     |
| WhlV(2,3)     | 2    | 1     |                                     |
| WhlV(2,4)     | 2    | 2     |                                     |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlV(3,2)     | 1    | 2     |                                     |
| WhlV(3,3)     | 2    | 1     |                                     |
| WhlV(3,4)     | 2    | 2     |                                     |

## WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |
| WhlF(3,3)     | 2    | 1     |        |
| WhlF(3,4)     | 2    | 2     |        |

## **Parameters**

### **Axles**

Number of axles, NumAxl — Number of axles 2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2] (default) | vector

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

Steered axle enable by axle, StrgEnByAxl — Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0]—For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1]—For a two-axle vehicle, enables axle 1 and axle 2 steering

## **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1:

Creates input port StrgAng.

- Creates these parameters
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

## Axle and wheels lumped principal moments of inertia about longitudinal axis, AxlIxx — Inertia

300 (default) | vector

Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in kg\*m^2.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### Axle and wheels lumped mass, AxlM — Mass

Axle and wheels lumped mass, a, in kg.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Track hardpoint coordinates relative to axle center, TrackCoords — Point [0 0 0 0; -1 1 -1 1; 0 0 0 0] (default) | array

Track hardpoint coordinates,  $Tc_t$ , along the solid axle x, y, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Tc_{t} = \begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\ z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element     | Axle | Track | Axis                      |
|-------------------|------|-------|---------------------------|
| TrackCoords(1, 1) | 1    | 1     | Solid axle <i>x</i> -axis |
| TrackCoords(1, 2) | 1    | 2     |                           |
| TrackCoords(1, 3) | 2    | 1     |                           |
| TrackCoords(1, 4) | 2    | 2     |                           |
| TrackCoords(2, 1) | 1    | 1     | Solid axle <i>y</i> -axis |
| TrackCoords(2, 2) | 1    | 2     |                           |
| TrackCoords(2, 3) | 2    | 1     |                           |
| TrackCoords(2, 4) | 2    | 2     |                           |
| TrackCoords(3, 1) | 1    | 1     | Solid axle <i>z</i> -axis |
| TrackCoords(3, 2) | 1    | 2     |                           |
| TrackCoords(3, 3) | 2    | 1     |                           |
| TrackCoords(3, 4) | 2    | 2     |                           |

### Suspension hardpoint coordinates relative to axle center, SuspCoords — Point [0 0 0 0;-1 1 -1 1;0 0 0 0] (default) | array

Suspension hardpoint coordinates,  $Sc_t$ , along the solid axle x-, y-, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the SuspCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Sc_t = \begin{bmatrix} x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\ y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\ z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}} \end{bmatrix}$$

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,1) | 1    | 1     | Solid axle <i>x</i> -axis |
| SuspCoords(1,2) | 1    | 2     |                           |

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,3) | 2    | 1     |                           |
| SuspCoords(1,4) | 2    | 2     |                           |
| SuspCoords(2,1) | 1    | 1     | Solid axle <i>y</i> -axis |
| SuspCoords(2,2) | 1    | 2     |                           |
| SuspCoords(2,3) | 2    | 1     |                           |
| SuspCoords(2,4) | 2    | 2     |                           |
| SuspCoords(3,1) | 1    | 1     | Solid axle <i>z</i> -axis |
| SuspCoords(3,2) | 1    | 2     |                           |
| SuspCoords(3,3) | 2    | 1     |                           |
| SuspCoords(3,4) | 2    | 2     |                           |

Wheel and axle interface compliance constant, KzWhlAxl — Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant,  $K_z$ , in N/m.

Wheel and axle interface compliance preload, F0zWhlAxl — Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload,  $F_{0z}$ , in N.

Wheel and axle interface damping constant, CzWhlAxl — Damping 10000 (default) | scalar

Wheel and axle interface damping constant,  $C_z$ , in m.

### Suspension

**Compliance and Damping - Passive** 

**Suspension spring constant, Kz — Suspension spring constant** 64370 (default) | scalar | vector

Linear vertical spring constant for independent suspension tracks on axle a,  $k_{z_o}$ , in N/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, F0z — Suspension spring preload 9810 (default) | scalar | vector

Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates,  $F_{z0,r}$  in N. Positive preload forces:

- · Cause the vehicle to lift.
- Point along the negative vehicle-fixed *z*-axis.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Suspension shock damping constant, Cz — Suspension shock damping constant 10000 (default) | scalar | vector

Linear vertical damping constant for independent suspension tracks on axle a,  $c_{z,t}$  in Ns/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

To create this parameter, clear Enable active damping.

## Suspension maximum height, Hmax — Height 0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height,  $H_{max}$ , for axle a before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### Geometry

## **Toe angle at steering center, Toe — Toe angle** 0.0349 (default) | scalar

Nominal suspension to angle at zero steering angle,  $\zeta_{0a}$ , in rad.

# Roll steer vs suspension height slope, RollStrgSlp — Steer angle suspension slope -0.2269 (default) | scalar | vector

Roll steer angle versus suspension height,  $m_{htoe}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Toe angle vs steering angle slope, ToeStrgSlp — Toe angle steering slope 0.01 (default) | scalar | vector

Toe angle versus steering angle slope,  $m_{toesteer_{o}}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Caster angle at steering center, Caster — Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle,  $\eta_{0a}$ , in rad.

## Caster angle vs suspension height slope, CasterHslp — Caster angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Caster angle versus suspension height,  $m_{heaster}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Caster angle vs steering angle slope, CasterStrgSlp — Caster angle versus steering angle slope

```
0.01 (default) | scalar | vector
```

Caster angle versus steering angle slope,  $m_{castersteer_a}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Camber angle at steering center, Camber — Camber angle at steering center 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle,  $\xi_{0a}$ , in rad.

# Camber angle vs suspension height slope, CamberHslp — Camber angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Camber angle versus suspension height,  $m_{hcamber_a}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Camber angle vs steering angle slope, CamberStrgSlp — Camber angle versus steering angle slope

0.01 (default) | scalar | vector

Camber angle versus steering angle slope,  $m_{cambersteer_a}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - · Suspension height vs steering angle slope, StrgHgtSlp

# Suspension height vs steering angle slope, StrgHgtSlp — Suspension height versus steering angle slope

0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point,  $m_{hsteer_a}$ , in m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - · Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

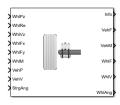
[3] Technical Committee. *Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary.* ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## **Extended Capabilities**

### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

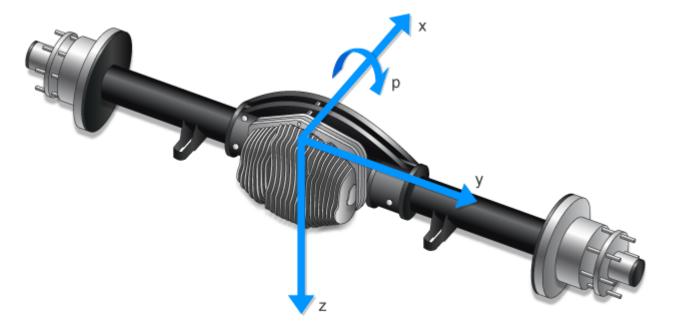
### **See Also**


Solid Axle Suspension | Solid Axle Suspension - Leaf Spring | Solid Axle Suspension - Mapped

### Introduced in R2018a

## **Solid Axle Suspension - Leaf Spring**

Solid axle suspension with leaf spring


Library: Vehicle Dynamics Blockset / Suspension



### **Description**

The Solid Axle Suspension - Leaf Spring block implements a solid axle suspension with a coil spring for multiple axles with multiple tracks per axle.

The block models the suspension compliance, damping, and geometric effects as functions of the track positions and velocities, with axle-specific compliance and damping parameters. Using the track position and velocity, the block calculates the vertical track position and suspension forces on the vehicle and wheel. The block uses the Z-down (defined in SAE J670) and a solid axle coordinate system. The solid axle coordinate system, shown here, is aligned with the Z-down vehicle coordinate system, with the *x*-axis in the direction of forward vehicle motion.



| For Each | You Can Specify        |
|----------|------------------------|
| Axle     | Multiple tracks.       |
|          | Suspension parameters. |
| Track    | Steering angles.       |

The block contains energy-storing spring elements and energy-dissipating damper elements. The block also stores energy via the axle roll angular acceleration and axle center of mass vertical and lateral acceleration.

This table summarizes the block parameter settings for a vehicle with:

- Two axles.
- · Two tracks per axle.
- Steering angle input for both tracks on the front axle.

| Parameter                                | Setting |
|------------------------------------------|---------|
| Number of axles, NumAxl                  | 2       |
| Number of tracks by axle, NumTracksByAxl | [2 2]   |
| Steered axle enable by axle, StrgEnByAxl | [1 0]   |

### **Suspension Compliance and Damping**

The block uses a linear spring and damper to model the vertical dynamic effects of the suspension system on the vehicle and wheel. Specifically, the block:

| Uses                                                                                       | To Calculate                                                                                                         |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Longitudinal and lateral displacement and<br/>velocity of the vehicle.</li> </ul> | <ul><li>Suspension forces applied to the axle center.</li><li>Vertical displacements and velocities of the</li></ul> |
| Longitudinal and lateral displacement and velocity of the track.                           | vehicle and track.  • Longitudinal, lateral and vertical suspension                                                  |
| • Vertical wheel forces applied to the vehicle.                                            | forces and moments applied to the vehicle.                                                                           |
|                                                                                            | Longitudinal, lateral and vertical suspension forces and moments applied to the wheel.                               |

To calculate the dynamics of the axle, the block implements these equations. The block neglects the effects of:

- Lateral and longitudinal translational velocity.
- Angular velocity about the vertical and lateral axes.

$$\begin{bmatrix} \ddot{x}_{a} \\ \ddot{y}_{a} \\ \ddot{z}_{a} \end{bmatrix} = \frac{1}{M_{a}} \begin{bmatrix} F_{xa} \\ F_{ya} \\ F_{za} \end{bmatrix} + \begin{bmatrix} \dot{x}_{a} \\ \dot{y}_{a} \\ \dot{z}_{a} \end{bmatrix} \times \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{M_{a}} \begin{bmatrix} 0 \\ 0 \\ F_{za} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ r \end{bmatrix} \times \begin{bmatrix} p \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ p\dot{z}_{a} \\ \frac{F_{za}}{M_{a}} + g \end{bmatrix}$$

$$\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \begin{bmatrix} M_{x} \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} p \\ q \\ 0 \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{M_{x}}{I_{xx}} \\ 0 \\ 0 \end{bmatrix}$$

The net vertical force on the axle center of mass is the sum of the wheel and suspension forces acting on the axle.

$$F_{za} = \sum\nolimits_{t = 1}^{Nta} \left( F_{wz_{a,\,t}} + F_{z0_{a}} + k_{z_{a}} (z_{v_{a,\,t}} - z_{s_{a,\,t}} + m_{hsteer_{a}} |\delta_{steer_{a,\,t}}|) + c_{z_{a}} (\dot{z}_{v_{a,\,t}} - \dot{z}_{s_{a,\,t}}) \right)$$

The net moment about the roll axis of the solid axle suspension accounts for the hardpoint coordinates of the suspension and tracks.

$$\begin{split} M_{X} &= \sum\nolimits_{t=1}^{Nta} \left( F_{wz_{a,\,t}} y_{w_{t}} + \left( F_{z0_{a}} + k_{z_{a}} (z_{v_{a,\,t}} - z_{s_{a,\,t}} + m_{hsteer_{a}} \middle| \delta_{steer_{a,\,t}} \middle| \right) + c_{z_{a}} (\dot{z}_{v_{a,\,t}} - \dot{z}_{s_{a,\,t}}) \right) y_{s_{t}} \\ &+ M_{wx_{a,\,t}} \frac{I_{\chi\chi}}{I_{\chi\chi} + M_{a}y_{w_{t}}} \end{split}$$

Block parameters provide the track and suspension hardpoints coordinates.

$$Tc_{t} = \begin{bmatrix} x_{w_{1}} & x_{w_{2}} & \dots \\ y_{w_{1}} & y_{w_{2}} & \dots \\ z_{w_{1}} & z_{w_{2}} & \dots \end{bmatrix}$$

$$Sc_{t} = \begin{bmatrix} x_{s_{1}} & x_{s_{2}} & \dots \\ y_{s_{1}} & y_{s_{2}} & \dots \\ z_{s_{1}} & z_{s_{2}} & \dots \end{bmatrix}$$

The block uses Euler angles to transform the track and suspension displacements, velocities, and accelerations to the vehicle coordinate system.

To calculate the suspension forces applied to the vehicle, the block implements this equation.

$$F_{vz_{a,t}} = -\left(F_{z0_{a}} + k_{z_{a}}(z_{v_{a,t}} - z_{s_{a,t}} + m_{hsteer_{a}}|\delta_{steer_{a,t}}|\right) + c_{z_{a}}(\dot{z}_{v_{a,t}} - \dot{z}_{s_{a,t}}) + F_{zhstop_{a,t}})$$

The suspension forces and moments applied to the vehicle are equal to the suspension forces and moments applied to the wheel.

$$\begin{split} F_{vx_{a,\,t}} &= F_{wx_{a,\,t}} \\ F_{vy_{a,\,t}} &= F_{wy_{a,\,t}} \\ F_{vz_{a,\,t}} &= -F_{wz_{a,\,t}} \\ M_{vx_{a,\,t}} &= M_{wx_{a,\,t}} + F_{wy_{a,\,t}} (Re_{wy_{a,\,t}} + H_{a,\,t}) \\ M_{vy_{a,\,t}} &= M_{wy_{a,\,t}} + F_{wx_{a,\,t}} \Big( Re_{wx_{a,\,t}} + H_{a,\,t} \Big) \\ M_{vz_{a,\,t}} &= M_{wz_{a,\,t}} \end{split}$$

To calculate the vertical force applied to the suspension at the track location, the block implements a stiff spring-damper.

$$F_{wz_{a,t}} = -Fwa_{z0} - kwa_{z}(z_{w_{a,t}} - z_{s_{a,t}}) - cwa_{z}(\dot{z}_{w_{a,t}} - \dot{z}_{s_{a,t}})$$

The equations use these variables.

| $F_{wz_{a,t'}}M_{wz_{a,t}}$                                                                                           | Suspension force and moment applied to the wheel on axle a, track ${\sf t}$ along wheel-fixed $z\text{-}{\sf axis}$            |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $F_{w_{X_{a,t}}}$ , $M_{w_{X_{a,t}}}$                                                                                 | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $x$ -axis                           |
| $F_{wy_{a,t}}$ , $M_{wy_{a,t}}$                                                                                       | Suspension force and moment applied to the wheel on axle $a$ , track $t$ along wheel-fixed $y$ -axis                           |
| $F_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ , $M_{{\scriptscriptstyle \mathcal{V}\!\mathcal{Z}_{a,t}}}$ | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $z\text{-}{\tt axis}$ |
| $F_{{\scriptscriptstyle { m VX}}_{a,t'}} M_{{\scriptscriptstyle { m VX}}_{a,t}}$                                      | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed x-axis                |
| $F_{{ u y}_{a,t'}} M_{{ u y}_{a,t}}$                                                                                  | Suspension force and moment applied to the vehicle on axle ${\tt a}$ , track ${\tt t}$ along wheel-fixed $y\text{-}{\tt axis}$ |
| $F_{z0_a}$                                                                                                            | Vertical suspension spring preload force applied to the wheels on axle a                                                       |
| $k_{z_a}$                                                                                                             | Vertical spring constant applied to tracks on axle a                                                                           |
| $m_{hsteer_a}$                                                                                                        | Steering angle to vertical force slope applied at wheel carrier for tracks on axle a                                           |
| $\delta_{steer_{a,t}}$                                                                                                | Steering angle input for axle a, track t                                                                                       |
| $C_{\mathcal{Z}_a}$                                                                                                   | Vertical damping constant applied to tracks on axle a                                                                          |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius for axle a, track t                                                                                     |
| $F_{zhstop_{a,t}}$                                                                                                    | Vertical hardstop force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                            |
| $F_{zaswy_{a,t}}$                                                                                                     | Vertical anti-sway force at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                           |
| $z_{{ m v}_{a,t}}$ , $\dot{z}_{{ m v}_{a,t}}$                                                                         | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $z_{w_{a,t}}$ , $\dot{z}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $X_{v_{a,t'}}$ $\dot{X}_{v_{a,t}}$                                                                                    | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                  |
| $X_{w_{a,t}}$ , $\dot{X}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis                                    |
| $y_{ u_{a,t'}} \ \dot{y}_{ u_{a,t}}$                                                                                  | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $y$ -axis                                  |
| $y_{w_{a,t}}$ , $\dot{y}_{w_{a,t}}$                                                                                   | Track displacement and velocity at axle a, track t, along the vehicle-fixed y-axis                                             |
| $H_{a,t}$                                                                                                             | Suspension height at axle a, track t                                                                                           |
| $Re_{w_{a,t}}$                                                                                                        | Effective wheel radius at axle a, track t                                                                                      |

### **Hardstop Forces**

The hardstop feedback force,  $F_{zhstop_{o,t}}$ , that the block applies depends on whether the suspension is compressing or extending. The block applies the force:

- In compression, when the suspension is compressed more than the maximum distance specified by the **Suspension maximum height, Hmax** parameter.
- In extension, when the suspension extension is greater than maximum extension specified by the **Suspension maximum height, Hmax** parameter.

To calculate the force, the block uses a stiffness based on a hyperbolic tangent and exponential scaling.

### Camber, Caster, and Toe Angles

To calculate the camber, caster, and toe angles, block uses linear functions of the suspension height and steering angle.

$$\begin{aligned} \xi_{a,\,t} &= \xi_{0a} + m_{hcamber_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{cambersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \eta_{a,\,t} &= \eta_{0a} + m_{hcaster_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{castersteer_a} \big| \delta_{steer_{a,\,t}} \big| \\ \zeta_{a,\,t} &= \zeta_{0a} + m_{htoe_a} \big( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \big| \delta_{steer_{a,\,t}} \big| \big) + m_{toesteer_a} \big| \delta_{steer_{a,\,t}} \big| \end{aligned}$$

The equations use these variables.

 $\xi_{a,t}$  Camber angle of wheel on axle a, track t  $\eta_{a,t}$  Caster angle of wheel on axle a, track t  $\zeta_{a,t}$  Toe angle of wheel on axle a, track t

 $\xi_{0a}$ ,  $\eta_{0a}$ ,  $\zeta_{0a}$  Nominal suspension axle a camber, caster, and toe angles, respectively, at

zero steering angle

 $m_{hcamber,r}$ ,  $m_{hcaster,r}$ . Camber, caster, and toe angles, respectively, versus suspension height slope

 $m_{htoe_a}$  for axle a

 $m_{cambersteer_a}$ ,  $m_{castersteer_a}$ , Camber, caster, and toe angles, respectively, versus steering angle slope for

 $m_{toesteer_a}$  axle a

 $m_{hsteer_a}$  Steering angle versus vertical force slope for axle a

 $\delta_{steer}$ . Steering angle input for axle a, track t

 $z_{\nu_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

### **Steering Angles**

Optionally, you can input steering angles for the tracks. To calculate the steering angles for the wheels, the block offsets the input steering angles with a linear function of the suspension height.

$$\delta_{whlsteer_{a,\,t}} = \delta_{steer_{a,\,t}} + m_{htoe_a} \left( z_{w_{a,\,t}} - z_{v_{a,\,t}} - m_{hsteer_a} \middle| \delta_{steer_{a,\,t}} \middle| \right) + m_{toesteer_a} \middle| \delta_{steer_{a,\,t}} \middle|$$

The equation uses these variables.

 $m_{toesteer_a}$  Axle a toe angle versus steering angle slope  $m_{hsteer_a}$  Axle a steering angle versus vertical force slope  $m_{htoe_a}$  Axle a toe angle versus suspension height slope

 $\delta_{whlsteer_{a,t}}$  Wheel steering angle for axle a, track t  $\delta_{steer_{a,t}}$  Steering angle input for axle a, track t

 $z_{v_{a,t}}$  Vehicle displacement at axle a, track t, along the vehicle-fixed z-axis  $z_{w_{a,t}}$  Track displacement at axle a, track t, along the vehicle-fixed z-axis

### **Power and Energy**

The block calculates these suspension characteristics for each axle, a, track, t.

| Calculation                                               | Equation                                                                                                                                 |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Dissipated power, $P_{susp_{a,t}}$                        | $P_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t'}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t'}}, \delta_{steer_{a,t}})$ |
| Absorbed energy, $E_{susp_{a,t}}$                         | $E_{susp_{a,t}} = F_{wzlookup_a} (\dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \dot{z}_{v_{a,t}} - \dot{z}_{w_{a,t}}, \delta_{steer_{a,t}})$   |
| Suspension height, $H_{a,t}$                              | $H_{a,t} = -\left(z_{v_{a,t}} - z_{w_{a,t}} + \frac{F_{z0_a}}{k_{z_a}} + m_{hsteer_a} \left  \delta_{steer_{a,t}} \right  \right)$       |
| Distance from wheel carrier center to tire/road interface | $z_{wtr_{a,t}} = Re_{w_{a,t}} + H_{a,t}$                                                                                                 |

The equations use these variables.

| $m_{hsteer_a}$                                  | Steering angle to vertical force slope applied at wheel carrier for tracks on axle ${\tt a}$  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
| $\delta_{steer_{a,t}}$                          | Steering angle input for axle a, track t                                                      |
| $Re_{w_{a,t}}$                                  | Axle a, track t effective wheel radius from wheel carrier center to tire/road interface       |
| $F_{z0_a}$                                      | Vertical suspension spring preload force applied to the wheels on axle a                      |
| $\mathcal{Z}_{wtr_{a,t}}$                       | Distance from wheel carrier center to tire/road interface, along the vehicle-fixed $z$ -axis  |
| $z_{v_{a,t}}$ , $\dot{z}_{v_{a,t}}$             | Vehicle displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis |
| $\pmb{z}_{w_{a,t}}$ , $\dot{\pmb{z}}_{w_{a,t}}$ | Track displacement and velocity at axle $a$ , track $t$ , along the vehicle-fixed $z$ -axis   |

### **Ports**

### Input

### WhlPz — Track z-axis displacement

array

Track displacement,  $z_w$ , along wheel-fixed z-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlPz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlPz = 
$$z_w = \begin{bmatrix} z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlPz(1,1)    | 1    | 1     |
| WhlPz(1,2)    | 1    | 2     |
| WhlPz(1,3)    | 2    | 1     |
| WhlPz(1,4)    | 2    | 2     |

### WhlRe — Wheel effective radius

array

Effective wheel radius,  $Re_w$ , in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlRe:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlRe = 
$$Re_w = [Re_{w_{1,1}} Re_{w_{1,2}} Re_{w_{2,1}} Re_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlRe(1,1)    | 1    | 1     |
| WhlRe(1,2)    | 1    | 2     |
| WhlRe(1,3)    | 2    | 1     |
| WhlRe(1,4)    | 2    | 2     |

### WhlVz — Track z-axis velocity

array

Track velocity,  $\dot{z}_w$ , along wheel-fixed *z*-axis, in m. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlVz:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlVz = 
$$\dot{z}_w = [\dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlVz(1,1)    | 1    | 1     |
| WhlVz(1,2)    | 1    | 2     |
| WhlVz(1,3)    | 2    | 1     |
| WhlVz(1,4)    | 2    | 2     |

#### WhlFx — Longitudinal wheel force on vehicle

array

Longitudinal wheel force applied to vehicle,  $F_{wx}$ , along the vehicle-fixed x-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFx:

- Signal array dimensions are [1x4].
- Array dimensions are axle by track.

WhlFx = 
$$F_{wx} = [F_{wx_{1,1}} F_{wx_{1,2}} F_{wx_{2,1}} F_{wx_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFx(1,1)    | 1    | 1     |
| WhlFx(1,2)    | 1    | 2     |
| WhlFx(1,3)    | 2    | 1     |
| WhlFx(1,4)    | 2    | 2     |

### WhlFy — Lateral wheel force on vehicle

array

Lateral wheel force applied to vehicle,  $F_{wy}$ , along the vehicle-fixed y-axis. Array dimensions are 1 by the total number of tracks on the vehicle.

For example, for a two-axle vehicle with two tracks per axle, the WhlFy:

- Signal array dimensions are [1x4].
- · Array dimensions are axle by track.

WhlFy = 
$$F_{wy} = [F_{wy_{1,1}} F_{wy_{1,2}} F_{wy_{2,1}} F_{wy_{2,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| WhlFy(1,1)    | 1    | 1     |
| WhlFy(1,2)    | 1    | 2     |
| WhlFy(1.3)    | 2    | 1     |
| WhlFy(1,4)    | 2    | 2     |

#### WhlM — Suspension moment on wheel

array

Longitudinal, lateral, and vertical suspension moments at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlM(1,...) Suspension moment applied to the wheel about the vehicle-fixed x-axis (longitudinal)
- WhlM(2,...) Suspension moment applied to the wheel about the vehicle-fixed y-axis (lateral)
- WhlM(3,...) Suspension moment applied to the wheel about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to four wheels according to their axle and track locations.

$$\text{WhlM} = M_w = \begin{bmatrix} M_{wx_{1,1}} & M_{wx_{1,2}} & M_{wx_{2,1}} & M_{wx_{2,2}} \\ M_{wy_{1,1}} & M_{wy_{1,2}} & M_{wy_{2,1}} & M_{wy_{2,2}} \\ M_{wz_{1,1}} & M_{wz_{1,2}} & M_{wz_{2,1}} & M_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| WhlM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlM(1,2)     | 1    | 2     |                                     |
| WhlM(1,3)     | 2    | 1     |                                     |
| WhlM(1,4)     | 2    | 2     |                                     |
| WhlM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlM(2,2)     | 1    | 2     |                                     |
| WhlM(2,3)     | 2    | 1     |                                     |
| WhlM(2,4)     | 2    | 2     |                                     |
| WhlM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlM(3,2)     | 1    | 2     |                                     |
| WhlM(3,3)     | 2    | 1     |                                     |
| WhlM(3,4)     | 2    | 2     |                                     |

### VehP — Vehicle displacement

array

Vehicle displacement from axle a, track t along vehicle-fixed coordinate system, in m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehP(1,...) Vehicle displacement from track,  $x_{\nu}$ , along the vehicle-fixed x-axis
- VehP(2,...) Vehicle displacement from track,  $y_v$ , along the vehicle-fixed y-axis
- VehP(3,...) Vehicle displacement from track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehP:

- Signal dimensions are [3x4].
- Signal contains four track displacements according to their axle and track locations.

$$VehP = \begin{bmatrix} x_{v} \\ y_{v} \\ z_{v} \end{bmatrix} = \begin{bmatrix} x_{v_{1,1}} & x_{v_{1,2}} & x_{v_{2,1}} & x_{v_{2,2}} \\ y_{v_{1,1}} & y_{v_{1,2}} & y_{v_{2,1}} & y_{v_{2,2}} \\ z_{v_{1,1}} & z_{v_{1,2}} & z_{v_{2,1}} & z_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehP(1,2)     | 1    | 2     |                      |
| VehP(1,3)     | 2    | 1     |                      |
| VehP(1,4)     | 2    | 2     |                      |
| VehP(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehP(2,2)     | 1    | 2     |                      |
| VehP(2,3)     | 2    | 1     |                      |
| VehP(2,4)     | 2    | 2     |                      |

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehP(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehP(3,2)     | 1    | 2     |                      |
| VehP(3,3)     | 2    | 1     |                      |
| VehP(3,4)     | 2    | 2     |                      |

### VehV — Vehicle velocity

array

Vehicle velocity at axle a, track t along vehicle-fixed coordinate system, in m. Input array dimensions are 3 by a\*t.

- VehV(1,...) Vehicle velocity at track,  $x_{\nu}$ , along the vehicle-fixed x-axis
- VehV(2,...) Vehicle velocity at track,  $y_v$ , along the vehicle-fixed y-axis
- VehV(3,...) Vehicle velocity at track,  $z_v$ , along the vehicle-fixed z-axis

For example, for a two-axle vehicle with two tracks per axle, the VehV:

- Signal dimensions are [3x4].
- Signal contains 4 track velocities according to their axle and track locations.

$$VehV = \begin{bmatrix} \dot{x}_{v} \\ \dot{y}_{v} \\ \dot{z}_{v} \end{bmatrix} = \begin{bmatrix} \dot{x}_{v_{1,1}} \ \dot{x}_{v_{1,2}} \ \dot{x}_{v_{2,1}} \ \dot{x}_{v_{2,2}} \\ \dot{y}_{v_{1,1}} \ \dot{y}_{v_{1,2}} \ \dot{y}_{v_{2,1}} \ \dot{y}_{v_{2,2}} \\ \dot{z}_{v_{1,1}} \ \dot{z}_{v_{1,2}} \ \dot{z}_{v_{2,1}} \ \dot{z}_{v_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Axis                 |
|---------------|------|-------|----------------------|
| VehV(1,1)     | 1    | 1     | Vehicle-fixed x-axis |
| VehV(1,2)     | 1    | 2     |                      |
| VehV(1,3)     | 2    | 1     |                      |
| VehV(1,4)     | 2    | 2     |                      |
| VehV(2,1)     | 1    | 1     | Vehicle-fixed y-axis |
| VehV(2,2)     | 1    | 2     |                      |
| VehV(2,3)     | 2    | 1     |                      |
| VehV(2,4)     | 2    | 2     |                      |
| VehV(3,1)     | 1    | 1     | Vehicle-fixed z-axis |
| VehV(3,2)     | 1    | 2     |                      |
| VehV(3,3)     | 2    | 1     |                      |
| VehV(3,4)     | 2    | 2     |                      |

### StrgAng — Steering angle, optional

array

Optional steering angle for each wheel,  $\delta$ . Input array dimensions are 1 by the number of steered tracks.

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### **Output**

### Info - Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the track location.

For example, here are the indices for a two-axle, two-track vehicle. The total number of tracks is four.

• 1D array signal (1-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

• 3D array signal (3-by-4)

| Array Element | Axle | Track |
|---------------|------|-------|
| (1,1)         | 1    | 1     |
| (1,2)         | 1    | 2     |
| (1,3)         | 2    | 1     |
| (1,4)         | 2    | 2     |

| Array Element | Axle | Track |
|---------------|------|-------|
| (2,1)         | 1    | 1     |
| (2,2)         | 1    | 2     |
| (2,3)         | 2    | 1     |
| (2,4)         | 2    | 2     |
| (3,1)         | 1    | 1     |
| (3,2)         | 1    | 2     |
| (3,3)         | 2    | 1     |
| (3,4)         | 2    | 2     |

| Signal | Description                              | Array Signal | Variable                                                                                                                                                                                                                                                                            | Units |
|--------|------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Camber | Wheel angles according                   | 1D           | WhlAng[1,] = $\xi = [\xi_{a,t}]$                                                                                                                                                                                                                                                    | rad   |
| Caster | to the axle.                             |              | WhlAng[2,] = $\eta = [\eta_{a,t}]$                                                                                                                                                                                                                                                  |       |
| Toe    |                                          |              | WhlAng[3,] = $\zeta$ = [ $\zeta_{a,t}$ ]                                                                                                                                                                                                                                            |       |
| Height | Suspension height                        | 1D           | Н                                                                                                                                                                                                                                                                                   | m     |
| Power  | Suspension power dissipation             | 1D           | $P_{susp}$                                                                                                                                                                                                                                                                          | W     |
| Energy | Suspension absorbed energy               | 1D           | $E_{susp}$                                                                                                                                                                                                                                                                          | J     |
| VehF   | Suspension forces applied to the vehicle | 3D           | For a two-axle, two tracks per axle vehicle: $ VehF = F_v = \\  \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,1}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,1}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,1}} \end{bmatrix} $ | 2     |

| Signal | Description                           | Array Signal | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units         |
|--------|---------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| VehM   | Suspension moments applied to vehicle | 3D           | For a two-axle, two tracks per axle vehicle: $VehM = M_{v} = \\ \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{v} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{v} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{v} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V2,2          |
| WhlF   | Suspension force applied to wheel     | 3D           | For a two-axle, two tracks per axle vehicle: $WhlF = F_w = $ $\begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & $ | 2, 2<br>2, 2  |
| WhlP   | Track displacement                    | 3D           | For a two-axle, two tracks per axle vehicle: $WhlP = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_w \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_w \\ z_{wtr_{1,1}} & z_{wtr_{1,2}} & z_{wtr_{2,1}} & z_{wt} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2, 2<br>V2, 2 |

| Signal | Description                      | Array Signal | Variable                                                                                                                                                                                                                                                                        | Units |
|--------|----------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| WhlV   | Track velocity                   | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | m/s   |
|        |                                  |              | $WhlV = \begin{bmatrix} \dot{x}_w \\ \dot{y}_w \\ \dot{z}_w \end{bmatrix}$                                                                                                                                                                                                      |       |
|        |                                  |              | =                                                                                                                                                                                                                                                                               |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y} & \dot{y} & \dot{y} & \dot{y} \end{bmatrix}$                                                                                                                          |       |
|        |                                  |              | $\begin{bmatrix} \dot{x}_{w_{1,1}} \ \dot{x}_{w_{1,2}} \ \dot{x}_{w_{2,1}} \ \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} \ \dot{y}_{w_{1,2}} \ \dot{y}_{w_{2,1}} \ \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} \ \dot{z}_{w_{1,2}} \ \dot{z}_{w_{2,1}} \ \dot{z}_{w_{2,2}} \end{bmatrix}$ |       |
| WhlAng | Wheel camber, caster, toe angles | 3D           | For a two-axle, two tracks per axle vehicle:                                                                                                                                                                                                                                    | rad   |
|        |                                  |              | WhlAng = $\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$ $\begin{bmatrix} \xi_{1,1}, \xi_{1,2}, \xi_{2,1}, \xi_{2,2} \end{bmatrix}$                                                                                                                                        |       |
|        |                                  |              | $= \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$                                                                                   |       |

### VehF — Suspension force on vehicle

array

Longitudinal, lateral, and vertical suspension force at axle a, track t, applied to the vehicle at the suspension connection point, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehF(1,...) Suspension force applied to vehicle along the vehicle-fixed *x*-axis (longitudinal)
- VehF(2,...) Suspension force applied to vehicle along the vehicle-fixed y-axis (lateral)
- VehF(3,...) Suspension force applied to vehicle along the vehicle-fixed *z*-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehF:

- Signal dimensions are [3x4].
- Signal contains suspension forces applied to the vehicle according to the axle and track locations.

$$\text{VehF} = F_{v} = \begin{bmatrix} F_{vx_{1,1}} & F_{vx_{1,2}} & F_{vx_{2,1}} & F_{vx_{2,2}} \\ F_{vy_{1,1}} & F_{vy_{1,2}} & F_{vy_{2,1}} & F_{vy_{2,2}} \\ F_{vz_{1,1}} & F_{vz_{1,2}} & F_{vz_{2,1}} & F_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| VehF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehF(1,2)     | 1    | 2     |                                     |
| VehF(1,3)     | 2    | 1     |                                     |
| VehF(1,4)     | 2    | 2     |                                     |
| VehF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehF(2,2)     | 1    | 2     |                                     |
| VehF(2,3)     | 2    | 1     |                                     |
| VehF(2,4)     | 2    | 2     |                                     |
| VehF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| VehF(3,2)     | 1    | 2     |                                     |
| VehF(3,3)     | 2    | 1     |                                     |
| VehF(3,4)     | 2    | 2     |                                     |

### VehM — Suspension moment on vehicle

array

Longitudinal, lateral, and vertical suspension moment at axle a, track t, applied to the vehicle at the suspension connection point, in N·m. Array dimensions are 3 by the total number of tracks on the vehicle.

- VehM(1,...) Suspension moment applied to the vehicle about the vehicle-fixed x-axis (longitudinal)
- VehM(2,...) Suspension moment applied to the vehicle about the vehicle-fixed *y*-axis (lateral)
- VehM(3,...) Suspension moment applied to the vehicle about the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the VehM:

- Signal dimensions are [3x4].
- Signal contains suspension moments applied to vehicle according to the axle and track locations.

$$VehM = M_{v} = \begin{bmatrix} M_{vx_{1,1}} & M_{vx_{1,2}} & M_{vx_{2,1}} & M_{vx_{2,2}} \\ M_{vy_{1,1}} & M_{vy_{1,2}} & M_{vy_{2,1}} & M_{vy_{2,2}} \\ M_{vz_{1,1}} & M_{vz_{1,2}} & M_{vz_{2,1}} & M_{vz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Moment Axis                         |
|---------------|------|-------|-------------------------------------|
| VehM(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| VehM(1,2)     | 1    | 2     |                                     |
| VehM(1,3)     | 2    | 1     |                                     |
| VehM(1,4)     | 2    | 2     |                                     |
| VehM(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| VehM(2,2)     | 1    | 2     |                                     |

| Array Element | Axle | Track | Moment Axis                     |
|---------------|------|-------|---------------------------------|
| VehM(2,3)     | 2    | 1     |                                 |
| VehM(2,4)     | 2    | 2     |                                 |
| VehM(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical) |
| VehM(3,2)     | 1    | 2     |                                 |
| VehM(3,3)     | 2    | 1     |                                 |
| VehM(3,4)     | 2    | 2     |                                 |

### WhlF — Suspension force on wheel

array

Longitudinal, lateral, and vertical suspension forces at axle a, track t, applied to the wheel at the axle wheel carrier reference coordinate, in N. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlF(1,...) Suspension force on wheel along the vehicle-fixed x-axis (longitudinal)
- WhlF(2,...) Suspension force on wheel along the vehicle-fixed *y*-axis (lateral)
- WhlF(3,...) Suspension force on wheel along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlF:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

$$\text{WhlF} = F_w = \begin{bmatrix} F_{wx_{1,1}} & F_{wx_{1,2}} & F_{wx_{2,1}} & F_{wx_{2,2}} \\ F_{wy_{1,1}} & F_{wy_{1,2}} & F_{wy_{2,1}} & F_{wy_{2,2}} \\ F_{wz_{1,1}} & F_{wz_{1,2}} & F_{wz_{2,1}} & F_{wz_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlF(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlF(1,2)     | 1    | 2     |                                     |
| WhlF(1,3)     | 2    | 1     |                                     |
| WhlF(1,4)     | 2    | 2     |                                     |
| WhlF(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlF(2,2)     | 1    | 2     |                                     |
| WhlF(2,3)     | 2    | 1     |                                     |
| WhlF(2,4)     | 2    | 2     |                                     |
| WhlF(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlF(3,2)     | 1    | 2     |                                     |
| WhlF(3,3)     | 2    | 1     |                                     |
| WhlF(3,4)     | 2    | 2     |                                     |

### WhlV — Track velocity

array

Longitudinal, lateral, and vertical track velocity at axle a, track t, in m/s. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlV(1,...) Track velocity along the vehicle-fixed x-axis (longitudinal)
- WhlV(2,...) Track velocity along the vehicle-fixed y-axis (lateral)
- WhlV(3,...) Track velocity along the vehicle-fixed z-axis (vertical)

For example, for a two-axle vehicle with two tracks per axle, the WhlV:

- Signal dimensions are [3x4].
- Signal contains wheel forces applied to the vehicle according to the axle and track locations.

WhIV = 
$$\begin{bmatrix} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{bmatrix} = \begin{bmatrix} \dot{x}_{w_{1,1}} & \dot{x}_{w_{1,2}} & \dot{x}_{w_{2,1}} & \dot{x}_{w_{2,2}} \\ \dot{y}_{w_{1,1}} & \dot{y}_{w_{1,2}} & \dot{y}_{w_{2,1}} & \dot{y}_{w_{2,2}} \\ \dot{z}_{w_{1,1}} & \dot{z}_{w_{1,2}} & \dot{z}_{w_{2,1}} & \dot{z}_{w_{2,2}} \end{bmatrix}$$

| Array Element | Axle | Track | Force Axis                          |
|---------------|------|-------|-------------------------------------|
| WhlV(1,1)     | 1    | 1     | Vehicle-fixed x-axis (longitudinal) |
| WhlV(1,2)     | 1    | 2     |                                     |
| WhlV(1,3)     | 2    | 1     |                                     |
| WhlV(1,4)     | 2    | 2     |                                     |
| WhlV(2,1)     | 1    | 1     | Vehicle-fixed y-axis (lateral)      |
| WhlV(2,2)     | 1    | 2     |                                     |
| WhlV(2,3)     | 2    | 1     |                                     |
| WhlV(2,4)     | 2    | 2     |                                     |
| WhlV(3,1)     | 1    | 1     | Vehicle-fixed z-axis (vertical)     |
| WhlV(3,2)     | 1    | 2     |                                     |
| WhlV(3,3)     | 2    | 1     |                                     |
| WhlV(3,4)     | 2    | 2     |                                     |

### WhlAng — Wheel camber, caster, toe angles

array

Camber, caster, and toe angles at axle a, track t, in rad. Array dimensions are 3 by the total number of tracks on the vehicle.

- WhlAng(1,...) Camber angle
- WhlAng(2,...) Caster angle
- WhlAng(3,...) Toe angle

For example, for a two-axle vehicle with two tracks per axle, the WhlAng:

- Signal dimensions are [3x4].
- Signal contains wheel angles according to the axle and track locations.

WhlAng = 
$$\begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix} = \begin{bmatrix} \xi_{1,1} & \xi_{1,2} & \xi_{2,1} & \xi_{2,2} \\ \eta_{1,1} & \eta_{1,2} & \eta_{2,1} & \eta_{2,2} \\ \zeta_{1,1} & \zeta_{1,2} & \zeta_{2,1} & \zeta_{2,2} \end{bmatrix}$$

| Array Element | Axle | Track | Angle  |
|---------------|------|-------|--------|
| WhlAng(1,1)   | 1    | 1     | Camber |
| WhlAng(1,2)   | 1    | 2     |        |
| WhlAng(1,3)   | 2    | 1     |        |
| WhlAng(1,4)   | 2    | 2     |        |
| WhlAng(2,1)   | 1    | 1     | Caster |
| WhlAng(2,2)   | 1    | 2     |        |
| WhlAng(2,3)   | 2    | 1     |        |
| WhlAng(2,4)   | 2    | 2     |        |
| WhlAng(3,1)   | 1    | 1     | Toe    |
| WhlF(3,2)     | 1    | 2     |        |
| WhlF(3,3)     | 2    | 1     |        |
| WhlF(3,4)     | 2    | 2     |        |

### **Parameters**

#### Axles

Number of axles, NumAxl — Number of axles 2 (default) | scalar

Number of axles,  $N_a$ , dimensionless.

Number of tracks by axle, NumTracksByAxl — Number of tracks per axle [2 2] (default) | vector

Number of tracks per axle,  $Nt_a$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example, [1,2] represents one track on axle 1 and two tracks on axle 2.

Steered axle enable by axle, StrgEnByAxl — Boolean vector to enable axle steering [1 0] (default) | vector

Boolean vector that enables axle steering,  $En_{steer}$ , dimensionless. Vector is 1 by the number of vehicle axles,  $N_a$ . For example:

- [1 0]—For a two-axle vehicle, enables axle 1 steering and disables axle 2 steering
- [1 1]—For a two-axle vehicle, enables axle 1 and axle 2 steering

### **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1:

Creates input port StrgAng.

- Creates these parameters
  - · Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

For example, for a two-axle vehicle with two tracks per axle, you can input steering angles for both wheels on the first axle.

- To create the StrgAng port, set **Steered axle enable by axle, StrgEnByAxl** to [1 0]. The input signal array dimensions are [1x2].
- The StrgAng signal contains two steering angles according to their axle and track locations.

StrgAng = 
$$\delta_{steer} = [\delta_{steer_{1,1}} \ \delta_{steer_{1,2}}]$$

| Array Element | Axle | Track |
|---------------|------|-------|
| StrgAng(1,1)  | 1    | 1     |
| StrgAng(1,2)  | 1    | 2     |

## Axle and wheels lumped principal moments of inertia about longitudinal axis, Axlxx — Inertia

300 (default) | vector

Axle and wheels lumped principal moments of inertia about longitudinal axis, AxleIxx a, in kg\*m^2.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### Axle and wheels lumped mass, AxlM — Mass

Axle and wheels lumped mass, a, in kg.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Track hardpoint coordinates relative to axle center, TrackCoords — Point [0 0 0 0; -1 1 -1 1; 0 0 0 0] (default) | array

Track hardpoint coordinates,  $Tc_t$ , along the solid axle x, y, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the TrackCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Tc_{t} = \begin{bmatrix} x_{w_{1,1}} & x_{w_{1,2}} & x_{w_{2,1}} & x_{w_{2,2}} \\ y_{w_{1,1}} & y_{w_{1,2}} & y_{w_{2,1}} & y_{w_{2,2}} \\ z_{w_{1,1}} & z_{w_{1,2}} & z_{w_{2,1}} & z_{w_{2,2}} \end{bmatrix}$$

| Array Element     | Axle | Track | Axis                      |
|-------------------|------|-------|---------------------------|
| TrackCoords(1, 1) | 1    | 1     | Solid axle <i>x</i> -axis |
| TrackCoords(1, 2) | 1    | 2     |                           |
| TrackCoords(1, 3) | 2    | 1     |                           |
| TrackCoords(1, 4) | 2    | 2     |                           |
| TrackCoords(2, 1) | 1    | 1     | Solid axle <i>y</i> -axis |
| TrackCoords(2, 2) | 1    | 2     |                           |
| TrackCoords(2, 3) | 2    | 1     |                           |
| TrackCoords(2, 4) | 2    | 2     |                           |
| TrackCoords(3, 1) | 1    | 1     | Solid axle <i>z</i> -axis |
| TrackCoords(3, 2) | 1    | 2     |                           |
| TrackCoords(3, 3) | 2    | 1     |                           |
| TrackCoords(3, 4) | 2    | 2     |                           |

# Suspension hardpoint coordinates relative to axle center, SuspCoords — Point [0 0 0 0; -1 1 -1 1; 0 0 0 0] (default) | array

Suspension hardpoint coordinates,  $Sc_t$ , along the solid axle x-, y-, and z-axes, in m.

For example, for a two-axle vehicle with two tracks per axle, the SuspCoords array:

- Dimensions are [3x4].
- Contains four track hardpoints coordinates according to their axle and track locations.

$$Sc_t = \begin{bmatrix} x_{s_{1,1}} & x_{s_{1,2}} & x_{s_{2,1}} & x_{s_{2,2}} \\ y_{s_{1,1}} & y_{s_{1,2}} & y_{s_{2,1}} & y_{s_{2,2}} \\ z_{s_{1,1}} & z_{s_{1,2}} & z_{s_{2,1}} & z_{s_{2,2}} \end{bmatrix}$$

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,1) | 1    | 1     | Solid axle <i>x</i> -axis |
| SuspCoords(1,2) | 1    | 2     |                           |

| Array Element   | Axle | Track | Axis                      |
|-----------------|------|-------|---------------------------|
| SuspCoords(1,3) | 2    | 1     |                           |
| SuspCoords(1,4) | 2    | 2     |                           |
| SuspCoords(2,1) | 1    | 1     | Solid axle <i>y</i> -axis |
| SuspCoords(2,2) | 1    | 2     |                           |
| SuspCoords(2,3) | 2    | 1     |                           |
| SuspCoords(2,4) | 2    | 2     |                           |
| SuspCoords(3,1) | 1    | 1     | Solid axle <i>z</i> -axis |
| SuspCoords(3,2) | 1    | 2     |                           |
| SuspCoords(3,3) | 2    | 1     |                           |
| SuspCoords(3,4) | 2    | 2     |                           |

Wheel and axle interface compliance constant, KzWhlAxl — Spring rate 6437000 (default) | scalar

Wheel and axle interface compliance constant,  $K_z$ , in N/m.

Wheel and axle interface compliance preload, F0zWhlAxl — Spring rate 9810 (default) | scalar

Wheel and axle interface compliance preload,  $F_{0z}$ , in N.

Wheel and axle interface damping constant, CzWhlAxl — Damping 10000 (default) | scalar

Wheel and axle interface damping constant,  $C_z$ , in m.

#### Suspension

**Compliance and Damping - Passive** 

### Suspension spring constant, Kz — Suspension spring constant 64370 (default) | scalar | vector

Linear vertical spring constant for independent suspension tracks on axle a,  $k_{z_o}$ , in N/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

Suspension spring preload, F0z — Suspension spring preload 9810 (default) | scalar | vector

Vertical preload spring force applied to the wheels on the axle at wheel carrier reference coordinates,  $F_{z_{0,r}}$ , in N. Positive preload forces:

- · Cause the vehicle to lift.
- Point along the negative vehicle-fixed *z*-axis.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Suspension shock damping constant, Cz — Suspension shock damping constant $10000 \, (default) \, | \, scalar \, | \, vector$

Linear vertical damping constant for independent suspension tracks on axle a,  $c_{z,t}$  in Ns/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

To create this parameter, clear **Enable active damping**.

## Suspension maximum height, Hmax — Height 0.5 (default) | scalar | vector

Maximum suspension extension or minimum suspension compression height,  $H_{max}$ , for axle a before the suspension reaches a hardstop, in m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### Geometry

## Toe angle at steering center, Toe — Toe angle 0.0349 (default) | scalar

Nominal suspension to angle at zero steering angle,  $\zeta_{0a}$ , in rad.

# Roll steer vs suspension height slope, RollStrgSlp — Steer angle suspension slope -0.2269 (default) | scalar | vector

Roll steer angle versus suspension height,  $m_{htoe}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Toe angle vs steering angle slope, ToeStrgSlp — Toe angle steering slope 0.01 (default) | scalar | vector

Toe angle versus steering angle slope,  $m_{toesteer}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle, StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## Caster angle at steering center, Caster — Caster angle at steering center 0.0698 (default) | scalar

Nominal suspension caster angle at zero steering angle,  $\eta_{0a}$ , in rad.

## Caster angle vs suspension height slope, CasterHslp — Caster angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Caster angle versus suspension height,  $m_{hcaster}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

# Caster angle vs steering angle slope, CasterStrgSlp — Caster angle versus steering angle slope

```
0.01 (default) | scalar | vector
```

Caster angle versus steering angle slope,  $m_{castersteer_a}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

#### **Dependencies**

Setting an element of the Steered axle enable by axle, StrgEnByAxl vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

## **Camber angle at steering center, Camber — Camber angle at steering center** 0.0698 (default) | scalar

Nominal suspension camber angle at zero steering angle,  $\xi_{0a}$ , in rad.

# Camber angle vs suspension height slope, CamberHslp — Camber angle versus suspension height slope

```
-0.2269 (default) | scalar | vector
```

Camber angle versus suspension height,  $m_{hcamber_a}$ , in rad/m.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

## Camber angle vs steering angle slope, CamberStrgSlp — Camber angle versus steering angle slope

0.01 (default) | scalar | vector

Camber angle versus steering angle slope,  $m_{cambersteer_a}$ , dimensionless.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- · Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

# Suspension height vs steering angle slope, StrgHgtSlp — Suspension height versus steering angle slope

0.1432 (default) | scalar | vector

Steering angle to vertical force slope applied at suspension wheel carrier reference point,  $m_{hsteer_a}$ , in m/rad.

Vector is 1 by the number of vehicle axles,  $N_a$ . If you provide a scalar value, the block uses that value for all axles.

### **Dependencies**

Setting an element of the **Steered axle enable by axle**, **StrgEnByAxl** vector to 1 creates:

- Input port StrgAng.
- Parameters:
  - Toe angle vs steering angle slope, ToeStrgSlp
  - Caster angle vs steering angle slope, CasterStrgSlp
  - Camber angle vs steering angle slope, CamberStrgSlp
  - Suspension height vs steering angle slope, StrgHgtSlp

### References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.

[3] Technical Committee. *Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary*. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## **Extended Capabilities**

### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

### **See Also**

Solid Axle Suspension | Solid Axle Suspension - Coil Spring | Solid Axle Suspension - Mapped

### Introduced in R2018a

# **Drivetrain Blocks**

## **Rotational Inertia**

Ideal mechanical rotational inertia

**Library:** Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings



## **Description**

The Rotational Inertia block implements an ideal mechanical rotational inertia.

### **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal |                                                                                 |               | Description                                           | Variable | Equations                     |
|------------|---------------------------------------------------------------------------------|---------------|-------------------------------------------------------|----------|-------------------------------|
| PwrInfo    | PwrTrnsfrd — Power transferred between                                          | PwrR          | Mechanical power from base shaft                      | $P_{TR}$ | $P_{TR} = T_R \omega$         |
|            | Positive signals indicate flow into block                                       | PwrC          | Mechanical power<br>from follower<br>shaft            | $P_{TC}$ | $P_{TC} = T_C \omega$         |
|            | Negative signals<br>indicate flow out of<br>block                               |               |                                                       |          |                               |
|            | PwrNotTrnsfrd —<br>Power crossing the<br>block boundary, but<br>not transferred | PwrDampLoss   | Power loss due to damping                             | $P_d$    | $P_d = -b \omega ^2$          |
|            | Positive signals indicate an input                                              |               |                                                       |          |                               |
|            | Negative signals indicate a loss                                                |               |                                                       |          |                               |
|            | PwrStored — Stored energy rate of change                                        | PwrStoredShft | Rate change of<br>stored internal<br>torsional energy | $P_s$    | $P_S = \omega \dot{\omega} J$ |
|            | Positive signals indicate an increase                                           |               | torsional energy                                      |          |                               |
|            | Negative signals indicate a decrease                                            |               |                                                       |          |                               |

The equations use these variables.

 $T_R$  Input torque

 $T_C$  Output torque

 $\omega$  Driveshaft angular velocity

J Rotational inertia

b Rotational viscous damping  $P_d$  Power loss due to damping  $P_s$  Rate change of stored internal torsional energy

### **Ports**

### Input

### RTrq — Input torque

scalar

Applied input driveshaft torque,  $T_R$ , in N·m.

### **Dependencies**

To enable this port, for **Port Configuration**, select Simulink.

### CTrq — Output torque

scalar

Load driveshaft torque,  $T_C$ , in N·m.

### **Dependencies**

To enable this port, for **Port Configuration**, select Simulink.

### **R** — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

### **Dependencies**

To enable this port, for **Port Configuration**, select Two-way connection.

### Inertia — Input

scalar

Rotational inertia, in kg·m^2.

### **Dependencies**

To create the Inertia port, select **External inertia input**.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  |                   |                   | Description                                           | Variable        | Units |
|---------|-------------------|-------------------|-------------------------------------------------------|-----------------|-------|
| Trq     | R                 | R                 |                                                       | $T_R$           | N·m   |
|         | С                 |                   | Output driveshaft torque                              | $T_C$           | N·m   |
|         | Damp              |                   | Damping torque                                        | $T_d = b\omega$ | N·m   |
| Spd     |                   |                   | Angular driveshaft speed                              | ω               | rad/s |
| PwrInfo | PwrTrnsfrd        | PwrR              | Mechanical power from base shaft                      | $P_{TR}$        | W     |
|         |                   | PwrC              | Mechanical power from follower shaft                  | $P_{TC}$        | W     |
|         | PwrNotTrnsf<br>rd | PwrDampLos<br>s   | Power loss due to damping                             | $P_d$           | W     |
|         | PwrStored         | PwrStoredS<br>hft | Rate change of<br>stored internal<br>torsional energy | $P_s$           | W     |

### **Dependencies**

To enable this port, select **Output Info bus**.

### Spd — Driveshaft speed

scalar

Angular driveshaft speed,  $\omega$ , in rad/s.

### **Dependencies**

To enable this port, for **Port Configuration**, select Simulink.

### C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

### **Dependencies**

To enable this port, for **Port Configuration**, select Two-way connection.

### **Parameters**

### **Block Options**

### Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

### **Dependencies**

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

#### Output Info bus - Selection

off (default) | on

Select to create the Info output port.

## External inertia input — Input rotational inertia

off (default) | on

### **Dependencies**

To create the Inertia port, select External inertia input.

#### **Parameters**

## Rotational inertia, J — Inertia

.01 (default) | scalar

Rotational inertia, in kg·m^2.

#### **Dependencies**

To enable this parameter, clear **Input rotational inertia**.

## Torsional damping, b — Damping

.001 (default) | scalar

Torsional damping, in  $N \cdot m \cdot s/rad$ .

#### Initial velocity, omega o — Angular

0 (default) | scalar

Initial angular velocity, in rad/s.

## **Extended Capabilities**

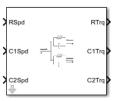
## C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

## See Also

Split Torsional Compliance | Torsional Compliance

#### Introduced in R2017a


# **Split Torsional Compliance**

Split torsional coupler

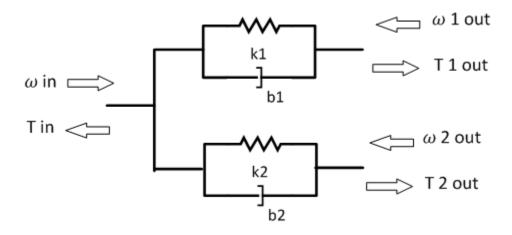
**Library:** Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings



## **Description**


The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the **Coupling Configuration** parameters:

- Shaft split Single input shaft coupled to two output shafts
- Shaft merge Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

#### **Shaft Split**

For the Shaft split configuration, the block implements this schematic and equations.



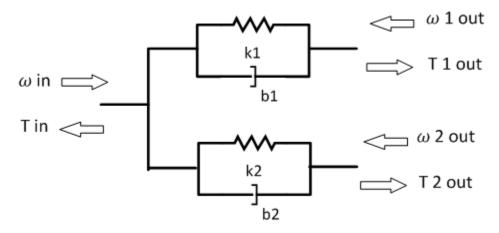
$$T_{in} = -(\omega_{in} - \omega_{1out})b_1 - (\omega_{in} - \omega_{2out})b_2 - \theta_1 k_1 - \theta_2 k_2$$
  

$$T_{1out} = (\omega_{in} - \omega_{1out})b_1 + \theta_1 k_1$$

$$T_{2out} = (\omega_{in} - \omega_{2out})b_2 + \theta_2 k_2$$

$$\dot{\theta}_1 = (\omega_{in} - \omega_{1out})$$

$$\dot{\theta}_2 = (\omega_{in} - \omega_{2out})$$


To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

| $T_{in}$                | Resulting applied input reaction torque               |
|-------------------------|-------------------------------------------------------|
| $\omega_{in}$           | Input shaft rotational velocity                       |
| $T_{1out}$              | Resulting applied torque to first output shaft        |
| $\omega_{1out}$         | First output shaft rotational velocity                |
| $T_{2out}$              | Resulting applied torque to second output shaft       |
| $\omega_{2out}$         | Second output shaft rotational velocity               |
| $\theta_1$ , $\theta_2$ | First, second shaft rotation, respectively            |
| $b_1, b_2$              | First, second shaft viscous damping, respectively     |
| $k_1, k_2$              | First, second shaft torsional stiffness, respectively |

## **Shaft Merge**

For the Shaft merge configuration, the block implements this schematic and equations.



$$\begin{split} T_{out} &= (-\omega_{out} + \omega_{1in})b_1 + (-\omega_{out} + \omega_{2in})b_2 + \theta_1k_1 + \theta_2k_2 \\ T_{1out} &= (\omega_{out} - \omega_{1in})b_1 - \theta_1k_1 \\ T_{2out} &= (\omega_{out} - \omega_{2in})b_2 - \theta_2k_2 \\ \dot{\theta}_1 &= (\omega_{1in} - \omega_{out}) \\ \dot{\theta}_2 &= (\omega_{2in} - \omega_{out}) \end{split}$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

| $T_{out}$      | Resulting applied output torque                |
|----------------|------------------------------------------------|
| $\omega_{out}$ | Output shaft rotational velocity               |
| $T_{1in}$      | Resulting reaction torque to first input shaft |

| $\omega_{1in}$          | First input shaft rotational velocity                 |
|-------------------------|-------------------------------------------------------|
| $T_{2in}$               | Resulting reaction torque to second input shaft       |
| $\omega_{2in}$          | Second input shaft rotational velocity                |
| $\theta_1$ , $\theta_2$ | First, second shaft rotation, respectively            |
| $b_1, b_2$              | First, second shaft viscous damping, respectively     |
| $k_1$ , $k_2$           | First, second shaft torsional stiffness, respectively |

# **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signa | al                                                                                   |                                                                              | Description                                                                               | Variable                       | Equations                        |
|-----------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|
| PwrInfo   | PwrTrnsfrd — Power transferred between blocks  • Positive signals indicate flow into | PwrR                                                                         | For the Shaft<br>split<br>configuration,<br>mechanical<br>power from input<br>shaft       | $P_{TR}$                       | $P_{TR} = -T_R \omega_R$         |
|           | block  • Negative signals indicate flow out of block                                 | PwrC1                                                                        | For the Shaft split configuration, mechanical power from first output shaft               | $P_{TC1}$                      | $P_{TC1} = -T_{C1}\omega_{C1}$   |
|           | PwrC2                                                                                | For the Shaft split configuration, mechanical power from second output shaft | $P_{TC2}$                                                                                 | $P_{TC2} = -T_{C2}\omega_{C2}$ |                                  |
|           | PwrC                                                                                 | For the Shaft merge configuration, mechanical power from output shaft        | $P_{TC}$                                                                                  | $P_{TC} = T_C \omega_C$        |                                  |
|           |                                                                                      | PwrR1                                                                        | For the Shaft<br>merge<br>configuration,<br>mechanical<br>power from first<br>input shaft | $P_{TR1}$                      | $P_{TR1} = \\ T_{R1}\omega_{R1}$ |

| <b>Bus Signal</b>          |                                                                                                                        |               | Description                                                                 | Variable  | Equations                                                             |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------|
|                            |                                                                                                                        | PwrR2         | For the Shaft merge configuration, mechanical power from second input shaft | $P_{TR2}$ | $P_{TR2} = T_{R2}\omega_{R2}$                                         |
| Powe block trans  Power in | lotTrnsfrd — er crossing the a boundary, but not iferred ositive signals dicate an input egative signals dicate a loss | PwrDampLoss   | Mechanical<br>damping loss                                                  | $P_d$     | $P_d = -\left(b_1  \dot{\theta}_1 ^2 + b_2  \dot{\theta}_2 ^2\right)$ |
| energe Point N             | ctored — Stored<br>gy rate of change<br>ositive signals<br>dicate an increase<br>egative signals<br>dicate a decrease  | PwrStoredShft | Rate change in<br>spring energy                                             | $P_s$     | $P_s = (k_1 \theta_1 \dot{\theta}_1 + k_2 \theta_2 \dot{\theta}_2)$   |

The equations use these variables.

| $T_R$      | Shaft R torque                      |
|------------|-------------------------------------|
| $T_C$      | Shaft C torque                      |
| $\omega_R$ | Shaft R angular velocity            |
| $\omega_C$ | Shaft C angular velocity            |
| $\theta$   | Coupled shaft rotation              |
| k          | Shaft torsional stiffness           |
| b          | Rotational viscous damping          |
| $P_t$      | Total mechanical power              |
| $P_d$      | Power loss due to damping           |
| $P_s$      | Rate change of stored spring energy |

## **Ports**

# Input

# RSpd — Input shaft speed

scalar

Input shaft rotational velocity,  $\omega_{\mathit{in}}$ , in rad/s.

#### **Dependencies**

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

#### C1Spd — First output shaft speed

scalar

First output shaft rotational velocity,  $\omega_{1out}$ , in rad/s.

## Dependencies

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

## C2Spd — Second output shaft speed

scalar

Second output shaft rotational velocity,  $\omega_{2out}$ , in rad/s.

#### **Dependencies**

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

#### CSpd — Input speed

scalar

Output shaft rotational velocity,  $\omega_{out}$ , in rad/s.

#### **Dependencies**

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

#### R1Spd — First input shaft speed

scalar

First input shaft rotational velocity,  $\omega_{1in}$ , in rad/s.

#### **Dependencies**

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

## R2Spd — Second input shaft speed

scalar

Second input shaft rotational velocity,  $\omega_{2in}$ , in rad/s.

## **Dependencies**

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

## R — Input shaft angular velocity and torque

two-way connector port

Input shaft angular velocity,  $\omega_{in}$ , in rad/s and torque,  $T_{in}$ , in N·m.

#### **Dependencies**

To enable this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft split

#### R1 — First input shaft angular velocity and torque

two-way connector port

First input shaft angular velocity,  $\omega_{1in}$ , in rad/s and torque,  $T_{1in}$ , in N·m.

#### **Dependencies**

To enable this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft merge

#### R2 — Second input shaft angular velocity and torque

two-way connector port

Second input shaft angular velocity,  $\omega_{2in}$ , in rad/s and torque,  $T_{2in}$ , in N·m.

#### **Dependencies**

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

## Output

## Info — Bus signal

bus

If you set **Coupling Configuration** to **Shaft** split, the Info bus contains these signals.

| Signal |    | Description               | Variable   | Units |
|--------|----|---------------------------|------------|-------|
| Trq    | R  | Input shaft torque        | $T_{in}$   | N·m   |
|        | C1 | First output shaft torque | $T_{1out}$ | N·m   |

| Signal  |                   |                   | Description                                                  | Variable           | Units |
|---------|-------------------|-------------------|--------------------------------------------------------------|--------------------|-------|
|         | C2                |                   | Second output shaft torque                                   | $T_{2out}$         | N·m   |
|         | Damp              | C1                | First output shaft damping torque                            | $b_1\omega_{1out}$ | N·m   |
|         |                   | C2                | Second output shaft damping torque                           | $b_2\omega_{2out}$ | N·m   |
|         | Spring            | C1                | First output shaft spring torque                             | $k_1\theta_1$      | N·m   |
|         |                   | C2                | Second output shaft spring torque                            | $k_2\theta_2$      | N·m   |
| Spd     | R                 | <b>'</b>          | Input shaft angular velocity                                 | $\omega_{in}$      | rad/s |
|         | C1                |                   | First output shaft angular velocity $\omega_{1out}$          |                    | rad/s |
|         | C2                |                   | Second output shaft angular velocity                         | $\omega_{2out}$    | rad/s |
|         | deltadot1         |                   | Difference in input and first output shaft angular velocity  | $\dot{	heta}_1$    | rad/s |
|         | deltadot2         |                   | Difference in input and second output shaft angular velocity | $\dot{	heta}_2$    | rad/s |
| PwrInfo | PwrTrnsfrd        | PwrR              | Mechanical power from input shaft                            | $P_{TR}$           | W     |
|         |                   | PwrC1             | Mechanical power from first output shaft                     | $P_{TC1}$          | W     |
|         |                   | PwrC2             | Mechanical power from second output shaft                    | $P_{TC2}$          | W     |
|         | PwrNotTrnsf<br>rd | PwrDampLo<br>ss   | Mechanical damping loss                                      | $P_d$              | W     |
|         | PwrStored         | PwrStored<br>Shft | Rate change of stored internal torsional energy              | $P_s$              | W     |

If you set **Coupling Configuration** to Shaft merge, the Info bus contains these signals.

| Signal |             | Description | Variable                           | Units             |       |
|--------|-------------|-------------|------------------------------------|-------------------|-------|
| Trq    | С           |             | Output shaft torque                | $T_{out}$         | N·m   |
|        | R1          |             | First input shaft torque           | $T_{1in}$         | N⋅m   |
|        | R2          |             | Second input shaft torque          | $T_{2in}$         | N·m   |
|        | Damp        | R1          | First input shaft damping torque   | $b_1\omega_{1in}$ | N·m   |
|        | Spring      | R2          | Second in shaft damping torque     | $b_2\omega_{2in}$ | N·m   |
|        |             | R1          | First input shaft spring torque    | $k_1\theta_1$     | N·m   |
|        |             | R2          | Second in shaft spring torque      | $k_2\theta_2$     | N·m   |
| Spd    | Spd C<br>R1 |             | Output shaft angular velocity      | $\omega_{out}$    | rad/s |
|        |             |             | First input shaft angular velocity | $\omega_{1in}$    | rad/s |

| Signal  |                   |                   | Description                                                  | Variable         | Units |
|---------|-------------------|-------------------|--------------------------------------------------------------|------------------|-------|
|         | R2                |                   | Second input shaft angular velocity                          | $\omega_{2in}$   | rad/s |
|         | deltadot1         |                   | Difference in first input and output shaft angular velocity  | $\dot{\theta}_1$ | rad/s |
|         |                   |                   | Difference in second input and output shaft angular velocity | $\dot{	heta}_2$  | rad/s |
| PwrInfo | PwrTrnsfrd        | PwrC              | Mechanical power from output shaft                           | $P_{TC}$         | W     |
|         |                   | PwrR1             | Mechanical power from first input shaft                      | $P_{TR1}$        | W     |
|         |                   | PwrR2             | Mechanical power from second input shaft                     | $P_{TR2}$        | W     |
|         | PwrNotTrnsf<br>rd | PwrDampLo<br>ss   | Mechanical damping loss                                      | $P_d$            | W     |
|         | PwrStored         | PwrStored<br>Shft | Rate change of stored internal torsional energy              | $P_s$            | W     |

#### **Dependencies**

To enable this port, select **Output Info bus**.

## RTrq — Input shaft torque

scalar

Input shaft torque,  $T_{in}$ , in N·m.

## **Dependencies**

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

## C1Trq — First output shaft torque

scalar

First output shaft torque,  $T_{1out}$ , in N·m.

## **Dependencies**

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

## C2Trq — Second output shaft torque

scalar

Second output shaft torque,  $T_{2out}$ , in N·m.

#### **Dependencies**

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

#### CTrq — Output shaft torque

scalar

Output shaft torque,  $T_{out}$ , in N·m.

#### **Dependencies**

To enable this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

## R1Trq — First input shaft torque

scalar

First input shaft torque,  $T_{1in}$ , in N·m.

#### **Dependencies**

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

## R2Trq — Second input shaft torque

scalar

Second input shaft torque,  $T_{2in}$ , in N·m.

## **Dependencies**

To enable this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

## C1 — First output shaft angular velocity and torque

two-way connector port

First output shaft angular velocity,  $\omega_{1out}$ , in rad/s and torque,  $T_{1out}$ , in N·m.

#### **Dependencies**

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

## C2 — Second output shaft angular velocity and torque

two-way connector port

Second output shaft angular velocity,  $\omega_{2out}$ , in rad/s and torque,  $T_{2out}$ , in N·m.

## **Dependencies**

To enable this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft split

## C — Output shaft angular velocity and torque

two-way connector port

Output shaft angular velocity,  $\omega_{out}$ , in rad/s and torque,  $T_{out}$ , in N·m.

#### **Dependencies**

To enable this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

## **Parameters**

#### **Block Options**

### Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

#### Coupling Configuration — Specify configuration

Shaft split (default) | Shaft merge

Specify the coupling type.

#### Output Info bus — Selection

off (default) | on

Select to create the Info output port.

#### Coupling 1

#### Torsional stiffness, k1 — Stiffness

5e4 (default) | scalar

Rotational inertia,  $k_1$ , in N·m/rad.

### Torsional damping, b1 — Damping

1e2 (default) | scalar

Torsional damping,  $b_1$ , in N·m· s/rad.

## Damping cutoff frequency, omegal\_c — Frequency

3000 (default) | scalar

Damping cutoff frequency, in rad/s.

## **Coupling 2**

## Torsional stiffness, k2 — Stiffness

5e4 (default) | scalar

Rotational inertia,  $k_2$ , in N·m/rad.

## Torsional damping, b2 — Damping

1e2 (default) | scalar

Torsional damping,  $b_2$ , in N·m· s/rad.

## Damping cutoff frequency, omega2\_c — Frequency

3000 (default) | scalar

Damping cutoff frequency, in rad/s.

## **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

## See Also

Rotational Inertia | Torsional Compliance

## Introduced in R2017b

# **Torsional Compliance**

Parallel spring-damper

**Library:** Powertrain Blockset / Drivetrain / Couplings

Vehicle Dynamics Blockset / Powertrain / Drivetrain /

Couplings



## **Description**

The Torsional Compliance block implements a parallel spring-damper to couple two rotating driveshafts. The block uses the driveshaft angular velocities, torsional stiffness, and torsional damping to determine the torques.

$$T_R = -(\omega_R - \omega_C)b - \theta k$$
  

$$T_C = (\omega_R - \omega_C)b + \theta k$$

$$\dot{\theta} = (\omega_R - \omega_C)$$

## **Power Accounting**

For the power accounting, the block implements these equations.

| <b>Bus Signa</b> | al                                                                                                                                               |               | Description                              | Variable | <b>Equations</b>               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|----------|--------------------------------|
| PwrInfo          | PwrTrnsfrd — Power transferred between blocks                                                                                                    | PwrR          | Mechanical<br>power from<br>driveshaft R | $P_{TR}$ | $P_{TR} = T_R \omega_R$        |
|                  | <ul><li>Positive signals indicate<br/>flow into block</li><li>Negative signals indicate<br/>flow out of block</li></ul>                          | PwrC          | Mechanical<br>power from<br>driveshaft C | $P_{TC}$ | $P_{TC} = T_C \omega_C$        |
|                  | PwrNotTrnsfrd — Power crossing the block boundary, but not transferred  • Positive signals indicate an input  • Negative signals indicate a loss | PwrDampLoss   | Mechanical<br>damping loss               | $P_d$    | $P_d = -b \dot{\theta} ^2$     |
|                  | PwrStored — Stored energy rate of change  • Positive signals indicate an increase  • Negative signals indicate a decrease                        | PwrStoredShft | Rate change in<br>spring energy          | $P_S$    | $P_S = -\theta k \dot{\theta}$ |

The equations use these variables.

| $T_R$      | Driveshaft R torque                 |
|------------|-------------------------------------|
| $T_C$      | Driveshaft C torque                 |
| $\omega_R$ | Driveshaft R angular velocity       |
| $\omega_C$ | Driveshaft C angular velocity       |
| $\theta$   | Coupled driveshaft rotation         |
| k          | Driveshaft torsional stiffness      |
| b          | Rotational viscous damping          |
| $P_d$      | Power loss due to damping           |
| $P_s$      | Rate change of stored spring energy |

## **Ports**

#### Input

## RSpd — Driveshaft R angular velocity

scalar

Input driveshaft angular velocity, in rad/s.

#### **Dependencies**

To enable this port, for **Port Configuration**, select **Simulink**.

## CSpd — Driveshaft C angular velocity

scalar

Output driveshaft angular velocity, in rad/s.

#### **Dependencies**

To enable this port, for **Port Configuration**, select Simulink.

## R — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

#### **Dependencies**

To enable this port, for **Port Configuration**, select Two-way connection.

## **Output**

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal |   | Description              | Variable | Units |
|--------|---|--------------------------|----------|-------|
| Trq    | R | Input driveshaft torque  | $T_R$    | N·m   |
|        | С | Output driveshaft torque | $T_C$    | N·m   |

| Signal  |                   | Description       | Variable                                                   | Units                 |       |
|---------|-------------------|-------------------|------------------------------------------------------------|-----------------------|-------|
|         | Damp              |                   | Damping torque                                             | $T_S = b\dot{\theta}$ | N·m   |
|         | Spring            |                   | Spring torque                                              | $T_d = k\theta$       | N·m   |
| Spd     | R                 |                   | Input driveshaft angular velocity                          | $\omega_R$            | rad/s |
|         | С                 |                   | Output driveshaft angular velocity                         | $\omega_{C}$          | rad/s |
|         | deltadot          |                   | Difference in input and output driveshaft angular velocity | $\dot{\theta}$        | rad/s |
| PwrInfo | PwrTrnsfrd        | PwrR              | Mechanical power from driveshaft R                         | $P_{TR}$              | W     |
|         |                   | PwrC              | Mechanical power from driveshaft C                         | $P_{TC}$              | W     |
|         | PwrNotTrnsf<br>rd | PwrDampLos<br>s   | Power loss due to damping                                  | $P_d$                 | W     |
|         | PwrStored         | PwrStoredS<br>hft | Rate change of stored internal kinetic energy              | $P_s$                 | W     |

## **Dependencies**

To enable this port, select **Output Info bus**.

## RTrq — Driveshaft R torque

scalar

Input drive shaft torque, in N·m.

#### **Dependencies**

To enable this port, for **Port Configuration**, select Simulink.

## CTrq — Driveshaft C torque

scalar

Applied output driveshaft torque, in N·m.

#### **Dependencies**

To enable this port, for **Port Configuration**, select **Simulink**.

## C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

#### **Dependencies**

To enable this port, for **Port Configuration**, select Two-way connection.

## **Parameters**

## **Block Options**

## Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

#### **Dependencies**

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

#### Output Info bus - Selection

off (default) | on

Select to create the Info output port.

### Torsional stiffness, k — Inertia

1e4 (default) | scalar

Torsional stiffness, in N·m/rad.

## Torsional damping, b — Damping

1e2 (default) | scalar

Torsional damping, in  $N \cdot m \cdot s/rad$ .

## Initial deflection, theta\_o — Angular

0 (default) | scalar

Initial deflection, in rad.

#### Initial velocity difference, domega o — Angular

0 (default) | scalar

Initial velocity difference, in rad/s.

## Damping cut-off frequency, omega\_c — Frequency

3000 (default) | scalar

Damping cut-off frequency, in rad/s.

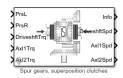
# **Extended Capabilities**

## C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

## **See Also**

Rotational Inertia | Split Torsional Compliance


Introduced in R2017a

# **Active Differential**

Spur or planetary active differential gear

**Library:** Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final

Drive Unit



## **Description**

The Active Differential block implements an active differential to account for the power transfer from the transmission to the axles. The block models the active differential as an open differential coupled to either a spur or planetary differential gear set. The block uses external pressure signals to regulate the clutch pressure to either speed up or slow down each axle rotation.

Use the block in hardware-in-the-loop (HIL) and optimization workflows to dynamically couple the driveshaft to the wheel axles when you want to direct the transmission torque to a specific axle. For detailed front wheel driving studies, use the block to couple the driveshaft to universal joints. The block is suitable to use in system-level closed-loop control studies, for example, yaw stability and torque vectoring. All the parameters are tunable.

To specify the active differential, open the **Active Differential** parameters and specify **Active differential type**.

| Setting                                     | Block Implementation                                                                   |
|---------------------------------------------|----------------------------------------------------------------------------------------|
| Spur gears, superposition clutches          | Clutches are in superposition through a three-gang gear system and a differential case |
| Double planetary gears, stationary clutches | Clutches are fixed to the carrier and axles through double planetary gear sets         |

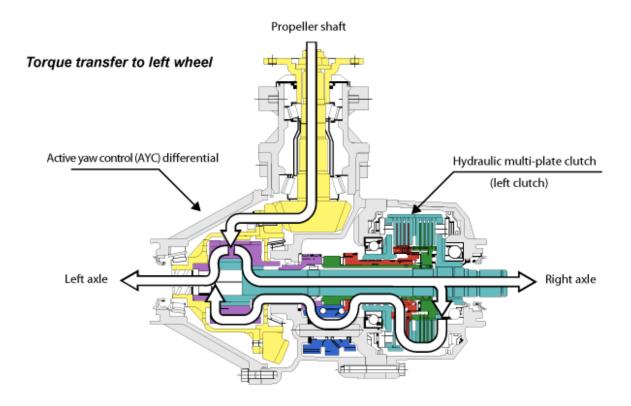
Use the **Open Differential** parameter **Crown wheel (ring gear) located** to specify the open differential location, either to the left or right of the center-line.

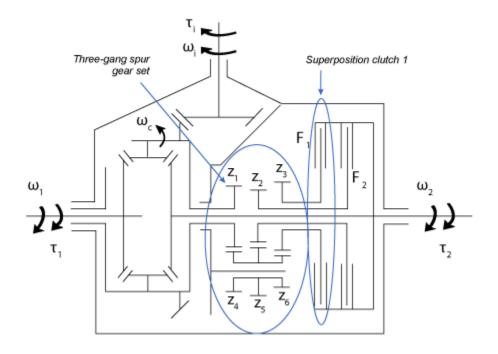
Depending on the available data, to specify the method to couple the different torques applied to the axles, use the **Slip Coupling** parameter **Coupling type**.

| Setting                          | Block Implementation                                                                           |
|----------------------------------|------------------------------------------------------------------------------------------------|
| Pre-loaded ideal clutch          | Torque modeled as a dry clutch with constant friction coefficients                             |
| Slip speed dependent torque data | Torque determined from a lookup table that is a function of slip-<br>speed and clutch pressure |

The Active Differential block does not include a controller or external clutch actuator dynamics. Use this information to control the input clutch pressure. The info bus contains the slip speeds at clutch 1,  $\Delta\omega_{cl1}$ , and clutch 2,  $\Delta\omega_{cl2}$ .

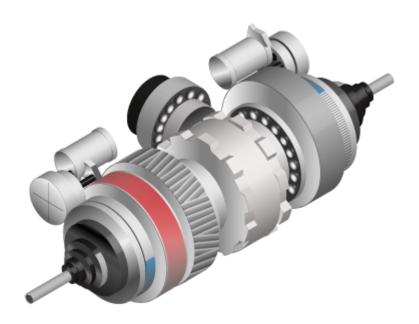
| Input Axle Torque      | $\Delta\omega_{cl1}$ | $\Delta\omega_{cl2}$ | Input Clutch Pressure      |
|------------------------|----------------------|----------------------|----------------------------|
| Positive axle 1 torque | > 0                  | N/A                  | Increase clutch 1 pressure |
| Positive axle 1 torque | < 0                  | N/A                  | Disengage clutch 1 and 2   |
| Positive axle 2 torque | N/A                  | > 0                  | Increase clutch 1 pressure |
| Positive axle 2 torque | N/A                  | < 0                  | Disengage clutch 1 and 2   |

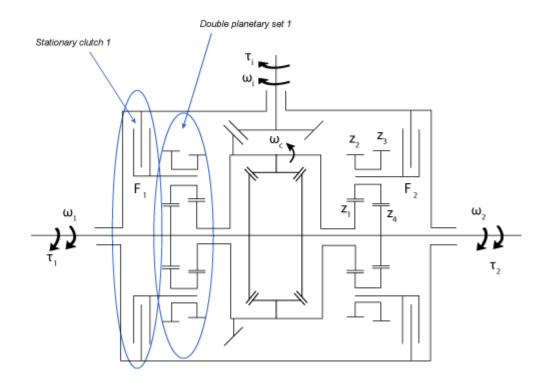

## **Differentials**


The Active Differential block implements these equations to represent the mechanical dynamic response for the superposition and stationary clutch configurations. To determine the gear ratios, the block uses the clutch speed and the number of teeth for each gear pair. The allowable wheel speed difference (AWSD) limits the wheel speed difference for positive torque.

| Mechanical                                    | Equations                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamic<br>Response                           | Superposition Clutches and Spur<br>Gearing                                             | Stationary Clutches and Planetary<br>Gearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Crown gear                                    | $\dot{\omega}_d(J_d + J_{gs}) = T_d - \omega_d b_d - T_i$                              | $\dot{\omega}_d( J_d+J_{s1}+J_{s2})=T_d-\omega_db_d-T_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Axle 1                                        | $\dot{\omega}_1 J_1 = \eta T_1 - \omega_1 b_1 - T_{i1}$                                | $\dot{\omega}_1(J_1 + J_{r1}) = T_1 - \omega_1 b_1 - T_{i1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Axle 2                                        | $\dot{\omega}_2 J_2 = \eta T_2 - \omega_2 b_2 - T_{i2}$                                | $\dot{\omega}_2(J_{axle2} + J_{r1}) = T_2 - \omega_2 b_2 - T_{i2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gear ratios                                   | $\frac{\omega_{cl1}}{\omega_d} = N_{s1} = \frac{z_1 z_6}{z_4 z_3}$                     | $\frac{\omega_{cl1}}{\omega_d} = N_{p1} = \frac{z_1 z_6}{z_4 z_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               | $\frac{\omega_{cl2}}{\omega_d} = N_{s2} = \frac{z_1 z_5}{z_4 z_2}$                     | $\frac{\omega_{cl2}}{\omega_d} = N_{p2} = \frac{z_1 z_5}{z_4 z_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rigid Coupling<br>Constraints                 | $T_1 = \frac{NT_i}{2} - \frac{N_{S2}}{2}T_{cl2} + \frac{N_{S1}}{2}T_{cl1}$             | $T_1 = \frac{NT_i}{2} - \frac{N_{p2}}{(N_{p2} - 1)2} T_{cl2} + \frac{(2 - 1)^2}{(N_{p1} - 1)^2} T_{cl2} + \frac$                                                                         |
|                                               | $T_2 = \frac{NT_i}{2} + (1 - \frac{N_{s2}}{2})T_{cl2} - (1 - \frac{N_{s2}}{2})T_{cl2}$ | $\frac{\frac{1}{s_1}}{2}T_{cl}^{\frac{1}{2}} = \frac{NT_i}{2} + \frac{(2 - N_{p2})}{(N_{p2} - 1)2}T_{cl2} - \frac{N_p}{(N_{p1} - 1)2}T_{cl2} - \frac{N_p}{(N_p - 1)2}T_{cl2} - \frac$ |
|                                               | $\omega_{d=} = \frac{N}{2}(\omega_1 + \omega_2)$                                       | $\omega_{d} = \frac{N}{2}(\omega_1 + \omega_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Allowable wheel<br>speed difference<br>(AWSD) | $\overline{\Delta\omega}_{max} = (N_{s2} - N_{s1}) \cdot 100\%$                        | $\overline{\Delta\omega_{max}} = (N_{p1,2} - 1) \cdot 100\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## **Superposition Clutches and Spur Gearing**


These superposition clutch illustrations show the clutch configuration and schematic for torque transfer to the left wheel.






## **Stationary Clutches and Planetary Gearing**

The illustrations show the stationary clutch configuration and schematic.





## **Slip Coupling**

For both the ideal clutch and slip-speed configurations, the slip coupling is a function of the slip-speed and clutch pressure. The slip-speed depends on the slip velocity at each of the clutch interfaces.

$$\varpi = [\Delta\omega_{c1}, \Delta\omega_{c2}]$$

#### **Ideal Clutch**

The ideal clutch coupling model uses the axle slip speed, clutch pressure, and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$T_C = F_T N_d \mu(|\overline{\omega}|) R_{eff} \tanh(4\overline{\omega})$$

To calculate the total clutch force, the block uses the effective radius, clutch pressure, and clutch preload force.

$$F_T = F_C + P_{1,2} A_{eff}, F_T \ge 0$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$R_{eff} = \frac{2(R_0 ^3 - R_i ^3)}{3(R_0 ^2 - R_i ^2)}$$

#### Slip-Speed

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed and clutch pressure. The angular velocities of the axles determine the slip speed.

$$T_C = T_C(\varpi, P_{1,2})$$

The equations use these variables.

| $A_{\it eff}$       | Effective clutch pressure area                               |
|---------------------|--------------------------------------------------------------|
| $b_d$               | Crown gear linear viscous damping                            |
| $b_1$ , $b_2$       | Axle 1 and 2 linear viscous damping, respectively            |
| $F_c$ , $F_T$       | Clutch preload force and total force, respectively           |
| $J_d$               | Carrier rotational inertia                                   |
| $J_{gc}$            | Three-gang gear rotational inertia                           |
| $J_{c1}$ , $J_{c2}$ | Planetary carrier 1 and 2 rotational inertia, respectively   |
| $J_{r1}$ , $J_{r2}$ | Planetary ring gear 1 and 2 rotational inertia, respectively |
| $J_{s1}$ , $J_{s2}$ | Planetary sun gear 1 and 2 rotational inertia, respectively  |
| $J_1, J_2$          | Axle 1 and 2 rotational inertia, respectively                |
| N                   | Carrier-to-drive shaft gear ratio                            |
| $N_d$               | Number of disks                                              |
| $N_{s1}$ , $N_{s2}$ | Clutch 1 and 2 carrier-to-spur gear ratio, respectively      |
| $N_{p1}$ , $N_{p2}$ | Planetary 1 and 2 carrier-to-axle gear ratio, respectively   |
| $P_1$ , $P_2$       | Clutch 1 and 2 pressure, respectively                        |
|                     |                                                              |

 $R_{eff}$  Effective clutch radius

 $R_i$ ,  $R_o$  Annular disk inner and outer radius, respectively

 $T_c$  Clutch torque

 $T_{cl1}$ ,  $T_{cl2}$  Clutch 1 and 2 coupling torque, respectively

 $T_d$  Driveshaft torque

 $T_1$ ,  $T_2$  Axle 1 and 2 torque, respectively  $T_i$  Axle internal resistance torque

 $T_{i1}$ ,  $T_{i2}$  Axle 1 and 2 internal resistance torque

 $\omega_d$  Driveshaft angular velocity

 $\overline{\omega}$  Slip speed

 $\omega_1$ ,  $\omega_2$  Axle 1 and 2 angular velocity, respectively

 $\Delta\omega_{cl1}$ ,  $\Delta\omega_{cl2}$  Clutch 1 and 2 slip speed at interface, respectively

 $\omega_{cl1},\,\omega_{cl2}$  Clutch 1 and 2 angular velocity, respectively

 $\mu$  Clutch coefficient of friction  $z_i$  Number of teeth on gear i

#### **Ports**

#### Inputs

## Prs1 — Clutch 1 pressure

scalar

Clutch 1 pressure,  $P_1$ , in Pa.

## Prs2 - Clutch 2 pressure

scalar

Clutch 2 pressure,  $P_2$ , in Pa.

## DriveshftTrq — Driveshaft torque

scalar

Applied input torque,  $T_d$ , typically from the engine driveshaft, in N·m.

## Axl1Trq — Torque

scalar

Axle 1 torque,  $T_1$ , in N·m.

## Axl2Trq — Torque

scalar

Axle 2 torque,  $T_2$ , in N·m.

## Output

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    |               | Description                  | Units |
|-----------|---------------|------------------------------|-------|
| Driveshft | DriveshftTrq  | Drive shaft torque           | N·m   |
|           | DriveshftSpd  | Drive shaft angular velocity | rad/s |
| Axl1      | Axl1Trq       | Axle 1 torque                | N·m   |
|           | Axl1Spd       | Axle 1 angular velocity      | rad/s |
| Axl2      | Axl2Trq       | Axle 2 torque                | N·m   |
|           | Ax12Spd       | Axle 2 angular velocity      | rad/s |
| Cplng     | CplngTrq1     | Clutch 1 coupling torque     | N·m   |
|           | CplngTrq2     | Clutch 2 coupling torque     | N·m   |
|           | CplngSlipSpd1 | Clutch 1 slip speed          | rad/s |
|           | CplngSlipSpd2 | Clutch 2 slip speed          | rad/s |
|           | CplngPrs1     | Clutch 1 input pressure      | Pa    |
|           | CplngPrs2     | Clutch 2 input pressure      | Pa    |

## DriveshftSpd — Angular velocity

scalar

Driveshaft angular velocity,  $\omega_d$ , in rad/s.

## Axl1Spd — Angular velocity

scalar

Axle 1 angular velocity,  $\omega_1$ , in rad/s.

## **Axl2Spd** — **Angular velocity**

scalar

Axle 2 angular velocity,  $\omega_2$ , in rad/s.

## **Parameters**

#### **Active Differential**

## Active differential type — Differential

Spur gears, superposition clutches ( $\operatorname{default}$ ) | Double planetary gears, stationary clutches

Specify the type of active differential.

| Setting                                     | Block Implementation                                                                   |
|---------------------------------------------|----------------------------------------------------------------------------------------|
| Spur gears, superposition clutches          | Clutches are in superposition through a three-gang gear system and a differential case |
| Double planetary gears, stationary clutches | Clutches are fixed to the carrier and axles through double planetary gear sets         |

# Clutch 1 to differential case gear ratio, Ns1 — Clutch 1-spur gear ratio .875 (default) | scalar

Clutch 1-to-carrier spur gear ratio,  $N_{s1}$ , dimensionless.

#### **Dependencies**

To enable the spur gear parameters, select Spur gears, superposition clutches for the **Active differential type** parameter.

# Clutch 2 to differential case gear ratio, Ns2 — Clutch 2-spur gear ratio 1.125 (default) | scalar

Clutch 2-to-carrier spur gear ratio,  $N_{s2}$ , dimensionless.

#### **Dependencies**

To enable the spur gear parameters, select Spur gears, superposition clutches for the **Active differential type** parameter.

# Three-gang gear inertia, Jgc — Rotational inertia .003 (default) | scalar

Three-gang gear rotational inertia,  $J_{ac}$ , in kg·m<sup>2</sup>.

#### **Dependencies**

To enable the spur gear parameters, select Spur gears, superposition clutches for the **Active differential type** parameter.

# **Axle 1 planetary carrier to axle gear ratio, Np1 — Planetary 1 carrier gear ratio** 1.125 (default) | scalar

Planetary 1 carrier-to-axle gear ratio,  $N_{p1}$ , dimensionless.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

# Axle 1 sun gear inertia, Js1 — Planetary 1 sun gear inertia .001 (default) | scalar

Planetary 1 sun gear inertia,  $J_{s1}$ , in kg·m<sup>2</sup>.

## **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

# Axle 1 carrier inertia, Jc1 — Planetary 1 carrier inertia .001 (default) | scalar

Planetary 1 carrier inertia,  $J_{c1}$ , in kg·m<sup>2</sup>.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

## Axle 1 ring inertia, Jr1 — Planetary 1 ring gear inertia

.002 (default) | scalar

Planetary 1 ring gear inertia,  $J_{r1}$ , kg·m<sup>2</sup>.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

# Axle 2 planetary carrier to axle gear ratio, Np2 — Planetary 2 carrier gear ratio 1.125 (default) | scalar

Planetary 2 carrier-to-axle gear ratio,  $N_{p2}$ , dimensionless.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

# Axle 2 sun gear inertia, Js2 — Planetary 2 sun gear inertia .001 (default) | scalar

Planetary 2 sun gear inertia,  $J_{s2}$ , in kg·m<sup>2</sup>.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

# Axle 2 carrier inertia, Jc2 — Planetary 2 carrier inertia

.001 (default) | scalar

Planetary 2 carrier inertia,  $J_{c2}$ , in kg·m<sup>2</sup>.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

## Axle 2 ring inertia, Jr2 — Planetary 2 ring gear inertia

.002 (default) | scalar

Planetary 2 ring gear inertia,  $J_{r2}$ , in kg·m<sup>2</sup>.

#### **Dependencies**

To enable the planetary gear parameters, select Double planetary gears, stationary clutches for the **Active differential type** parameter.

#### **Open Differential**

#### Crown wheel (ring gear) located — Specify crown wheel connection

To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the drive shaft.

## Carrier to drive shaft ratio, NC/ND — Ratio

4 (default) | scalar

Carrier-to-drive shaft gear ratio, N.

#### Carrier inertia, Jd — Inertia

.1 (default) | scalar

Rotational inertia of the crown gear assembly,  $J_d$ , in kg·m<sup>2</sup>. You can include the drive shaft inertia.

## Carrier damping, bd — Damping

1e-3 (default) | scalar

Crown gear linear viscous damping,  $b_d$ , in N·m·s/rad.

#### Axle 1 inertia, Jw1 — Inertia

.1 (default) | scalar

Axle 1 rotational inertia,  $J_1$ , in kg·m<sup>2</sup>.

## Axle 1 damping, bw1 — Damping

1e-3 (default) | scalar

Axle 1 linear viscous damping,  $b_1$ , in N·m·s/rad.

## Axle 2 inertia, Jw2 — Inertia

.1 (default) | scalar

Axle 2 rotational inertia,  $J_2$ , in kg·m<sup>2</sup>.

#### Axle 2 damping, bw2 — Damping

1e-3 (default) | scalar

Axle 2 linear viscous damping,  $b_2$ , in N·m·s/rad.

## Axle 1 initial velocity, omegawlo — Angular velocity

0 (default) | scalar

Axle 1 initial velocity,  $\omega_{o1}$ , in rad/s.

## Axle 2 initial velocity, omegaw2o — Angular velocity

0 (default) | scalar

Axle 2 initial velocity,  $\omega_{o2}$ , in rad/s.

#### **Slip Coupling**

#### Coupling type — Torque coupling

Ideal pre-loaded clutch (default) | Slip speed dependent torque data | Input torque dependent torque data

Specify the type of torque coupling.

| Setting                 | Block Implementation                                    |
|-------------------------|---------------------------------------------------------|
| Pre-loaded ideal clutch | Torque modeled as a wet clutch with a constant velocity |

| Setting                          | Block Implementation                                                                           |  |
|----------------------------------|------------------------------------------------------------------------------------------------|--|
| Slip speed dependent torque data | Torque determined from a lookup table that is a function of slip-<br>speed and clutch pressure |  |

## Effective applied pressure area — Pressure area

0.01 (default) | scalar

Effective applied pressure area, in N/m<sup>2</sup>.

#### **Dependencies**

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

## Number of disks, Ndisks — Torque coupling

4 (default) | scalar

Number of disks.

#### **Dependencies**

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

#### Effective radius, Reff — Radius

.20 (default) | scalar

The effective radius,  $R_{eff}$ , used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

 $R_o$  Annular disk outer radius

 $R_i$  Annular disk inner radius

## **Dependencies**

To enable the clutch parameters, select Ideal pre-loaded clutch for the Coupling type parameter.

## Nominal preload force, Fc — Force

500 (default) | scalar

Nominal preload force, in N.

#### **Dependencies**

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

## Friction coefficient vector, mu - Friction

[.16 0.13 0.115 0.11 0.105 0.1025 0.10125 .10125] (default) | vector

Friction coefficient vector.

#### **Dependencies**

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

## Slip speed vector, dw — Angular velocity

[0 10 20 40 60 80 100 500] (default) | vector

Slip speed vector, in rad/s.

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

#### Torque - slip speed matrix, TdPdw — Clutch torque

[-1000,-500,-90,-50,-5,0,5,50,90,500,1000].\*ones(11)(default)|matrix

Torque matrix,  $T_c$ , in N·m.

#### **Dependencies**

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

## Clutch pressure vector, pT — Clutch pressure breakpoints

[0 1e3 5e3 7e3 1e4 2e4 5e4 1e5 5e5 1e6 5e6] (default) | vector

Clutch pressure breakpoints vector,  $P_{1,2}$ , in Pa.

#### **Dependencies**

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

## Slip speed vector, dwT — Slip speed breakpoints

```
[-500 -200, -175, -100, - 50, 0, 50, 100, 175, 200, 500] (default) | vector
```

Slip speed breakpoints vector,  $\omega$ , in rad/s.

## **Dependencies**

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

#### Coupling time constant, tauC — Constant

.01 (default) | scalar

Coupling time constant, in s.

#### References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. *Transportation Systems*. Vol. 17, pp. 427-436.

# **Extended Capabilities**

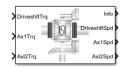
## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

## **See Also**

Limited Slip Differential | Open Differential

Introduced in R2018b


# **Limited Slip Differential**

Limited differential as a planetary bevel gear

**Library:** Powertrain Blockset / Drivetrain / Final Drive Unit

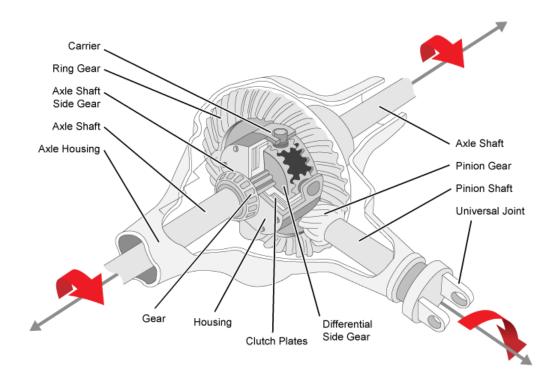
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final

Drive Unit



## **Description**

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:


- · Carrier-to-driveshaft ratio
- · Crown wheel location
- · Viscous and damping coefficients for the axles and carrier
- · Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed-dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.



## **Efficiency**

To account for the block efficiency, use the  $\mathbf{Efficiency}$  factors parameter. This table summarizes the block implementation for each setting.

| Setting                                  | Implementation                                                                                                                                               |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Constant                                 | Constant efficiency that you can set with the <b>Constant efficiency factor</b> , <b>eta</b> parameter.                                                      |  |
| Driveshaft torque, temperature and speed | Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: |  |
|                                          | Efficiency lookup table, eta_tbl                                                                                                                             |  |
|                                          | Efficiency torque breakpoints, Trq_bpts                                                                                                                      |  |
|                                          | <ul> <li>Efficiency speed breakpoints, omega_bpts</li> </ul>                                                                                                 |  |
|                                          | Efficiency temperature breakpoints, Temp_bpts                                                                                                                |  |
|                                          | For the air temperature, you can either:                                                                                                                     |  |
|                                          | Select Input temperature to create an input port.                                                                                                            |  |
|                                          | Set a <b>Ambient temperature, Tamb</b> parameter value.                                                                                                      |  |
|                                          | To select the interpolation method, use the <b>Interpolation method</b> parameter. For more information, see "Interpolation Methods" (Simulink).             |  |

## **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal   |                                                                               |               | Description                      | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------|-------------------------------------------------------------------------------|---------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PwrInfo      | PwrTrnsfrd — Power transferred between blocks                                 | _             | Mechanical power from driveshaft | $\eta T_d \omega_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|              | Positive signals indicate flow into block                                     | PwrAxl1       | Mechanical power from axle 1     | $\eta T_1 \omega_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|              | Negative signals<br>indicate flow out of<br>block                             | PwrAxl2       | Mechanical power from axle 2     | $\eta T_2 \omega_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| b<br>tr<br>• | crossing the block boundary, but not transferred  • Positive signals indicate | PwrMechLoss   | Total power loss                 | $\dot{W}_{loss} = -(P_t + P_d + $ |  |
|              |                                                                               | PwrDampLoss   | Power loss due to damping        | $P_d = -(b_1 \omega_1  + b_2 \omega_2  + b_d \omega_d )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|              |                                                                               | PwrCplngLoss  | Power loss due to clutch         | $P_C = T_C  \overline{\omega} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|              | PwrStored — Stored energy rate of change                                      | PwrStoredShft | stored internal                  | $P_s = -(\omega_1 \dot{\omega}_1 J_1 + \omega_2 \dot{\omega}_2 J_2 + \omega_d \dot{\omega}_d J_d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              | Positive signals indicate an increase                                         |               | energy                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|              | Negative signals<br>indicate a decrease                                       |               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

## **Dynamics**

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

| Mechanical<br>Dynamic<br>Response | Differential Equation                                   |
|-----------------------------------|---------------------------------------------------------|
| Crown Gear                        | $\dot{\omega}_d J_d = \eta T_d - \omega_d b_d - T_i$    |
| Left Axle                         | $\dot{\omega}_1 J_1 = \eta T_1 - \omega_1 b_1 - T_{i1}$ |
| Right Axle                        | $\dot{\omega}_2 J_2 = \eta T_2 - \omega_2 b_2 - T_{i2}$ |

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$\eta T_1 = \frac{N}{2} T_i - \frac{1}{2} T_c$$
  
$$\eta T_2 = \frac{N}{2} T_i + \frac{1}{2} T_c$$

$$\omega_d = \frac{N}{2}(\omega_1 + \omega_2)$$

The equations use these variables.

| N          | Carrier-to-driveshaft gear ratio              |  |  |  |
|------------|-----------------------------------------------|--|--|--|
| $J_d$      | Rotational inertia of the crown gear assembly |  |  |  |
| $b_d$      | Crown gear linear viscous damping             |  |  |  |
| $\omega_d$ | Driveshaft angular speed                      |  |  |  |
| $\varpi$   | Slip speed                                    |  |  |  |
| $J_1$      | Axle 1 rotational inertia                     |  |  |  |
| $b_1$      | Axle 1 linear viscous damping                 |  |  |  |
| $\omega_1$ | Axle 1 speed                                  |  |  |  |
| $J_2$      | Axle 2 rotational inertia                     |  |  |  |
| $b_2$      | Axle 2 linear viscous damping                 |  |  |  |
| $\omega_2$ | Axle 2 angular speed                          |  |  |  |
| η          | Efficiency                                    |  |  |  |
| $T_d$      | Driveshaft torque                             |  |  |  |
| $T_1$      | Axle 1 torque                                 |  |  |  |
| $T_2$      | Axle 2 torque                                 |  |  |  |
| $T_i$      | Axle internal resistance torque               |  |  |  |
| $T_{i1}$   | Axle 1 internal resistance torque             |  |  |  |
| $T_{i2}$   | Axle 2 internal resistance torque             |  |  |  |
| μ          | Coefficient of friction                       |  |  |  |
| $R_{eff}$  | Effective clutch radius                       |  |  |  |
| $R_o$      | Annular disk outer radius                     |  |  |  |
| $R_i$      | Annular disk inner radius                     |  |  |  |
| $F_c$      | Clutch force                                  |  |  |  |
| $T_c$      | Clutch torque                                 |  |  |  |
| μ          | Coefficient of friction                       |  |  |  |

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method Linear
- Extrapolation method Clip

## **Ideal Clutch Coupling**

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$T_c = F_c N \mu(|\varpi|) R_{eff} \tanh(4|\varpi|)$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$R_{eff} = \frac{2(R_o 3 - R_i 3)}{3(R_o 2 - R_i 2)}$$

The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

#### **Slip Speed Coupling**

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

#### **Input Torque Coupling**

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$\eta T_1 = \eta T_2 = \frac{N}{2} T_i$$

$$\omega_{d=}=\frac{N}{2}(\omega_1+\omega_2)$$

## **Ports**

## Inputs

#### DriveshftTrq — Torque

scalar

Applied input torque, typically from the engine crankshaft, in N·m.

#### Axl1Trq - Torque

scalar

Axle 1 torque,  $T_1$ , in N·m.

## Axl2Trq — Torque

scalar

Axle 2 torque,  $T_2$ , in N·m.

## Temp — Temperature

scalar

Temperature, in K.

## **Dependencies**

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

## Output

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    |                   |                   | Description                           | Units |
|-----------|-------------------|-------------------|---------------------------------------|-------|
| Driveshft | DriveshftTrq      |                   | Driveshaft torque                     | N·m   |
|           | DriveshftSpd      |                   | Driveshaft speed                      | rad/s |
| Axl1      | Axl1Trq           |                   | Axle 1 torque                         | N·m   |
|           | Axl1Spd           |                   | Axle 1 speed                          | rad/s |
| Axl2      | Axl2Trq           |                   | Axle 2 torque                         | N·m   |
|           | Axl2Spd           |                   | Axle 2 speed                          | rad/s |
| Cplng     | CplngTrq          |                   | Torque coupling                       | N·m   |
|           | CplngSlipSpd      |                   | Slip speed                            | rad/s |
| PwrInfo   | PwrTrnsfrd        | PwrDrivesh<br>ft  | Mechanical power from driveshaft      | W     |
|           |                   | PwrAxl1           | Mechanical power from axle 1          | W     |
|           |                   | PwrAxl2           | Mechanical power from axle 2          | W     |
|           | PwrNotTrns<br>frd | PwrMechLos<br>s   | Total power loss                      | W     |
|           |                   | PwrDampLos<br>s   | Power loss due to damping             | W     |
|           |                   | PwrCplngLo<br>ss  | Power loss due to clutch              | W     |
|           | PwrStoredS<br>hft | PwrStoredS<br>hft | Rate change of stored internal energy | W     |

## DriveshftSpd — Angular speed

scalar

Driveshaft angular speed,  $\omega_d$ , in rad/s.

## Axl1Spd — Angular speed

scalar

Axle 1 angular speed,  $\omega_1$ , in rad/s.

## Axl2Spd — Angular speed

scalar

Axle 2 angular speed,  $\omega_2$ , in rad/s.

#### **Parameters**

## **Block Options**

## **Efficiency factors — Specify configuration**

Constant (default) | Driveshaft torque, speed and temperature

To account for the block efficiency, use the **Efficiency factors** parameter. This table summarizes the block implementation for each setting.

| Setting                                  | Implementation                                                                                                                                               |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Constant                                 | Constant efficiency that you can set with the <b>Constant efficiency factor</b> , <b>eta</b> parameter.                                                      |  |  |
| Driveshaft torque, temperature and speed | Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: |  |  |
|                                          | Efficiency lookup table, eta_tbl                                                                                                                             |  |  |
|                                          | Efficiency torque breakpoints, Trq_bpts                                                                                                                      |  |  |
|                                          | Efficiency speed breakpoints, omega_bpts                                                                                                                     |  |  |
|                                          | Efficiency temperature breakpoints, Temp_bpts                                                                                                                |  |  |
|                                          | For the air temperature, you can either:                                                                                                                     |  |  |
|                                          | Select Input temperature to create an input port.                                                                                                            |  |  |
|                                          | Set a <b>Ambient temperature, Tamb</b> parameter value.                                                                                                      |  |  |
|                                          | To select the interpolation method, use the <b>Interpolation method</b> parameter. For more information, see "Interpolation Methods" (Simulink).             |  |  |

## Interpolation method — Method

Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

For more information, see "Interpolation Methods" (Simulink).

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Input temperature — Create input port

off (default) | on

Select to create input port Temp for the temperature.

## **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

#### **Open Differential**

# **Crown wheel (ring gear) located — Specify crown wheel connection**To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the driveshaft.

## Carrier to drive shaft ratio, NC/ND — Ratio

4 (default) | scalar

Carrier-to-driveshaft gear ratio, N.

#### Carrier inertia, Jd — Inertia

.1 (default) | scalar

Rotational inertia of the crown gear assembly,  $J_d$ , in kg·m<sup>2</sup>. You can include the driveshaft inertia.

## Carrier damping, bd — Damping

1e-3 (default) | scalar

Crown gear linear viscous damping,  $b_d$ , in N·m·s/rad.

## Axle 1 inertia, Jw1 — Inertia

.1 (default) | scalar

Axle 1 rotational inertia,  $J_1$ , in kg·m<sup>2</sup>.

### Axle 1 damping, bw1 — Damping

1e-3 (default) | scalar

Axle 1 linear viscous damping,  $b_1$ , in N·m·s/rad.

#### Axle 2 inertia, Jw2 — Inertia

.1 (default) | scalar

Axle 2 rotational inertia,  $J_2$ , in kg·m<sup>2</sup>.

### Axle 2 damping, bw2 — Damping

1e-3 (default) | scalar

Axle 2 linear viscous damping,  $b_2$ , in N·m·s/rad.

## Axle 1 initial velocity, omegawlo — Angular velocity

0 (default) | scalar

Axle 1 initial velocity,  $\omega_{o1}$ , in rad/s.

## Axle 2 initial velocity, omegaw2o — Angular velocity

0 (default) | scalar

Axle 2 initial velocity,  $\omega_{o2}$ , in rad/s.

## Constant efficiency factor, eta — Efficiency

1 (default) | scalar

Constant efficiency,  $\eta$ .

## **Dependencies**

To enable this parameter, set **Efficiency factors** to Constant.

## Efficiency lookup table, eta\_tbl — Lookup table

M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- M input torques
- · N input speed
- Lair temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

# ${\bf Efficiency\ torque\ breakpoints,\ Trq\_bpts-Torque\ breakpoints}$

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector

Vector of input torque, breakpoints for efficiency, in  $N \cdot m$ .

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Efficiency speed breakpoints, omega\_bpts — Speed breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

# Efficiency temperature breakpoints, Temp\_bpts — Temperature breakpoints

[290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Ambient temperature, Tamb — Ambient temperature

297.15 (default) | scalar

Ambient air temperature,  $T_{air}$ , in K.

## **Dependencies**

To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.

#### **Slip Coupling**

#### Coupling type — Torque coupling

Pre-loaded ideal clutch (default) | Slip speed dependent torque data | Input torque dependent torque data

Specify the type of torque coupling.

### Number of disks, Ndisks — Torque coupling

4 (default) | scalar

Number of disks.

## **Dependencies**

To enable the ideal clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

#### Effective radius, Reff — Radius

.20 (default) | scalar

The effective radius,  $R_{eff}$ , used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$R_{eff} = \frac{2(R_0^3 - R_i^3)}{3(R_0^2 - R_i^2)}$$

The equation uses these variables.

 $R_o$  Annular disk outer radius

 $R_i$  Annular disk inner radius

#### **Dependencies**

To enable the clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

#### Nominal preload force, Fc — Force

500 (default) | scalar

Nominal preload force, in N.

## **Dependencies**

To enable the clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

#### Friction coefficient vector, muc — Friction

[.16 0.13 0.115 0.11 0.105 0.1025 0.10125] (default) | vector

Friction coefficient vector.

#### **Dependencies**

To enable the clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

## Slip speed vector, dw — Angular velocity

[0 10 20 40 60 80 100] (default) | vector

Slip speed vector, in rad/s.

#### **Dependencies**

To enable the clutch parameters, select Pre-loaded ideal clutch for the **Coupling type** parameter.

## Torque - slip speed vector, Tdw — Torque

```
[-100, -90, -50, -5, 0, 5, 50, 90, 100] (default) | vector
```

Torque vector, in N·m.

#### **Dependencies**

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

### Slip speed vector, dwT — Angular velocity

```
[-200, -175, -100, - 50, 0, 50, 100, 175, 200] (default) | vector
```

Slip speed vector, in rad/s.

#### **Dependencies**

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

#### Torque - input torque vector, TTin — Torque

```
[-200 -175 -100 - 50 0 50 100 175 200] (default) | vector
```

Torque vector, in N·m.

#### **Dependencies**

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

## Input torque vector, Tin — Torque

```
[-200 -175 -100 - 50 0 50 100 175 200] (default) | vector
```

Torque vector, in  $N \cdot m$ .

## **Dependencies**

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

### Coupling time constant, tauC — Constant

.01 (default) | scalar

Coupling time constant, in s.

## References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. *Transportation Systems*. Vol. 17, pp. 427-436.

# **Extended Capabilities**

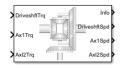
## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

# See Also

Open Differential

Introduced in R2017a


# **Open Differential**

Differential as a planetary bevel gear

**Library:** Powertrain Blockset / Drivetrain / Final Drive Unit

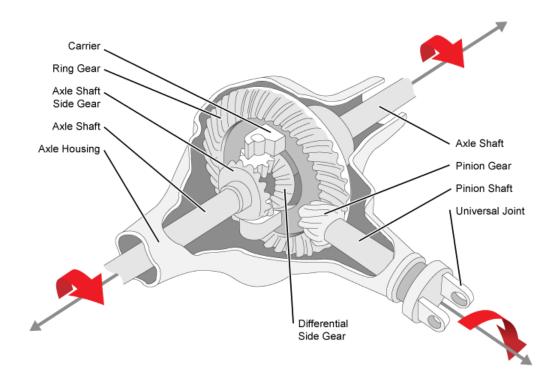
Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final

Drive Unit



# **Description**

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:


- · Carrier-to-driveshaft ratio
- Crown wheel location
- · Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- · Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.



## **Efficiency**

To account for the block efficiency, use the  $\mathbf{Efficiency}$  factors parameter. This table summarizes the block implementation for each setting.

| Setting                                  | Implementation                                                                                                                                               |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Constant                                 | Constant efficiency that you can set with the <b>Constant efficiency factor</b> , <b>eta</b> parameter.                                                      |  |  |
| Driveshaft torque, temperature and speed | Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: |  |  |
|                                          | Efficiency lookup table, eta_tbl                                                                                                                             |  |  |
|                                          | Efficiency torque breakpoints, Trq_bpts                                                                                                                      |  |  |
|                                          | Efficiency speed breakpoints, omega_bpts                                                                                                                     |  |  |
|                                          | Efficiency temperature breakpoints, Temp_bpts                                                                                                                |  |  |
|                                          | For the air temperature, you can either:                                                                                                                     |  |  |
|                                          | Select Input temperature to create an input port.                                                                                                            |  |  |
|                                          | Set a <b>Ambient temperature, Tamb</b> parameter value.                                                                                                      |  |  |
|                                          | To select the interpolation method, use the <b>Interpolation method</b> parameter. For more information, see "Interpolation Methods" (Simulink).             |  |  |

## **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal |                                                                                                                            |               | Description                                    | Equations                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| PwrInfo    | PwrTrnsfrd — Power transferred between blocks                                                                              | PwrDriveshft  | Mechanical<br>power from<br>driveshaft         | $\eta T_d \omega_d$                                                                                              |
|            | <ul> <li>Positive signals indicate<br/>flow into block</li> <li>Negative signals indicate<br/>flow out of block</li> </ul> | PwrAxl1       | Mechanical<br>power from<br>axle 1             | $\eta T_1 \omega_1$                                                                                              |
|            | now out of block                                                                                                           | PwrAxl2       | Mechanical<br>power from<br>axle 2             | $\eta T_2 \omega_2$                                                                                              |
|            | PwrNotTrnsfrd — Power crossing the block boundary, but not transferred                                                     | PwrMechLoss   | Total power loss                               | $\dot{W}_{loss} = -(P_t + P_d) + P_s$ $P_t = \eta T_d \omega_d + \eta T_1 \omega_1 + \eta T_2$                   |
|            | <ul> <li>Positive signals indicate an input</li> <li>Negative signals indicate a loss</li> </ul>                           | PwrDampLoss   | Power loss<br>due to<br>damping                | $P_d = -(b_1 \omega_1  + b_2 \omega_2  + b_d \omega_d )$                                                         |
|            | PwrStored — Stored energy rate of change  • Positive signals indicate an increase                                          | PwrStoredShft | Rate change<br>of stored<br>internal<br>energy | $P_{s} = -(\omega_{1}\dot{\omega}_{1}J_{1} + \omega_{2}\dot{\omega}_{2}J_{2} + \omega_{d}\dot{\omega}_{d}J_{d})$ |
|            | Negative signals indicate a decrease                                                                                       |               |                                                |                                                                                                                  |

## **Dynamics**

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

| Mechanical<br>Dynamic<br>Response | Differential Equation                                   |
|-----------------------------------|---------------------------------------------------------|
| Crown Gear                        | $\dot{\omega}_d J_d = \eta T_d - \omega_d b_d - T_i$    |
| Left Axle                         | $\dot{\omega}_1 J_1 = \eta T_1 - \omega_1 b_1 - T_{i1}$ |
| Right Axle                        | $\dot{\omega}_2 J_2 = \eta T_2 - \omega_2 b_2 - T_{i2}$ |

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$\eta T_1 = \eta T_2 = \frac{N}{2} T_i$$

$$\omega_{d=}=\frac{N}{2}(\omega_1+\omega_2)$$

The equations use these variables.

| Carrier-to-driveshaft gear ratio              |
|-----------------------------------------------|
| Rotational inertia of the crown gear assembly |
| Crown gear linear viscous damping             |
| Driveshaft angular speed                      |
| Differential efficiency                       |
| Axle 1 rotational inertia                     |
| Axle 1 linear viscous damping                 |
| Axle 1 speed                                  |
| Axle 2 rotational inertia                     |
| Axle 2 linear viscous damping                 |
| Axle 2 angular speed                          |
| Driveshaft torque                             |
| Axle 1 torque                                 |
| Axle 2 torque                                 |
| Driveshaft internal resistance torque         |
| Axle 1 internal resistance torque             |
| Axle 2 internal resistance torque             |
|                                               |

## **Ports**

## Inputs

## DriveshftTrq — Torque

scalar

Applied input torque, typically from the engine crankshaft, in N·m.

## Axl1Trq — Torque

scalar

Axle 1 torque,  $T_1$ , in N·m.

## Axl2Trq — Torque

scalar

Axle 2 torque,  $T_2$ , in N·m.

## **Temp — Temperature**

scalar

Temperature, in K.

## **Dependencies**

To enable this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.

## **Output**

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    |              |               | Description                           | Units |  |
|-----------|--------------|---------------|---------------------------------------|-------|--|
| Driveshft | DriveshftTrq |               | Driveshaft torque                     | N·m   |  |
|           | DriveshftSpd |               | Driveshaft speed                      | rad/s |  |
| Axl1      | Axl1Trq      |               | Axle 1 torque                         | N·m   |  |
|           | Axl1Spd      | Axl1Spd       |                                       | rad/s |  |
| Axl2      | Axl2Trq      |               | Axle 2 torque                         | N·m   |  |
|           | Axl2Spd      |               | Axle 2 speed                          | rad/s |  |
| PwrInfo   | PwrTrnsfrd   | PwrDriveshft  | Mechanical power from driveshaft      | W     |  |
|           |              | PwrAxl1       | Mechanical power from axle 1          | W     |  |
|           |              | PwrAxl2       | Mechanical power from axle 2          | W     |  |
|           | PwrTrnsfrd   | PwrMechLoss   | Total power loss                      | W     |  |
|           |              | PwrDampLoss   | Power loss due to damping             | W     |  |
|           | PwrStored    | PwrStoredShft | Rate change of stored internal energy | W     |  |

## DriveshftSpd — Angular speed

scalar

Driveshaft angular speed,  $\omega_d$ , in rad/s.

## Axl1Spd — Angular speed

scalar

Axle 1 angular speed,  $\omega_1$ , in rad/s.

## Axl2Spd — Angular speed

scalar

Axle 2 angular speed,  $\omega_2$ , in rad/s.

## **Parameters**

## **Block Options**

## Efficiency factors — Specify configuration

Constant (default) | Driveshaft torque, speed and temperature

To account for the block efficiency, use the **Efficiency factors** parameter. This table summarizes the block implementation for each setting.

| Setting                                  | Implementation                                                                                                                                               |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Constant                                 | Constant efficiency that you can set with the <b>Constant efficiency factor</b> , <b>eta</b> parameter.                                                      |  |  |
| Driveshaft torque, temperature and speed | Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: |  |  |
|                                          | Efficiency lookup table, eta_tbl                                                                                                                             |  |  |
|                                          | Efficiency torque breakpoints, Trq_bpts                                                                                                                      |  |  |
|                                          | Efficiency speed breakpoints, omega_bpts                                                                                                                     |  |  |
|                                          | Efficiency temperature breakpoints, Temp_bpts                                                                                                                |  |  |
|                                          | For the air temperature, you can either:                                                                                                                     |  |  |
|                                          | Select Input temperature to create an input port.                                                                                                            |  |  |
|                                          | Set a <b>Ambient temperature</b> , <b>Tamb</b> parameter value.                                                                                              |  |  |
|                                          | To select the interpolation method, use the <b>Interpolation method</b> parameter. For more information, see "Interpolation Methods" (Simulink).             |  |  |

#### **Interpolation method — Method**

Flat | Nearest | Linear point-slope | Linear Lagrange | Cubic spline

For more information, see "Interpolation Methods" (Simulink).

## **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

#### Input temperature — Create input port

off (default) | on

Select to create input port Temp for the temperature.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Crown wheel (ring gear) located — Specify crown wheel connection

To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the driveshaft.

## Carrier to drive shaft ratio, Ndiff — Ratio

4 (default) | scalar

Carrier-to-drives haft gear ratio, N, dimensionless.

#### Carrier inertia, Jd — Inertia

.1 (default) | scalar

Rotational inertia of the crown gear assembly,  $J_d$ , in kg·m<sup>2</sup>. You can include the driveshaft inertia.

## Carrier damping, bd — Damping

1e-3 (default) | scalar

Crown gear linear viscous damping,  $b_d$ , in N·m·s/rad.

#### Axle 1 inertia, Jw1 — Inertia

.1 (default) | scalar

Axle 1 rotational inertia,  $J_1$ , in kg·m<sup>2</sup>.

#### Axle 1 damping, bw1 — Damping

1e-3 (default) | scalar

Axle 1 linear viscous damping,  $b_1$ , in N·m·s/rad.

## Axle 2 inertia, Jw2 - Inertia

.1 (default) | scalar

Axle 2 rotational inertia,  $J_2$ , in kg·m<sup>2</sup>.

## Axle 2 damping, bw2 — Damping

1e-3 (default) | scalar

Axle 2 linear viscous damping,  $b_2$ , in N·m·s/rad.

#### Axle 1 initial velocity, omegawlo — Angular velocity

0 (default) | scalar

Axle 1 initial velocity,  $\omega_{o1}$ , in rad/s.

#### Axle 2 initial velocity, omegaw2o — Angular velocity

0 (default) | scalar

Axle 2 initial velocity,  $\omega_{o2}$ , in rad/s.

#### **Efficiency**

#### Constant efficiency factor, eta — Efficiency

1 (default) | scalar

Constant efficiency,  $\eta$ .

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Constant.

## Efficiency lookup table, eta\_tbl — Lookup table

M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- · M input torques
- N input speed
- Lair temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Efficiency torque breakpoints, Trq\_bpts — Torque breakpoints

[25, 50, 75, 100, 150, 200, 250] (default) | 1-by-M vector

Vector of input torque, breakpoints for efficiency, in  $N \cdot m$ .

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Efficiency speed breakpoints, omega\_bpts — Speed breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

# Efficiency temperature breakpoints, Temp\_bpts — Temperature breakpoints

[290 358] (default) | 1-by-L vector

Vector of ambient temperature breakpoints for efficiency, in K.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Driveshaft torque, speed and temperature.

## Ambient temperature, Tamb — Ambient temperature

297.15 (default) | scalar

Ambient air temperature,  $T_{air}$ , in K.

## **Dependencies**

To enable this parameter:

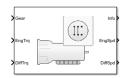
- Set **Efficiency factors** to Driveshaft torque, speed and temperature.
- Clear **Input temperature**.

# **Extended Capabilities**

## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

## **See Also**


Limited Slip Differential

Introduced in R2017a

# **Ideal Fixed Gear Transmission**

Ideal fixed gear transmission without clutch or synchronization **Library:** Powertrain Blockset / Transmission / Transmission

Powertrain Blockset / Transmission / Transmission Systems Vehicle Dynamics Blockset / Powertrain / Transmission



## **Description**

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting                                          | Block Implementation                                                                                                          |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Gear only                                        | Efficiency determined from a 1D lookup table that is a function of the gear.                                                  |
| Gear, input torque, input speed, and temperature | Efficiency determined from a 4D lookup table that is a function of:  • Gear  • Input torque  • Input speed  • Oil temperature |

The block uses this equation to determine the transmission dynamics:

$$\dot{\omega}_i \frac{J_N}{N^2} = \eta_N \left(\frac{T_O}{N} + T_i\right) - \frac{\omega_i}{N^2} b_N$$

$$\omega_i = N\omega_O$$

The block filters the gear command signal:

$$\frac{G}{G_{cmd}}(s) = \frac{1}{\tau_s s + 1}$$

#### **Neutral Gear**

When **Initial gear number**, **G\_o** is equal to **0**, the initial gear is neutral. The block uses these parameters to decouple the input flywheel from the downstream gearing.

- Initial input velocity, omega\_o
- Initial neutral input velocity, omegainN\_o

The block uses these equations for the neutral gear speed and flywheel.

$$\begin{split} \dot{\omega}_{neutral} \frac{J_N}{N^2} &= \eta_N \frac{T_o}{N} - \frac{\omega_{neutral}}{N^2} b_N \\ \omega_{neutral} &= N \omega_o \\ \dot{\omega}_1 J_F &= \eta_{@N \ = \ 0} T_i - b_{@N \ = \ 0} \omega_i \\ J_F &= J_{@N \ = \ 1} - J_{@N \ = \ 0} \end{split}$$

## **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Sig | ynal                                                                                                                                                   |                 | Description                              | Varia<br>ble    | Equations                  |                                                                                                        |                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|-----------------|----------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|
|         |                                                                                                                                                        | PwrEng          | Engine power                             | $P_{eng}$       | $\omega_i T_i$             |                                                                                                        |                         |
| fo      | <ul> <li>transferred between blocks</li> <li>Positive signals indicate flow into block</li> <li>Negative signals indicate flow out of block</li> </ul> | PwrDif<br>frntl | Differential<br>power                    | $P_{diff}$      | $\omega_o T_o$             |                                                                                                        |                         |
|         | J J,                                                                                                                                                   |                 | Mechanical power loss                    | $P_{effloss}$   | $\omega_o T_o(\eta_N - 1)$ |                                                                                                        |                         |
|         | <ul><li>not transferred</li><li>Positive signals indicate an input</li><li>Negative signals indicate a</li></ul>                                       | PwrDam<br>pLoss | Mechanical<br>damping loss               | $P_{dampl}$ oss | For G=0:                   | $-\frac{b_N \omega_i^2}{\left N^2\right }$ $-b_N \omega_i^2 - \frac{b_N \omega_i^2}{\left N^2\right }$ | )2<br>Pneutral          |
|         | loss                                                                                                                                                   |                 |                                          |                 | ror G ≠ 0:                 | $-\nu_N\omega_i$ $-$                                                                                   | $N^2$                   |
|         | PwrStored — Stored energy rate of change                                                                                                               |                 | Rate change in rotational kinetic energy |                 | For G=0:                   | 14                                                                                                     |                         |
|         | Positive signals indicate an increase                                                                                                                  |                 |                                          |                 | For G ≠ 0:                 | $J_F \dot{\omega}_i \omega_i + \frac{J_N}{N^2} \dot{\omega}_i$                                         | neutral $\omega$ neutra |
|         | Negative signals indicate a decrease                                                                                                                   |                 |                                          |                 |                            | 14                                                                                                     |                         |

The equations use these variables.

| $b_N$     | Engaged gear viscous damping    |
|-----------|---------------------------------|
| $J_N$     | Engaged gear rotational inertia |
| $J_F$     | Flywheel rotational inertia     |
| $\eta_N$  | Engaged gear efficiency         |
| G         | Engaged gear number             |
| $G_{cmd}$ | Gear number to engage           |
| N         | Engaged gear ratio              |

 $T_i$  Applied input torque, typically from the engine crankshaft or dual mass flywheel damper  $T_o$  Applied load torque, typically from the differential or drive shaft  $\omega_o$  Initial input drive shaft rotational velocity

 $\omega_i$ ,  $\omega_i$  Applied drive shaft angular speed and acceleration

 $\omega_{No}$  Initial neutral gear input rotational velocity  $\omega_{neutral}$  Neutral gear drive shaft rotational velocity

 $au_s$  Shift time constant

#### **Ports**

#### Inputs

#### **Gear — Gear number to engage**

scalar

Integer value of gear number to engage,  $G_{cmd}$ .

## EngTrq — Applied input torque

scalar

Applied input torque,  $T_i$ , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

#### DiffTrq — Applied load torque

scalar

Applied load torque,  $T_o$ , typically from the differential, in N·m.

#### **Temp** — Oil temperature

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- Input torque
- · Input speed
- Oil temperature

#### **Dependencies**

To enable this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

#### **Output**

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  |               |                | Description                                                                                            | Variabl<br>e   | Units |
|---------|---------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|-------|
| Eng     | EngTrq        |                | Applied input<br>torque, typically<br>from the engine<br>crankshaft or<br>dual mass<br>flywheel damper | $T_i$          | N·m   |
|         | EngSpd        |                | Applied drive shaft angular speed input                                                                | $\omega_i$     | rad/s |
| Diff    | DiffTrq       | DiffTrq        |                                                                                                        |                | N·m   |
|         | DiffSpd       | DiffSpd        |                                                                                                        |                | rad/s |
| Trans   | TransSpdRatio | TransSpdRatio  |                                                                                                        |                | N/A   |
|         | TransEta      | TransEta       |                                                                                                        |                | N/A   |
|         | TransGearCmd  | TransGearCmd   |                                                                                                        |                | N/A   |
|         | TransGear     |                | Engaged gear                                                                                           | N              | N/A   |
| PwrInfo | PwrTrnsfrd    | PwrEng         | Engine power                                                                                           | $P_{eng}$      | W     |
|         |               | PwrDiffrntl    | Differential power                                                                                     | $P_{diff}$     | W     |
|         | PwrNotTrnsfrd | PwrEffLoss     | Mechanical power loss                                                                                  | $P_{effloss}$  | W     |
|         |               | PwrDampLoss    | Mechanical damping loss                                                                                | $P_{damploss}$ | W     |
|         | PwrStored     | PwrStoredTrans | Rate change in rotational kinetic energy                                                               | $P_{str}$      | W     |

# EngSpd — Angular speed

scalar

Applied drive shaft angular speed input,  $\omega_{i}$ , in rad/s.

# DiffSpd — Angular speed scalar

Drive shaft angular speed output,  $\omega_{o}$ , in rad/s.

## **Parameters**

## **Efficiency factors** — **Specify efficiency calculation**

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting                                          | Block Implementation                                                         |
|--------------------------------------------------|------------------------------------------------------------------------------|
| Gear only                                        | Efficiency determined from a 1D lookup table that is a function of the gear. |
| Gear, input torque, input speed, and temperature | Efficiency determined from a 4D lookup table that is a function of:  • Gear  |
|                                                  | • Input torque                                                               |
|                                                  | <ul><li>Input speed</li><li>Oil temperature</li></ul>                        |

#### **Dependencies**

| Setting Parameter To                             | Enables                                                                                                                                                            |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gear only                                        | Efficiency vector, eta                                                                                                                                             |
| Gear, input torque, input speed, and temperature | Efficiency torque breakpoints, Trq_bpts  Efficiency speed breakpoints, omega_bpts  Efficiency temperature breakpoints, Temp_bpts  Efficiency lookup table, eta tbl |

## Gear property interpolation method — Interpolation

Nearest (default) | Linear | Flat | Cubic spline

Method that the block uses to switch the gear ratio during gear shifting.

#### **Transmission**

#### Gear number vector, G — Specify number of transmission speeds

[-1,0,1,2,3,4,5] (default) | vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is  $\theta$ . For example, you can set these parameter values.

| To Specify                                               | Set Gear number, G To |
|----------------------------------------------------------|-----------------------|
| Four transmission speeds, including neutral              | [0,1,2,3,4]           |
| Three transmission speeds, including neutral and reverse | [-1,0,1,2,3]          |
| Five transmission speeds, including neutral and reverse  | [-1,0,1,2,3,4,5]      |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

## Efficiency torque breakpoints, Trq\_bpts — Breakpoints

[25,50,75,100,150,200,250] (default) | vector

Torque breakpoints for efficiency table.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

### Efficiency speed breakpoints, omega\_bpts — Breakpoints

[52.4 78.5 105 131 157 183 209 262 314 419 524] (default) | vector

Speed breakpoints for efficiency table.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Efficiency temperature breakpoints, Temp\_bpts — Breakpoints

[313 358] (default) | vector

Temperature breakpoints for efficiency table.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Gear ratio vector, N — Ratio of input speed to output speed

[-4.47,4.47,4.47,2.47,1.47,1,0.8] (default) | vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

| To Specify Gear Ratios For                              | Set Gear number, G To | Set Gear ratio, N To            |
|---------------------------------------------------------|-----------------------|---------------------------------|
| Four transmission speeds, including neutral             | [0,1,2,3,4]           | [1,4.47,2.47,1.47,1]            |
| Five transmission speeds, including neutral and reverse | [-1,0,1,2,3,4,5]      | [-4.47,1,4.47,2.47, 1.47,1,0.8] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

## Inertia vector, Jout — Gear rotational inertia

[0.128 0.01 0.128 0.1 0.062 0.028 0.01] (default) | vector

Vector of gear rotational inertias,  $J_N$ , with indices corresponding to the inertias specified in **Gear number**, **G**, in kg\*m^2. For example, you can set these parameter values.

| To Specify Inertia For                                | Set Gear number, G To | Set Inertia, J To                         |
|-------------------------------------------------------|-----------------------|-------------------------------------------|
| Four gears, including neutral                         | [0,1,2,3,4]           | [0.01,2.28,2.04, 0.32,0.028]              |
| Inertia for five gears, including reverse and neutral | [-1,0,1,2,3,4,5]      | [2.28,0.01,2.28,<br>2.04,0.32,0.028,0.01] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

# Damping vector, bout — Gear viscous damping coefficient [.003 .001 .003 .0025 .002 .001 .001] (default) | vector

Vector of gear viscous damping coefficients,  $b_N$ , with indices corresponding to the coefficients specified in **Gear number**, **G**, in N·m·s/rad. For example, you can set these parameter values.

| To Specify Damping For                    | Set Gear number, G To | Set Damping, b To                              |
|-------------------------------------------|-----------------------|------------------------------------------------|
| Four gears, including neutral             | [0,1,2,3,4]           | [0.001,0.003,<br>0.0025,0.002,0.001]           |
| Five gears, including reverse and neutral | [-1,0,1,2,3,4,5]      | [0.003,0.001, 0.003,0.0025, 0.002,0.001,0.001] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

# Efficiency vector, eta — Gear efficiency [0.9,0.9,0.9,0.9,0.9,0.9,0.95,0.95] (default) | vector

Vector of gear mechanical efficiency,  $\eta_N$ , with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

| To Specify Efficiency For                 | Set Gear number, G To | Set Efficiency, eta To              |
|-------------------------------------------|-----------------------|-------------------------------------|
| Four gears, including neutral             | [0,1,2,3,4]           | [0.9,0.9,0.9,0.95]                  |
| Five gears, including reverse and neutral |                       | [0.9,0.9,0.9,<br>0.9,0.9,0.95,0.95] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

#### **Dependencies**

To enable this parameter, set **Efficiency factors** to Gear only.

# Efficiency lookup table, eta\_tbl — Gear efficiency array

Table of gear mechanical efficiency,  $\eta_N$  as a function of gear, input torque, input speed, and temperature.

## **Dependencies**

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Initial gear number, G\_o — Gear

0 (default) | scalar

Initial gear number,  $G_o$ , dimensionless.

## Initial output velocity, omega\_o — Output speed

0 (default) | scalar

Transmission initial output rotational velocity,  $\omega_o$ , in rad/s.

# Initial neutral input velocity, omegainN $_{o}$ — Neutral gear input speed 0 (default) | scalar

Initial neutral gear input rotational velocity,  $\omega_{No}$ , in rad/s.

## Shift time constant, tau\_s — Time

.01 (default) | scalar

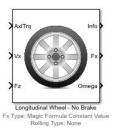
Shift time constant,  $\tau_s$ , in s.

# **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

## **See Also**


Limited Slip Differential | Open Differential

Introduced in R2017a

# **Wheel and Tire Blocks**

# **Longitudinal Wheel**

Library: Powertrain Blockset / Drivetrain / Wheels
Vehicle Dynamics Blockset / Wheels and Tires



## **Description**

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

| Block Name                           | Brake Type Setting | Brake Implementation                                                                             |
|--------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|
| Longitudinal Wheel - No<br>Brake     | None               | None                                                                                             |
| Longitudinal Wheel - Disc<br>Brake   | Disc               | Brake that converts the brake cylinder pressure into a braking force.                            |
| Longitudinal Wheel - Drum<br>Brake   | Drum               | Simplex drum brake that converts the applied force and brake geometry into a net braking torque. |
| Longitudinal Wheel - Mapped<br>Brake | Mapped             | Lookup table that is a function of the wheel speed and applied brake pressure.                   |

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

| Setting                                 | Block Implementation                                                                                                             |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Magic Formula constant value            | Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.                                               |
| Magic Formula pure<br>longitudinal slip | Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in <i>Tire and Vehicle Dynamics</i> . |
| Mapped force                            | Lookup table that is a function of the normal force and wheel slip ratio.                                                        |

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

| Setting               | Block Implementation                                                                                                                                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | None                                                                                                                                                                    |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.      |
| ISO 28580             | Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results. |
| Magic Formula         | Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                      |
| Mapped torque         | Lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                |

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

| Setting                      | Block Implementation                                                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                         | Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.                                                                            |
| Mapped stiffness and damping | Vertical motion depends on wheel stiffness and damping.<br>Stiffness is a function of tire sidewall displacement and<br>pressure. Damping is a function of tire sidewall velocity and<br>pressure. |

#### **Rotational Wheel Dynamics**

The block calculates the inertial response of the wheel subject to:

- · Axle losses
- · Brake and drive torque
- Tire rolling resistance
- · Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$T_i = T_a - T_b + T_d$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$T_d(s) = \frac{1}{\frac{|\omega|R_e}{L_e}s + 1} (F_x R_e + M_y)$$

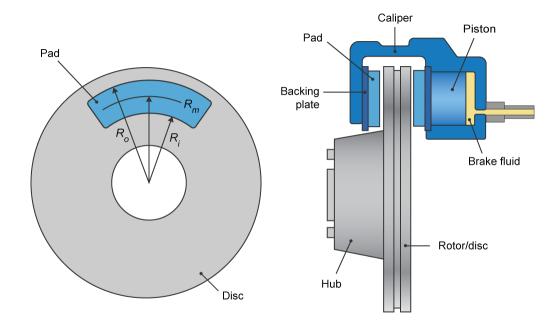
To calculate the rolling resistance torque, you can specify one of these **Rolling Resistance** parameters.

| Setting               | Block Implementation                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | Block sets rolling resistance, $M_y$ , to zero.                                                                                                                                                                                                                                                                                                                                          |
| Pressure and velocity | Block uses the method in SAE Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity. Specifically, $M_{\rm V}=R_{\rm e}\{a+b V_{\rm X} +cV_{\rm X}^2\}\{F_{\rm Z}\beta p_{\rm i}\alpha\}\tanh(4V_{\rm X})$                                                                              |
| ISO 28580             | Block uses the method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results. The method accounts for normal load, parasitic loss, and thermal corrections from test conditions. Specifically, $M_y = R_e(\frac{F_z C_r}{1 + K_t (T_{amb} - T_{meas})} - F_{pl}) \tanh(\omega)$ |
| Magic Formula         | Block calculates the rolling resistance, $M_y$ , using the Magic Formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                                                                                                                                                                            |
| Mapped torque         | For the rolling resistance, $M_y$ , the block uses a lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                                                                                                                                                                            |

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

| If                                            | Lock-Up<br>Condition | Friction Model                                        | Dynamic Model                           |
|-----------------------------------------------|----------------------|-------------------------------------------------------|-----------------------------------------|
| $\omega \neq 0$                               | Unlocked             | $T_f = T_k$                                           | $\dot{\omega}J = -\omega b + T_i + T_o$ |
| or                                            |                      | where,                                                |                                         |
| $ T_S <  T_i + T_f - \omega b $               |                      | $T_k = F_c R_{eff} \mu_k \tanh[4(-\omega_d)]$         |                                         |
|                                               |                      | $T_S = F_c R_{eff} \mu_S$                             |                                         |
|                                               |                      | $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$ |                                         |
| $\omega = 0$                                  | Locked               | $T_f = T_S$                                           | $\omega = 0$                            |
| and                                           |                      |                                                       |                                         |
| $T_S \ge \left  T_i + T_f - \omega b \right $ |                      |                                                       |                                         |

The equations use these variables.


| Wheel angular velocity               |
|--------------------------------------|
| Velocity-independent force component |
| Linear velocity force component      |
| Quadratic velocity force component   |
| Tire relaxation length               |
| Moment of inertia                    |
|                                      |

| $M_{y}$                       | Rolling resistance torque                                           |
|-------------------------------|---------------------------------------------------------------------|
| $T_a$                         | Applied axle torque                                                 |
| $T_b$                         | Braking torque                                                      |
| $T_d$                         | Combined tire torque                                                |
| $T_f$                         | Frictional torque                                                   |
| $T_i$                         | Net input torque                                                    |
| $T_k$                         | Kinetic frictional torque                                           |
| $T_o$                         | Net output torque                                                   |
| $T_s$                         | Static frictional torque                                            |
| $F_c$                         | Applied clutch force                                                |
| $F_{\chi}$                    | Longitudinal force developed by the tire road interface due to slip |
| $R_{eff}$                     | Effective clutch radius                                             |
| $R_o$                         | Annular disk outer radius                                           |
| $R_i$                         | Annular disk inner radius                                           |
| $R_e$                         | Effective tire radius while under load and for a given pressure     |
| $V_{\scriptscriptstyle \chi}$ | Longitudinal axle velocity                                          |
| $F_z$                         | Vehicle normal force                                                |
| $C_r$                         | Rolling resistance constant                                         |
| $T_{amb}$                     | Ambient temperature                                                 |
| $T_{meas}$                    | Measured temperature for rolling resistance constant                |
| $F_{pl}$                      | Parasitic force loss                                                |
| $K_t$                         | Thermal correction factor                                           |
| α                             | Tire pressure exponent                                              |
| β                             | Normal force exponent                                               |
| $p_i$                         | Tire pressure                                                       |
| $\mu_s$                       | Coefficient of static friction                                      |
| $\mu_k$                       | Coefficient of kinetic friction                                     |

## **Brakes**

## Disc

If you specify the  ${\bf Brake\ Type}$  parameter  ${\tt Disc}$ , the block implements a disc brake. This figure shows the side and front views of a disc brake.



A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

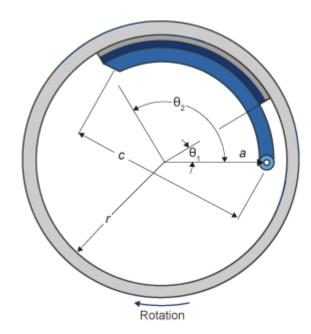
$$T = \begin{cases} \frac{\mu P \pi B_a ^2 R_m N_{pads}}{4} & \text{when } N \neq 0 \\ \frac{\mu_{static} P \pi B_a ^2 R_m N_{pads}}{4} & \text{when } N = 0 \end{cases}$$

$$Rm = \frac{Ro + Ri}{2}$$

The equations use these variables.

| Brake torque                                              |
|-----------------------------------------------------------|
| Applied brake pressure                                    |
| Wheel speed                                               |
| Number of brake pads in disc brake assembly               |
| Disc pad-rotor coefficient of static friction             |
| Disc pad-rotor coefficient of kinetic friction            |
| Brake actuator bore diameter                              |
| Mean radius of brake pad force application on brake rotor |
| Outer radius of brake pad                                 |
|                                                           |

 $R_i$  Inner radius of brake pad


#### Drum

If you specify the **Brake Type** parameter Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in *Fundamentals of Machine Elements*.

$$\begin{split} T_{rshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T_{lshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{-2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T &= \begin{cases} T_{rshoe} + T_{lshoe} & \text{when } N \neq 0 \\ (T_{rshoe} + T_{lshoe})\frac{\mu_{static}}{\mu} & \text{when } N = 0 \end{cases} \end{split}$$



The equations use these variables.

T Brake torque

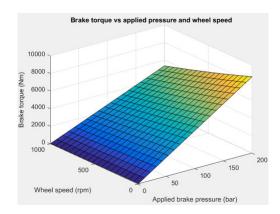
P Applied brake pressure

N Wheel speed

| Disc pad-rotor coefficient of static friction                                  |
|--------------------------------------------------------------------------------|
| Disc pad-rotor coefficient of kinetic friction                                 |
| Right shoe brake torque                                                        |
| Left shoe brake torque                                                         |
| Distance from drum center to shoe hinge pin center                             |
| Distance from shoe hinge pin center to brake actuator connection on brake shoe |
| Drum internal radius                                                           |
| Brake actuator bore diameter                                                   |
| Angle from shoe hinge pin center to start of brake pad material on shoe        |
| Angle from shoe hinge pin center to end of brake pad material on shoe          |
|                                                                                |

#### **Mapped**

If you specify the **Brake Type** parameter Mapped, the block uses a lookup table to determine the brake torque.


$$T = \begin{cases} f_{brake}(P,N) & \text{when } N \neq 0 \\ \left(\frac{\mu_{static}}{\mu}\right) f_{brake}(P,N) & \text{when } N = 0 \end{cases}$$

The equations use these variables.

| T                 | Brake torque                                                            |
|-------------------|-------------------------------------------------------------------------|
| $f_{brake}(P, N)$ | Brake torque lookup table                                               |
| P                 | Applied brake pressure                                                  |
| N                 | Wheel speed                                                             |
| $\mu_{static}$    | Friction coefficient of drum pad-face interface under static conditions |
| μ                 | Friction coefficient of disc pad-rotor interface                        |

The lookup table for the brake torque,  $f_{brake}(P, N)$ , is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- N is wheel speed, in rpm.



## **Longitudinal Force**

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function  $F_x = f(\kappa, F_z)$ , the longitudinal force  $F_x$  on the tire, based on:

- Vertical load F<sub>z</sub>
- Wheel slip κ



The Magic Formula model uses these variables.

| $\Omega$ | Wheel angular velocity |
|----------|------------------------|
|          | 3 3                    |

 $r_{\rm w}$  Wheel radius

 $V_{\mathrm{x}}$  Wheel hub longitudinal velocity  $r_{\mathrm{w}}\Omega$  Tire tread longitudinal velocity

 $V_{\rm sx} = r_{\rm w}\Omega - V_{\rm x}$  Wheel slip velocity

 $\kappa = V_{\rm sx}/|V_{\rm x}|$  Wheel slip

 $F_z$ ,  $F_{z0}$  Vertical load and nominal vertical load on tire

 $F_x = f(\kappa, F_z)$  Longitudinal force exerted on the tire at the contact point. Also a

characteristic function f of the tire.

#### **Magic Formula Constant Value**

If you set **Longitudinal Force** to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients (B, C, D, E), or stiffness, shape, peak, and curvature:

$$F_{x} = f(\kappa, F_{z}) = F_{z}D\sin(C\tan^{-1}[\{B\kappa - E[B\kappa - \tan^{-1}(B\kappa)]\}])$$

The slope of f at  $\kappa = 0$  is  $BCD \cdot F_z$ .

| The coefficients are based on empirical tire data. | These values are typical sets of constant Magic |
|----------------------------------------------------|-------------------------------------------------|
| Formula coefficients for common road conditions.   |                                                 |

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### Magic Formula Pure Longitudinal Slip

If you set **Longitudinal Force** to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of *Tire and Vehicle Dynamics*, including 4.E9 through 4.E18:

$$F_{x0} = D_x \sin(C_x \tan^{-1}[\{B_x K_x - E_x[B_x K_x - \tan^{-1}(B_x K_x)]\}]) + S_{Vx}$$
 where:  

$$K_x = K + S_{Hx}$$

$$C_x = p_{Cx1} \lambda_{Cx}$$

$$D_x = \mu_x F_z c_1$$

$$\mu_x = (p_{Dx1} + p_{Dx2} df_z)(1 + p_{px3} dp_i + p_{px4} dp_i^2)(1 - p_{Dx3} \gamma^2) \lambda^*_{\mu x}$$

$$E_x = (p_{Ex1} + p_{Ex2} df_z + p_{Ex3} df_z^2)[1 - p_{Ex4} sgn(K_x)] \lambda_{Ex}$$

$$K_{xK} = F_z(p_{Kx1} + p_{Kx2} df_z) exp(p_{Kx3} df_z)(1 + p_{px1} dp_i + p_{px2} dp_i^2)$$

$$B_x = K_{xK}/(C_x D_x + \varepsilon_x)$$

$$S_{Hx} = p_{Hx1} + p_{Hx2} df_z$$

$$S_{Vx} = F_z \cdot (p_{Vx1} + p_{Vx2} df_z) \lambda_{Vx} \lambda'_{\mu x} c_1$$

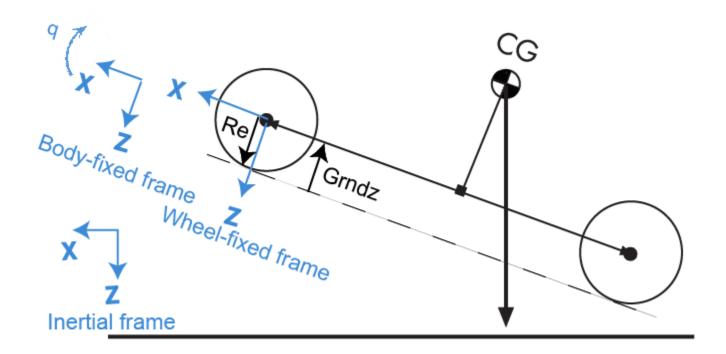
 $S_{Hx}$  and  $S_{Vx}$  represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve.  $\mu_x$  is the longitudinal load-dependent friction coefficient.  $\varepsilon_x$  is a small number inserted to prevent division by zero as  $F_z$  approaches zero.

#### **Vertical Dynamics**

If you select no vertical degrees-of-freedom by setting **Vertical Motion** to **None**, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set **Vertical Motion** to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$Fztire(z, \dot{z}, P_{tire}) = F_{zk}(z, P_{tire}) + F_{zh}(\dot{z}, P_{tire})$$


The block determines the vertical response using this differential equation.

$$\ddot{z}m = Fztire - F_z - mg$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$\ddot{z} = \dot{z} = m = 0$$
 $Fztire = mg$ 

The block uses the wheel-fixed frame to resolve the vertical forces.



The equations use these variables.

| Fztire               | Tire normal force along the wheel-fixed $z$ -axis                                            |
|----------------------|----------------------------------------------------------------------------------------------|
| m                    | Axle mass                                                                                    |
| $F_{zk}$             | Tire normal force due to wheel stiffness along the wheel-fixed $z$ -axis                     |
| $F_{zb}$             | Tire normal force due to wheel damping along the wheel-fixed $z$ -axis                       |
| $F_z$                | Suspension or vehicle normal force along the wheel-fixed z-axis                              |
| $P_{\mathit{Tire}}$  | Tire pressure                                                                                |
| $z,\dot{z},\ddot{z}$ | Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed $z$ -axis |

# **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal |                                   | Description | Equations                                        |                         |
|------------|-----------------------------------|-------------|--------------------------------------------------|-------------------------|
| О          | PwrTrnsfrd —<br>Power transferred |             | Tractive power applied from the axle             | $P_{road} = F_{X}V_{X}$ |
|            | between blocks                    | •           | External torque applied by the axle to the wheel | $P_T = T\omega$         |

| Bus Signal                                                                      |                        | Description                                                      | Equations                                                                                                                                                                            |
|---------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Positive signals indicate flow into block</li> <li>Negative</li> </ul> | PwrFz                  | Vertical force applied to the wheel by the vehicle or suspension | $P_{Fz} = F_z \dot{z}$                                                                                                                                                               |
| signals indicate<br>flow out of<br>block                                        |                        |                                                                  |                                                                                                                                                                                      |
| PwrNotTrnsfrd — Power crossing                                                  | PwrSlip                | Tractive power loss                                              | $\begin{vmatrix} P_{\scriptscriptstyle K} = F_{\scriptscriptstyle X} V_{\scriptscriptstyle X} + (\\ -F_{\scriptscriptstyle Cp} R_e + M_{\scriptscriptstyle Y}) \omega \end{vmatrix}$ |
| the block<br>boundary, but not                                                  | PwrMyRoll              | Rolling resistance power                                         | $P_{My} = M_y \omega$                                                                                                                                                                |
| transferred                                                                     | PwrMyBrk               | Braking power                                                    | $P_{brk} = M_{brk}\omega$                                                                                                                                                            |
| Positive signals                                                                | PwrMyb                 | Rolling viscous damping loss                                     | $P_b = -b\omega^2$                                                                                                                                                                   |
| indicate an input                                                               | PwrFzDamp              | Vertical damping power                                           | $P_{Fzb} = F_{zb}\dot{z}$                                                                                                                                                            |
| Negative signals indicate a loss                                                |                        |                                                                  |                                                                                                                                                                                      |
| PwrStored —<br>Stored energy rate                                               | PwrStoredzdot          | Rate of change of vertical kinetic energy                        | $P_{\dot{z}} = m\ddot{z}\dot{z}$                                                                                                                                                     |
| of change  • Positive signals                                                   | PwrStoredq             | Rate of change of rotational kinetic energy                      | $P_{\omega} = I_{yy}\dot{\omega}\omega$                                                                                                                                              |
| indicate an increase                                                            | PwrStoredFsFzSp<br>rng | Rate of change of stored sidewall potential energy               | $P_{Fzk} = F_{zk}\dot{z}_x$                                                                                                                                                          |
| Negative signals indicate a decrease                                            | PwrStoredGrvty         | Rate of change of gravitational potential energy                 | $P_g = -mg\dot{Z}$                                                                                                                                                                   |

The equations use these variables.

| ω                          | Wheel angular velocity                                              |
|----------------------------|---------------------------------------------------------------------|
| b                          | Linear velocity force component                                     |
| $F_{x}$                    | Longitudinal force developed by the tire road interface due to slip |
| $F_{cp}$                   | Tire slip force at contact patch                                    |
| $F_z$                      | Vehicle normal force                                                |
| $F_{zb}$                   | Tire normal force due to wheel damping                              |
| $F_{zk}$                   | Tire normal force due to wheel stiffness                            |
| $I_{yy}$                   | Wheel rotational inertia                                            |
| $M_{brk}$                  | Braking moment                                                      |
| $M_{y}$                    | Rolling resistance torque                                           |
| $R_e$                      | Effective tire radius while under load and for a given pressure     |
| T                          | Axle torque applied on wheel                                        |
| $V_{\scriptscriptstyle X}$ | Longitudinal axle velocity                                          |

 $z,\dot{z},\ddot{z}$  Tire displacement, velocity, and acceleration, respectively

 $\omega$  Wheel angular velocity

 $\dot{Z}$  Vehicle vertical velocity along the vehicle-fixed z-axis

# **Ports**

### Input

# **BrkPrs** — **Brake** pressure

scalar

Brake pressure, in Pa.

#### **Dependencies**

To enable this port, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

# AxlTrq — Axle torque

scalar

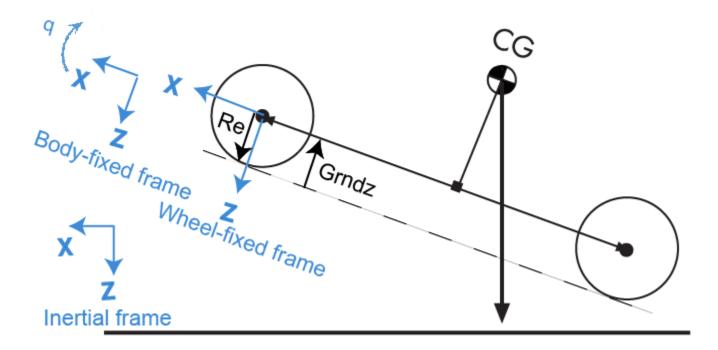
Axle torque,  $T_a$ , about wheel spin axis, in N·m.

#### Vx — Velocity

scalar

Axle longitudinal velocity along vehicle(body)-fixed *x*-axis, in m/s.

# Fz — Normal force


scalar

Absolute value of suspension or vehicle normal force along body-fixed *z*-axis, in N.

# **Gnd** — **Ground displacement**

scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.



# **Dependencies**

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the **Vertical** pane, select **Input ground displacement**.

# lam\_mux — Friction scaling factor

scalar

Longitudinal friction scaling factor, dimensionless.

# **Dependencies**

To enable this port, select **Input friction scale factor**.

# TirePrs — Tire pressure

scalar

Tire pressure, in Pa.

# **Dependencies**

To enable this port:

- Set one of these parameters:
  - Longitudinal Force to Magic Formula pure longitudinal slip.
  - Rolling Resistance to Pressure and velocity or Magic Formula.
  - Vertical Motion to Mapped stiffness and damping.

• On the Wheel Dynamics pane, select Input tire pressure.

# Tamb — Ambient temperature

scalar

Ambient temperature,  $T_{amb}$ , in K.

# **Dependencies**

To enable this port:

- 1 Set Rolling Resistance to ISO 28580.
- 2 On the Rolling Resistance pane, select to Input ambient temperature.

# Output

# Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal   | Description                                                                   | Units   |
|----------|-------------------------------------------------------------------------------|---------|
| AxlTrq   | Axle torque about body-fixed y-axis                                           | N·m     |
| Omega    | Wheel angular velocity about body-fixed <i>y</i> -axis                        | rad/s   |
| Omegadot | Wheel angular acceleration about body-fixed y-axis                            | rad/s^2 |
| Fx       | Longitudinal vehicle force along body-fixed <i>x</i> -axis                    | N       |
| Fz       | Vertical vehicle force along body-fixed z-axis                                | N       |
| Fzb      | Tire normal force due to wheel damping along the wheel-fixed z-axis           | N       |
| Fzk      | Tire normal force due to wheel stiffness along the wheel-fixed <i>z</i> -axis | N       |
| Му       | Rolling resistance torque about body-fixed <i>y</i> -axis                     | N·m     |
| Myb      | Rolling resistance torque due to damping about body-fixed <i>y</i> -axis      | N·m     |
| Карра    | Slip ratio                                                                    | NA      |
| Vx       | Vehicle longitudinal velocity along body-fixed <i>x</i> -axis                 | m/s     |
| Re       | Wheel effective radius along wheel-fixed $z$ -axis                            | m       |

| Signal             |               |                                                                                               | Description                                                      | Units |
|--------------------|---------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|
| BrkTrq             |               | Brake torque about body-fixed y-axis                                                          | N·m                                                              |       |
| BrkPrs             |               | Brake pressure                                                                                | Pa                                                               |       |
| Z                  |               |                                                                                               | Wheel vertical deflection along wheel-fixed z-axis               | m     |
| zdot               |               |                                                                                               | Wheel vertical velocity along wheel-fixed <i>z</i> -axis         | m/s   |
| zddot              |               |                                                                                               | Wheel vertical acceleration along wheel-fixed z-axis             | m/s^2 |
| Gndz               |               | Ground displacement along negative of wheel-fixed z-axis (positive input produces wheel lift) | m                                                                |       |
| GndFz              |               | Vertical wheel force on ground along negative of wheel-fixed z-axis                           | N                                                                |       |
| TirePrs            |               |                                                                                               | Tire pressure                                                    | Pa    |
| Fpatch             |               | Tractive power applied from the axle                                                          |                                                                  |       |
| PwrInfo PwrTrnsfrd | PwrRoad       | External torque applied by the axle to the wheel                                              | W                                                                |       |
|                    |               | PwrAxlTrq                                                                                     | Vertical force applied to the wheel by the vehicle or suspension | W     |
|                    |               | PwrFz                                                                                         | Tractive power loss                                              | W     |
|                    | PwrNotTrnsfrd | PwrSlip                                                                                       | Rolling resistance power                                         | W     |
|                    |               | PwrMyRoll                                                                                     | Braking power                                                    | W     |
|                    |               | PwrMyBrk                                                                                      | Rolling viscous damping loss                                     | W     |
|                    |               | PwrMyb                                                                                        | Vertical damping power                                           | W     |
|                    |               | PwrFzDamp                                                                                     | Rate of change of vertical kinetic energy                        | W     |
| PwrStored          | PwrStoredzdot | Rate of change of rotational kinetic energy                                                   | W                                                                |       |
|                    | PwrStoredq    | Rate of change of stored sidewall potential energy                                            | W                                                                |       |
|                    |               | PwrStoredFsFzSprng                                                                            | Rate of change of gravitational potential energy                 | W     |
|                    |               | PwrStoredGrvty                                                                                | Tractive power applied from the axle                             | W     |

# Fx — Longitudinal axle force

scalar

Longitudinal force acting on axle, along body-fixed x-axis, in N. Positive force acts to move the vehicle forward.

#### **Omega** — Wheel angular velocity

scalar

Wheel angular velocity, about body-fixed y-axis, in rad/s.

#### z — Wheel vertical deflection

scalar

Wheel vertical deflection along wheel-fixed *z*-axis, in m.

#### **Dependencies**

To enable this port, set **Vertical Motion** to Mapped stiffness and damping.

#### zdot — Wheel vertical velocity

scalar

Wheel vertical velocity along wheel-fixed *z*-axis, in m/s.

#### **Dependencies**

To enable this port, set **Vertical Motion** to Mapped stiffness and damping.

### **Parameters**

#### **Block Options**

# **Longitudinal Force — Select type**

Magic Formula constant value (default) | Magic Formula pure longitudinal slip | Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

| Setting                                 | Block Implementation                                                                                                             |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Magic Formula constant value            | Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.                                               |
| Magic Formula pure<br>longitudinal slip | Magic Formula with load-dependent coefficients that implement equations 4.E9 through 4.E18 in <i>Tire and Vehicle Dynamics</i> . |
| Mapped force                            | Lookup table that is a function of the normal force and wheel slip ratio.                                                        |

# **Dependencies**

| Selecting                    | Enables These Parameters               |
|------------------------------|----------------------------------------|
| Magic Formula constant value | Pure longitudinal peak factor, Dx      |
|                              | Pure longitudinal shape factor, Cx     |
|                              | Pure longitudinal stiffness factor, Bx |
|                              | Pure longitudinal curvature factor, Ex |

| Selecting          | Enables These Parameters                                                    |
|--------------------|-----------------------------------------------------------------------------|
| Magic Formula pure | Cfx shape factor, PCX1                                                      |
| longitudinal slip  | Longitudinal friction at nominal normal load, PDX1                          |
|                    | Frictional variation with load, PDX2                                        |
|                    | Frictional variation with camber, PDX3                                      |
|                    | Longitudinal curvature at nominal normal load, PEX1                         |
|                    | Variation of curvature factor with load, PEX2                               |
|                    | Variation of curvature factor with square of load, PEX3                     |
|                    | Longitudinal curvature factor with slip, PEX4                               |
|                    | Longitudinal slip stiffness at nominal normal load, PKX1                    |
|                    | Variation of slip stiffness with load, PKX2                                 |
|                    | Slip stiffness exponent factor, PKX3                                        |
|                    | Horizontal shift in slip ratio at nominal normal load, PHX1                 |
|                    | Variation of horizontal slip ratio with load, PHX2                          |
|                    | Vertical shift in load at nominal normal load, PVX1                         |
|                    | Variation of vertical shift with load, PVX2                                 |
|                    | Linear variation of longitudinal slip stiffness with tire pressure, PPX1    |
|                    | Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 |
|                    | Linear variation of peak longitudinal friction with tire pressure, PPX3     |
|                    | Quadratic variation of peak longitudinal friction with tire pressure, PPX4  |
|                    | Linear variation of longitudinal slip stiffness with tire pressure, PPX1    |
|                    | Slip speed decay function scaling factor, lam_muV                           |
|                    | Brake slip stiffness scaling factor, lam_Kxkappa                            |
|                    | Longitudinal shape scaling factor, lam_Cx                                   |
|                    | Longitudinal curvature scaling factor, lam_Ex                               |

| Selecting    | <b>Enables These Parameters</b>                      |
|--------------|------------------------------------------------------|
|              | Longitudinal horizontal shift scaling factor, lam_Hx |
|              | Longitudinal vertical shift scaling factor, lam_Vx   |
| Mapped force | Slip ratio breakpoints, kappaFx                      |
|              | Normal force breakpoints, FzFx                       |
|              | Longitudinal force map, FxMap                        |

# **Rolling Resistance** — **Select type**

None (default) | Pressure and velocity | ISO 28580 | Magic Formula | Mapped torque

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

| Setting               | Block Implementation                                                                                                                                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | None                                                                                                                                                                    |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.      |
| ISO 28580             | Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results. |
| Magic Formula         | Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                      |
| Mapped torque         | Lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                |

# **Dependencies**

| Selecting             | Parameters                                  |
|-----------------------|---------------------------------------------|
| Pressure and velocity | Velocity independent force coefficient, aMy |
|                       | Linear velocity force component, bMy        |
|                       | Quadratic velocity force component, cMy     |
|                       | Tire pressure exponent, alphaMy             |
|                       | Normal force exponent, betaMy               |

| Selecting     | Parameters                                                       |
|---------------|------------------------------------------------------------------|
| ISO 28580     | Parasitic losses force, Fpl                                      |
|               | Rolling resistance constant, Cr                                  |
|               | Thermal correction factor, Kt                                    |
|               | Measured temperature, Tmeas                                      |
|               | Parasitic losses force, Fpl                                      |
|               | Ambient temperature, Tamb                                        |
| Magic Formula | Rolling resistance torque coefficient, QSY                       |
|               | Longitudinal force rolling resistance coefficient, QSY2          |
|               | Linear rotational speed rolling resistance coefficient,<br>QSY3  |
|               | Quartic rotational speed rolling resistance coefficient,<br>QSY4 |
|               | Camber squared rolling resistance torque, QSY5                   |
|               | Load based camber squared rolling resistance torque, QSY6        |
|               | Normal load rolling resistance coefficient, QSY7                 |
|               | Pressure load rolling resistance coefficient, QSY8               |
|               | Rolling resistance scaling factor, lam_My                        |
| Mapped torque | Spin axis velocity breakpoints, VxMy                             |
|               | Normal force breakpoints, FzMy                                   |
|               | Rolling resistance torque map, MyMap                             |

# Brake Type — Select type None | Disc | Drum | Mapped

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

| Block Name                         | Brake Type Setting | Brake Implementation                                                                             |
|------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|
| Longitudinal Wheel - No<br>Brake   | None               | None                                                                                             |
| Longitudinal Wheel - Disc<br>Brake | Disc               | Brake that converts the brake cylinder pressure into a braking force.                            |
| Longitudinal Wheel - Drum<br>Brake | Drum               | Simplex drum brake that converts the applied force and brake geometry into a net braking torque. |

| <b>Block Name</b>                    | Brake Type Setting | Brake Implementation                                                           |
|--------------------------------------|--------------------|--------------------------------------------------------------------------------|
| Longitudinal Wheel - Mapped<br>Brake |                    | Lookup table that is a function of the wheel speed and applied brake pressure. |

# **Vertical Motion — Select type**

None (default) | Mapped stiffness and damping

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

| Setting                      | Block Implementation                                                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                         | Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.                                                                            |
| Mapped stiffness and damping | Vertical motion depends on wheel stiffness and damping.<br>Stiffness is a function of tire sidewall displacement and<br>pressure. Damping is a function of tire sidewall velocity and<br>pressure. |

| Selecting        | <b>Enables These Parameters</b>       | <b>Creates These Output Ports</b> |
|------------------|---------------------------------------|-----------------------------------|
| Mapped stiffness | Wheel and unsprung mass, m            | Z                                 |
| and damping      | Initial deflection, zo                | zdot                              |
|                  | Initial velocity, zdoto               |                                   |
|                  | Gravitational acceleration, g         |                                   |
|                  | Vertical deflection breakpoints, zFz  |                                   |
|                  | Pressure breakpoints, pFz             |                                   |
|                  | Force due to deflection, Fzz          |                                   |
|                  | Vertical velocity breakpoints, zdotFz |                                   |
|                  | Force due to velocity, Fzzdot         |                                   |
|                  | Ground displacement, Gndz             |                                   |
|                  | Input ground displacement             |                                   |

# Longitudinal scaling factor, lam\_x — Friction scaling factor 1 (default)

Longitudinal friction scaling factor, dimensionless.

#### **Dependencies**

To enable this parameter, clear **Input friction scale factor**.

# Input friction scale factor — Selection Off (default)

Create input port for longitudinal friction scaling factor.

#### **Dependencies**

Selecting this parameter:

- Creates input port lam mux.
- Disables parameter **Longitudinal scaling factor**, **lam\_x**.

# **Wheel Dynamics**

# Axle viscous damping coefficient, br — Damping

0.001 (default) | scalar

Axle viscous damping coefficient, br, in N·m·s/rad.

# Wheel inertia, Iyy — Inertia

0.8 (default) | scalar

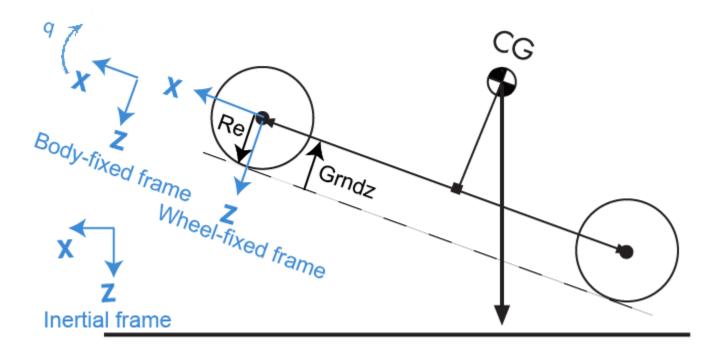
Wheel inertia, in  $kg \cdot m^2$ .

# Wheel initial angular velocity, omegao — Wheel speed

0 (default) | scalar

Initial angular velocity of wheel, along body-fixed *y*-axis, in rad/s.

# Relaxation length, Lrel — Relaxation length


0.5 (default) | scalar

Wheel relaxation length, in m.

#### Loaded radius, Re — Loaded radius

0.3 (default) | scalar

Loaded wheel radius, Re, in m.



# Unloaded radius, UNLOADED\_RADIUS — Unloaded radius

0.4 (default) | scalar

Unloaded wheel radius, in m.

#### **Dependencies**

To create this parameter, set **Rolling Resistance** to Pressure and velocity or Magic Formula.

# Nominal longitudinal speed, LONGVL — Speed

16 (default) | scalar

Nominal longitudinal speed along body-fixed x-axis, in m/s.

# **Dependencies**

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

# Nominal camber angle, gamma — Camber

0 (default) | scalar

Nominal camber angle, in rad.

#### **Dependencies**

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

# Nominal pressure, NOMPRES — Pressure

220000 (default) | scalar

Nominal pressure, in Pa.

#### **Dependencies**

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

### Pressure, press — Pressure

220000 (default) | scalar

Pressure, in Pa.

#### **Dependencies**

To enable this parameter:

- Set one of these:
  - Longitudinal Force to Magic Formula pure longitudinal slip.
  - Rolling Resistance to Pressure and velocity or Magic Formula.
  - Vertical Motion to Mapped stiffness and damping.
- On the **Wheel Dynamics** pane, clear **Input tire pressure**.

#### Longitudinal

#### **Magic Formula Constant Value**

#### Pure longitudinal peak factor, Dx — Factor

1 (default) | scalar

Pure longitudinal peak factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

# Pure longitudinal shape factor, Cx — Factor

1.65 (default) | scalar

Pure longitudinal shape factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

# Pure longitudinal stiffness factor, Bx — Factor

10 (default) | scalar

Pure longitudinal stiffness factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

# Pure longitudinal curvature factor, Ex - Factor

0.01 (default) | scalar

Pure longitudinal curvature factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

### Magic Formula Pure Longitudinal Slip

# Cfx shape factor, PCX1 — Factor

1.6 (default) | scalar

Cfx shape factor, PCX1, dimensionless.

# **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# **Longitudinal friction at nominal normal load, PDX1 — Factor** 1 (default) | scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Frictional variation with load, PDX2 — Factor

-0.08 (default) | scalar

Frictional variation with load, PDX2, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Frictional variation with camber, PDX3 — Factor

0 (default) | scalar

Frictional variation with camber, PDX3, 1/rad^2.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

### Longitudinal curvature at nominal normal load, PEX1 — Factor

0.112 (default) | scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

# **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Variation of curvature factor with load, PEX2 — Factor

0.313 (default) | scalar

Variation of curvature factor with load, PEX2, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Variation of curvature factor with square of load, PEX3 — Factor 0 (default) | scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal curvature factor with slip, PEX4 — Factor

0.0016 (default) | scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# **Longitudinal slip stiffness at nominal normal load, PKX1 — Factor** 21.7 (default) | scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# $\label{lem:action} \textbf{Variation of slip stiffness with load, PKX2} - \textbf{Factor}$

13.77 (default) | scalar

Variation of slip stiffness with load, PKX2, dimensionless.

# **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Slip stiffness exponent factor, PKX3 — Factor

-0.412 (default) | scalar

Slip stiffness exponent factor, PKX3, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Horizontal shift in slip ratio at nominal normal load, PHX1 — Factor 2.1585E-4 (default) | scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Variation of horizontal slip ratio with load, PHX2 — Factor 0.00115 (default) | scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# **Vertical shift in load at nominal normal load, PVX1 — Factor** 1.5973E-5 (default) | scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Variation of vertical shift with load, PVX2 — Factor 1.043E-4 (default) | scalar

Variation of vertical shift with load, PVX2, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Linear variation of longitudinal slip stiffness with tire pressure, PPX1 — Factor

```
-0.3489 (default) | scalar
```

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 — Factor

```
0.382 (default) | scalar
```

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Linear variation of peak longitudinal friction with tire pressure, PPX3 — Factor

-0.09634 (default) | scalar

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Quadratic variation of peak longitudinal friction with tire pressure, PPX4 — Factor

0.06447 (default) | scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

## **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Slip speed decay function scaling factor, lam\_muV — Factor 1 (default) | scalar

Slip speed decay function scaling factor, lam muV, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Brake slip stiffness scaling factor, lam\_Kxkappa — Factor 1 (default) | scalar

Brake slip stiffness scaling factor, lam Kxkappa, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal shape scaling factor, lam\_Cx — Factor

1 (default) | scalar

Longitudinal shape scaling factor, lam Cx, dimensionless.

# **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal curvature scaling factor, lam\_Ex — Factor

0 (default) | scalar

Longitudinal curvature scaling factor, lam Ex, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal horizontal shift scaling factor, lam\_Hx — Factor

1 (default) | scalar

Longitudinal horizontal shift scaling factor, lam Hx, dimensionless.

### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal vertical shift scaling factor, lam\_Vx — Factor

1 (default) | scalar

Longitudinal vertical shift scaling factor, lam\_Vx, dimensionless.

### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

#### **Mapped Force**

# Slip ratio breakpoints, kappaFx — Breakpoints

vector

Slip ratio breakpoints, dimensionless.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

#### Normal force breakpoints, FzFx — Breakpoints

vector

Normal force breakpoints, N.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

# Longitudinal force map, FxMap — Lookup table

array

Longitudinal force versus slip ratio and normal force, N.

#### **Dependencies**

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

## **Rolling Resistance**

#### **Pressure and Velocity**

# Velocity independent force coefficient, aMy — Force coefficient

8e-4 (default) | scalar

Velocity-independent force coefficient, *a*, in s/m.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

# Linear velocity force component, bMy — Force component

.001 (default) | scalar

Linear velocity force component, b, in s/m.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

# Quadratic velocity force component, cMy — Force component

1.6e-4 (default) | scalar

Quadratic velocity force component, c, in  $s^2/m^2$ .

## **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

#### Tire pressure exponent, alphaMy — Pressure exponent

-0.003 (default) | scalar

Tire pressure exponent,  $\alpha$ , dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

#### Normal force exponent, betaMy — Force exponent

0.97 (default) | scalar

Normal force exponent,  $\beta$ , dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

#### ISO 28580

## Parasitic losses force, Fpl — Force loss

10 (default) | scalar

Parasitic force loss,  $F_{pl}$ , in N.

## **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# Rolling resistance constant, Cr — Constant

1e-3 (default) | scalar

Rolling resistance constant,  $C_r$ , in N/kN. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

### Thermal correction factor, Kt — Correction factor

.008 (default) | scalar

Thermal correction factor,  $K_t$ , in 1/degC.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

## Measured temperature, Tmeas — Temperature

298.15 (default) | scalar

Measured temperature,  $T_{meas}$ , in K.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

### Ambient temperature, Tamb — Temperature

298.15 (default) | scalar

Measured temperature,  $T_{amb}$ , in K.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# Input ambient temperature — Selection

off (default) | on

Select to create input port Tamb.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

#### **Magic Formula**

# **Rolling resistance torque coefficient, QSY1 — Torque coefficient** 0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Longitudinal force rolling resistance coefficient, QSY2 — Force resistance coefficient

0 (default) | scalar

Longitudinal force rolling resistance coefficient, dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Linear rotational speed rolling resistance coefficient, QSY3 — Linear speed coefficient

0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Quartic rotational speed rolling resistance coefficient, QSY4 — Quartic speed coefficient

8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Camber squared rolling resistance torque, QSY5 — Camber resistance torque $\theta$ (default) | scalar

Camber squared rolling resistance torque, in 1/rad^2.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Load based camber squared rolling resistance torque, QSY6 — Load resistance torque

0 (default) | scalar

Load based camber squared rolling resistance torque, in 1/rad^2.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Normal load rolling resistance coefficient, QSY7 — Normal resistance coefficient $0.9~(default) \mid scalar$

Normal load rolling resistance coefficient, dimensionless.

## **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Pressure load rolling resistance coefficient, QSY8 — Pressure resistance coefficient

-0.4 (default) | scalar

Pressure load rolling resistance coefficient, dimensionless.

### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Rolling resistance scaling factor, $lam_My - Scale$

1 (default) | scalar

Rolling resistance scaling factor, dimensionless.

### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

#### Mapped

# Spin axis velocity breakpoints, VxMy — Breakpoints

-20:1:20 (default) | vector

Spin axis velocity breakpoints, in m/s.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

#### Normal force breakpoints, FzMy — Breakpoints

0:200:1e4 (default) | vector

Normal force breakpoints, in N.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

# Rolling resistance torque map, MyMap — Lookup table

array

Rolling resistance torque versus axle speed and normal force, in N·m.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

#### **Brake**

# Static friction coefficient, mu\_static — Static friction

.3 (default) | scalar

Static friction coefficient, dimensionless.

## **Dependencies**

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

# ${\bf Kinetic\ friction\ coefficient,\ mu\_kinetic\ -\ Kinetic\ friction}$

.2 (default) | scalar

Kinematic friction coefficient, dimensionless.

#### **Dependencies**

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

#### Disc

# Disc brake actuator bore, disc\_abore — Bore distance

.05 (default) | scalar

Disc brake actuator bore, in m.

# **Dependencies**

To enable the disc brake parameters, select Disc for the Brake Type parameter.

## Brake pad mean radius, Rm — Radius

```
.177 (default) | scalar
```

Brake pad mean radius, in m.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

# Number of brake pads, num\_pads — Count

2 (default) | scalar

Number of brake pads.

# **Dependencies**

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

#### Drum

# Drum brake actuator bore, disc\_abore — Bore distance

0.0508 (default) | scalar

Drum brake actuator bore, in m.

## **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Shoe pin to drum center distance, drum\_a — Distance

0.123 (default) | scalar

Shoe pin to drum center distance, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Shoe pin center to force application point distance, drum\_c — Distance 0.212 (default) $\mid$ scalar

Shoe pin center to force application point distance, in m.

## **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

### Drum internal radius, drum\_r — Radius

0.15 (default) | scalar

Drum internal radius, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Shoe pin to pad start angle, drum\_theta1 — Angle

0 (default) | scalar

Shoe pin to pad start angle, in deg.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

## Shoe pin to pad end angle, drum\_theta2 — Angle

126 (default) | scalar

Shoe pin to pad end angle, in deg.

## **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Mapped

# Brake actuator pressure breakpoints, brake\_p\_bpt — Breakpoints vector

Brake actuator pressure breakpoints, in bar.

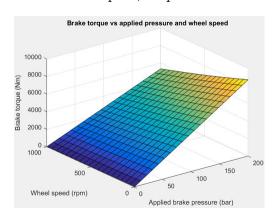
#### **Dependencies**

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

# Wheel speed breakpoints, brake\_n\_bpt — Breakpoints

vector

Wheel speed breakpoints, in rpm.


# **Dependencies**

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

# Brake torque map, f\_brake\_t — Lookup table array

The lookup table for the brake torque,  $f_{brake}(P, N)$ , is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.



### **Dependencies**

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

#### Vertical

#### Nominal normal force, FNOMIN — Force

2000 (default) | scalar

Nominal rated wheel load along wheel-fixed *z*-axis, in N.

#### **Dependencies**

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

# Nominal rated load scaling factor, lam\_Fzo — Factor

1 (default) | scalar

Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

## **Dependencies**

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

# Wheel and unsprung mass, m — Mass

10 (default) | scalar

Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

## Initial deflection, zo — Deflection

0 (default) | scalar

Initial axle displacement along wheel-fixed *z*-axis, in m.

## **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

# Initial velocity, zdoto — Velocity

0 (default) | scalar

Initial axle velocity along wheel-fixed z-axis, in m.

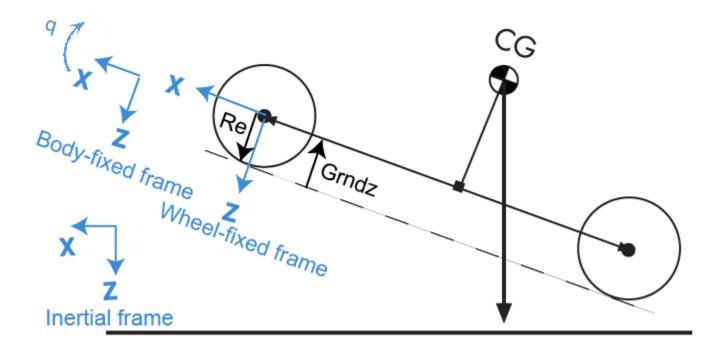
## **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

# **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, in m/s^2.


#### **Dependencies**

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

#### **Ground displacement, Gndz — Displacement**

0 (default) | scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.



### **Dependencies**

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

# **Mapped Stiffness and Damping**

# Vertical deflection breakpoints, zFz — Breakpoints

[0 .01 .1] (default)  $\mid$  vector

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

#### **Dependencies**

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

# Pressure breakpoints, pFz — Breakpoints

[10000 1000000] (default) | vector

Vector of pressure data points corresponding to the force table, in Pa.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

# Force due to deflection, Fzz — Force

[0 1e3 1e4; 0 1e4 1e5] (default) | vector

Force due to sidewall deflection and pressure along wheel-fixed *z*-axis, in N.

## **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

### Vertical velocity breakpoints, zdotFz — Breakpoints

[-20 0 20] (default) | scalar

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

## Force due to velocity, Fzzdot — Force

[500 0 -500;250 0 -250] (default) | array

Force due to sidewall velocity and pressure along wheel-fixed z-axis, in N.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

## Simulation Setup

# Minimum normal force, FZMIN — Force

0 (default) | scalar

Minimum normal force, in N. Used with all vertical force calculations.

#### Maximum normal force, FZMAX — Force

10000 (default) | scalar

Maximum normal force, in N. Used with all vertical force calculations.

# Max allowable slip ratio (absolute), kappamax — Ratio

1.5 (default) | scalar

Maximum allowable absolute slip ratio, dimensionless.

# **Velocity tolerance used to handle low velocity situations, VXLOW — Tolerance** 1 (default) | scalar

Velocity tolerance used to handle low-velocity situations, in m/s.

#### Minimum ambient temperature, TMIN — Tmin

0 (default) | scalar

Minimum ambient temperature,  $T_{MIN}$ , in K.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# Maximum ambient temperature, TMAX — Tmax

400 (default) | scalar

Maximum ambient temperature,  $T_{MAX}$ , in K.

## **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

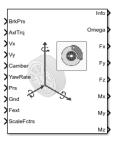
### References

- [1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452 199906. Warrendale, PA: SAE International, June 1999.
- [2] Pacejka, H. B. *Tire and Vehicle Dynamics*. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
- [3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
- [4] Shigley, Joseph E., and Larry Mitchel. *Mechanical Engineering Design*. 4th ed. New York, NY: McGraw Hill, 1983.
- [5] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method -- Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.

# **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.


# See Also

Combined Slip Wheel 2DOF | Drive Cycle Source | Longitudinal Driver

#### Introduced in R2017a

# **Combined Slip Wheel 2DOF**

Combined slip 2DOF wheel with disc, drum, or mapped brake **Library:** Vehicle Dynamics Blockset / Wheels and Tires



# **Description**

The Combined Slip Wheel 2DOF block implements the longitudinal and lateral behavior of a wheel characterized by the Magic Formula<sup>[1]</sup> and <sup>[2]</sup>. Use the block in driveline and vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. The block is suitable for applications that require combined lateral slip, for example, in lateral motion and yaw stability studies.

Based on the driveline torque, brake pressure, road height, wheel camber angle, and inflation pressure, the block determines the wheel rotation rate, vertical motion, forces, and moments in all six degrees of freedom (DOF). Use the vertical DOF to study tire-suspension resonances from road profiles or chassis motion.

To implement the Magic Formula, the block uses empirical equations<sup>[1] and [2]</sup>. The equations use fitting coefficients that correspond to the block parameters.

To update the block parameters with fitting coefficients from a file:

- 1 On the Wheel and Tire Parameters > Tire pane, select Select file.
- **2** Select the tire coefficient file.
- 3 Select Apply.
- 4 Select **Update mask values from file**. In the dialog box that prompts you for confirmation, click **OK**. The block updates the parameters.

Use the **Brake Type** parameter to select the brake.

| <b>Brake Type Setting</b> | Brake Implementation                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------|
| None                      | None                                                                                            |
| Disc                      | Brake that converts the brake cylinder pressure into a braking force                            |
| Drum                      | Simplex drum brake that converts the applied force and brake geometry into a net braking torque |
| Mapped                    | Lookup table that is a function of the wheel speed and applied brake pressure                   |

# **Rotational Wheel Dynamics**

The block calculates the inertial response of the wheel subject to:

- · Axle losses
- Brake and drive torque
- · Tire rolling resistance
- · Ground contact through the tire-road interface

To implement the Magic Formula, the block uses these equations.

| Calculation                        | Equations                                                                                                             |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Longitudinal force                 | Tire and Vehicle Dynamics <sup>[2]</sup> equations 4.E9 through 4.E57                                                 |
| Lateral force - pure sideslip      | Tire and Vehicle Dynamics <sup>[2]</sup> equations 4.E19 through 4.E30                                                |
| Lateral force - combined slip      | Tire and Vehicle Dynamics <sup>[2]</sup> equations 4.E58 through 4.E67                                                |
| Vertical dynamics                  | Tire and Vehicle Dynamics <sup>[2]</sup> equations 4.E68, 4.E1, 4.E2a, and 4.E2b                                      |
| Overturning couple                 | Tire and Vehicle Dynamics <sup>[2]</sup> equation 4.E69                                                               |
| Rolling resistance                 | • An improved Magic Formula/Swift tyre model that can handle inflation pressure changes <sup>[1]</sup> equation 6.1.2 |
|                                    | Tire and Vehicle Dynamics <sup>[2]</sup> equation 4.E70                                                               |
| Aligning moment                    | Tire and Vehicle Dynamics <sup>[2]</sup> equation 4.E31 through 4.E49                                                 |
| Aligning torque -<br>combined slip | Tire and Vehicle Dynamics <sup>[2]</sup> equation 4.E71 through 4.E78                                                 |

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$T_i = T_a - T_b + T_d$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first-order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$T_d(s) = \frac{1}{\frac{|\omega|R_e}{L_e}s + 1} (F_x R_e + M_y)$$

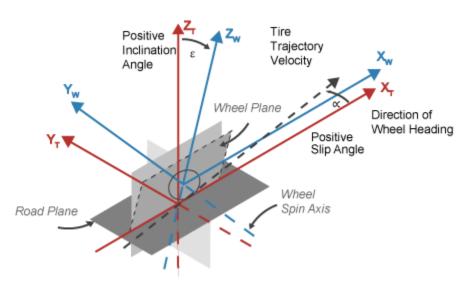
If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lockup condition, the block implements these friction and dynamic models.

| If                                                | Lockup<br>Conditio<br>n | Friction Model                                                                                                                                   | Dynamic Model                           |
|---------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $\omega \neq 0$ or $T_S <  T_i + T_f - \omega b $ | d                       | $T_f = T_k$ where, $T_k = F_c R_{eff} \mu_k \tanh[4(-\omega_d)]$ $T_S = F_c R_{eff} \mu_S$ $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$ | $\dot{\omega}J = -\omega b + T_i + T_o$ |
| $\omega = 0$ and $T_S \ge  T_i + T_f - \omega b $ | Locked                  | $T_f = T_S$                                                                                                                                      | $\omega = 0$                            |

The equations use these variables.

| ω                             | Wheel angular velocity                                              |
|-------------------------------|---------------------------------------------------------------------|
| а                             | Velocity independent force component                                |
| b                             | Linear velocity force component                                     |
| $\boldsymbol{c}$              | Quadratic velocity force component                                  |
| $L_e$                         | Tire relaxation length                                              |
| J                             | Moment of inertia                                                   |
| $M_{ m y}$                    | Rolling resistance torque                                           |
| $T_a$                         | Applied axle torque about wheel spin axis                           |
| $T_b$                         | Braking torque                                                      |
| $T_d$                         | Combined tire torque                                                |
| $T_f$                         | Frictional torque                                                   |
| $T_i$                         | Net input torque                                                    |
| $T_k$                         | Kinetic frictional torque                                           |
| $T_o$                         | Net output torque                                                   |
| $T_s$                         | Static frictional torque                                            |
| $F_c$                         | Applied clutch force                                                |
| $F_{x}$                       | Longitudinal force developed by the tire road interface due to slip |
| $R_{\it eff}$                 | Effective clutch radius                                             |
| $R_o$                         | Annular disk outer radius                                           |
| $R_i$                         | Annular disk inner radius                                           |
| $R_e$                         | Effective tire radius while under load and for a given pressure     |
| $V_{\scriptscriptstyle \chi}$ | Longitudinal axle velocity                                          |
| $F_z$                         | Vehicle normal force                                                |
| α                             | Tire pressure exponent                                              |
| β                             | Normal force exponent                                               |

| $p_i$ Tire | e pressure |
|------------|------------|
|------------|------------|

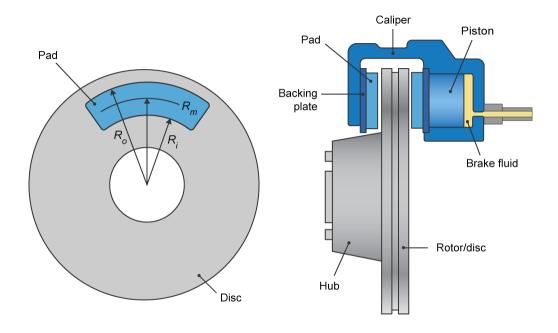

 $\mu_s$  Coefficient of static friction  $\mu_k$  Coefficient of kinetic friction

# **Tire and Wheel Coordinate Systems**

To resolve the forces and moments, the block uses the Z-Up orientation of the tire and wheel coordinate systems.

- Tire coordinate system axes  $(X_T, Y_T, Z_T)$  are fixed in a reference frame attached to the tire. The origin is at the tire contact with the ground.
- Wheel coordinate system axes  $(X_W, Y_W, Z_W)$  are fixed in a reference frame attached to the wheel. The origin is at the wheel center.

# **Z-Up Orientation**<sup>1</sup>




#### **Brakes**

#### Disc

If you specify the **Brake Type** parameter Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.

<sup>1.</sup> Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted without prior permission from SAE.



A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$T = \begin{cases} \frac{\mu P \pi B_a ^2 R_m N_{pads}}{4} & \text{when } N \neq 0 \\ \frac{\mu_{static} P \pi B_a ^2 R_m N_{pads}}{4} & \text{when } N = 0 \end{cases}$$

$$Rm = \frac{Ro + Ri}{2}$$

The equations use these variables.

| T              | Brake torque                                              |
|----------------|-----------------------------------------------------------|
| P              | Applied brake pressure                                    |
| N              | Wheel speed                                               |
| $N_{pads}$     | Number of brake pads in disc brake assembly               |
| $\mu_{static}$ | Disc pad-rotor coefficient of static friction             |
| μ              | Disc pad-rotor coefficient of kinetic friction            |
| $B_a$          | Brake actuator bore diameter                              |
| $R_m$          | Mean radius of brake pad force application on brake rotor |
| $R_o$          | Outer radius of brake pad                                 |
|                |                                                           |

 $R_i$  Inner radius of brake pad

#### Drum

If you specify the **Brake Type** parameter Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in *Fundamentals of Machine Elements*.

$$\begin{split} T_{rshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T_{lshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{-2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T &= \begin{cases} T_{rshoe} + T_{lshoe} & \text{when } N \neq 0 \\ (T_{rshoe} + T_{lshoe})\frac{\mu_{static}}{\mu} & \text{when } N = 0 \end{cases} \end{split}$$



The equations use these variables.

T Brake torque

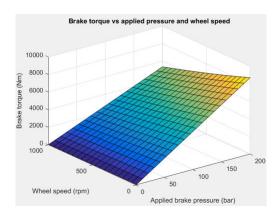
P Applied brake pressure

N Wheel speed

| Disc pad-rotor coefficient of static friction                                  |
|--------------------------------------------------------------------------------|
| Disc pad-rotor coefficient of kinetic friction                                 |
| Right shoe brake torque                                                        |
| Left shoe brake torque                                                         |
| Distance from drum center to shoe hinge pin center                             |
| Distance from shoe hinge pin center to brake actuator connection on brake shoe |
| Drum internal radius                                                           |
| Brake actuator bore diameter                                                   |
| Angle from shoe hinge pin center to start of brake pad material on shoe        |
| Angle from shoe hinge pin center to end of brake pad material on shoe          |
|                                                                                |

#### Mapped

If you specify the **Brake Type** parameter Mapped, the block uses a lookup table to determine the brake torque.


$$T = \begin{cases} f_{brake}(P,N) & \text{when } N \neq 0 \\ \left(\frac{\mu_{static}}{\mu}\right) f_{brake}(P,N) & \text{when } N = 0 \end{cases}$$

The equations use these variables.

| T                 | Brake torque                                                            |
|-------------------|-------------------------------------------------------------------------|
| $f_{brake}(P, N)$ | Brake torque lookup table                                               |
| P                 | Applied brake pressure                                                  |
| N                 | Wheel speed                                                             |
| $\mu_{static}$    | Friction coefficient of drum pad-face interface under static conditions |
| μ                 | Friction coefficient of disc pad-rotor interface                        |

The lookup table for the brake torque,  $f_{brake}(P, N)$ , is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- N is wheel speed, in rpm.



#### **Ports**

#### Input

#### **BrkPrs** — **Brake** pressure

scalar | N-by-1 vector

Brake pressure, in Pa.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Dependencies**

To enable this port, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

#### AxlTrq — Axle torque

scalar | N-by-1 vector

Axle torque,  $T_a$ , about wheel spin axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Vx — Longitudinal velocity

scalar | N-by-1 vector

Axle longitudinal velocity,  $V_x$ , along tire-fixed x-axis, in m/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Vy — Lateral velocity

scalar | N-by-1 vector

Axle lateral velocity,  $V_{\nu}$ , along tire-fixed y-axis, in m/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Camber — Camber angle**

scalar | N-by-1 vector

Camber angle,  $\chi$ , in rad.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### YawRate — Tire angular velocity

scalar | N-by-1 vector

Tire angular velocity, *r*, about the tire-fixed *z*-axis (yaw rate), in rad/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Prs — Tire inflation pressure

scalar | N-by-1 vector

Tire inflation pressure,  $p_i$ , in Pa.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Gnd** — **Ground displacement**

scalar | N-by-1 vector

Ground displacement along tire-fixed *z*-axis, in m. Positive input produces wheel lift.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Fext — Axle force applied to tire

scalar | N-by-1 vector

Axle force applied to tire,  $F_{ext}$ , along vehicle-fixed z-axis (positive input compresses the tire), in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### ScaleFctrs — Scale factors

27-by-N array

Magic Formula scale factor array. Array dimensions are 27 by the number of wheels, N.

The Magic Formula equations use scale factors to account for static or simulation run-time variations. Nominally, most are set to 1.

| Array Element    | Variable    | Scale Factor                           |
|------------------|-------------|----------------------------------------|
| ScaleFctrs(1,1)  | lam_Fzo     | Nominal load                           |
| ScaleFctrs(2,1)  | lam_mux     | Longitudinal peak friction coefficient |
| ScaleFctrs(3,1)  | lam_muy     | Lateral peak friction coefficient      |
| ScaleFctrs(4,1)  | lam_muV     | Slip speed Vs decaying friction        |
| ScaleFctrs(5,1)  | lam_Kxkappa | Brake slip stiffness                   |
| ScaleFctrs(6,1)  | lam_Kyalpha | Cornering stiffness                    |
| ScaleFctrs(7,1)  | lam_Cx      | Longitudinal shape factor              |
| ScaleFctrs(8,1)  | lam_Cy      | Lateral shape factor                   |
| ScaleFctrs(9,1)  | lam_Ex      | Longitudinal curvature factor          |
| ScaleFctrs(10,1) | lam_Ey      | Lateral curvature factor               |
| ScaleFctrs(11,1) | lam_Hx      | Longitudinal horizontal shift          |
| ScaleFctrs(12,1) | lam_Hy      | Lateral horizontal shift               |
| ScaleFctrs(13,1) | lam_Vx      | Longitudinal vertical shift            |

| Array Element    | Variable    | Scale Factor                                          |
|------------------|-------------|-------------------------------------------------------|
| ScaleFctrs(14,1) | lam_Vy      | Lateral vertical shift                                |
| ScaleFctrs(15,1) | lam_Kygamma | Camber force stiffness                                |
| ScaleFctrs(16,1) | lam_Kzgamma | Camber torque stiffness                               |
| ScaleFctrs(17,1) | lam_t       | Pneumatic trail (effecting aligning torque stiffness) |
| ScaleFctrs(18,1) | lam_Mr      | Residual torque                                       |
| ScaleFctrs(19,1) | lam_xalpha  | Alpha influence on Fx (kappa)                         |
| ScaleFctrs(20,1) | lam_ykappa  | Kappa influence on Fy (alpha)                         |
| ScaleFctrs(21,1) | lam_Vykappa | Induced ply steer Fy                                  |
| ScaleFctrs(22,1) | lam_s       | Moment arm of Fx                                      |
| ScaleFctrs(23,1) | lam_Cz      | Radial tire stiffness                                 |
| ScaleFctrs(24,1) | lam_Mx      | Overturning couple stiffness                          |
| ScaleFctrs(25,1) | lam_VMx     | Overturning couple vertical shift                     |
| ScaleFctrs(26,1) | lam_My      | Rolling resistance moment                             |
| ScaleFctrs(27,1) | lam_Mphi    | Parking torque Mz                                     |

#### Output

#### Info — Block data

bus

Block data, returned as a bus signal containing these block values.

| Signal | Description                                                | Units |
|--------|------------------------------------------------------------|-------|
| AxlTrq | Axle torque about wheel-fixed y-axis                       | N·m   |
| Omega  | Wheel angular velocity about wheel-fixed y-axis            | rad/s |
| Fx     | Longitudinal vehicle force along tire-fixed <i>x</i> -axis | N     |
| Fy     | Lateral vehicle force along tire-fixed y-axis              | N     |
| Fz     | Vertical vehicle force along tire-fixed z-axis             | N     |
| Mx     | Overturning moment about tire-fixed x-axis                 | N·m   |
| Му     | Rolling resistance torque about tire-fixed y-axis          | N·m   |
| Mz     | Aligning moment about tire-fixed z-axis                    | N·m   |
| Vx     | Vehicle longitudinal velocity along tire-fixed x-axis      | m/s   |
| Vy     | Vehicle lateral velocity along tire-fixed y-axis           | m/s   |
| Re     | Loaded effective radius                                    | m     |
| Карра  | Longitudinal slip ratio                                    | NA    |
| Alpha  | Side slip angle                                            | rad   |
| а      | Contact patch half length                                  | m     |
| b      | Contact patch half width                                   | m     |

| Signal | Description                                                                         | Units |
|--------|-------------------------------------------------------------------------------------|-------|
| Gamma  | Camber angle                                                                        | rad   |
| psidot | Tire angular velocity about the tire-fixed $z$ -axis (yaw rate)                     | rad/s |
| BrkTrq | Brake torque about vehicle-fixed y-axis                                             | N·m   |
| BrkPrs | Brake pressure                                                                      | Pa    |
| z      | Axle vertical displacement along tire-fixed z-axis                                  | m     |
| zdot   | Axle vertical velocity along tire-fixed z-axis                                      | m/s   |
| Gnd    | Ground displacement along tire-fixed $z$ -axis (positive input produces wheel lift) | m     |
| GndFz  | Vertical sidewall force on ground along tire-fixed $z$ -axis                        | N     |
| Prs    | Tire inflation pressure                                                             | Pa    |

#### **Omega** — Wheel angular velocity

scalar | N-by-1 vector

Wheel angular velocity,  $\omega$ , about wheel-fixed y-axis, in rad/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Fx — Longitudinal axle force

scalar | N-by-1 vector

Longitudinal force acting on axle,  $F_x$ , along tire-fixed x-axis, in N. Positive force acts to move the vehicle forward.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Fy — Lateral axle force

scalar | N-by-1 vector

Lateral force acting on axle,  $F_{v}$ , along tire-fixed y-axis, in N.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Fz — Vertical axle force

scalar | N-by-1 vector

Vertical force acting on axle,  $F_z$ , along tire-fixed z-axis, in N.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Mx — Overturning moment

scalar | N-by-1 vector

Longitudinal moment acting on axle,  $M_x$ , about tire-fixed x-axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### My — Rolling resistive moment

scalar | N-by-1 vector

Lateral moment acting on axle,  $M_{\nu}$ , about tire-fixed y-axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Mz — Aligning moment

scalar | N-by-1 vector

Vertical moment acting on axle,  $M_z$ , about tire-fixed z-axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Parameters**

#### **Block Options**

#### **Brake Type — Select type**

None | Disc | Drum | Mapped

Use the **Brake Type** parameter to select the brake.

| Brake Type Setting | Brake Implementation                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------|
| None               | None                                                                                            |
| Disc               | Brake that converts the brake cylinder pressure into a braking force                            |
| Drum               | Simplex drum brake that converts the applied force and brake geometry into a net braking torque |
| Mapped             | Lookup table that is a function of the wheel speed and applied brake pressure                   |

#### Brake

#### Static friction coefficient, mu\_static — Static friction

.3 (default) | scalar

Static friction coefficient, dimensionless.

#### **Dependencies**

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

#### Kinetic friction coefficient, mu\_kinetic — Kinetic friction

.2 (default) | scalar

Kinematic friction coefficient, dimensionless.

#### **Dependencies**

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

#### Disc

#### Disc brake actuator bore, disc\_abore — Bore distance

.05 (default) | scalar

Disc brake actuator bore, in m.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

#### Brake pad mean radius, Rm — Radius

.177 (default) | scalar

Brake pad mean radius, in m.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the Brake Type parameter.

#### Number of brake pads, num pads — Count

2 (default) | scalar

Number of brake pads.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

#### Drum

#### Drum brake actuator bore, disc\_abore — Bore distance

0.0508 (default) | scalar

Drum brake actuator bore, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Shoe pin to drum center distance, drum\_a — Distance

0.123 (default) | scalar

Shoe pin to drum center distance, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

## Shoe pin center to force application point distance, drum\_c — Distance 0.212 (default) $\mid$ scalar

Shoe pin center to force application point distance, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Drum internal radius, drum\_r — Radius

0.15 (default) | scalar

Drum internal radius, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Shoe pin to pad start angle, drum\_theta1 — Angle

0 (default) | scalar

Shoe pin to pad start angle, in deg.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Shoe pin to pad end angle, drum\_theta2 — Angle

126 (default) | scalar

Shoe pin to pad end angle, in deg.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Mapped

### Brake actuator pressure breakpoints, brake\_p\_bpt — Breakpoints vector

Brake actuator pressure breakpoints, in bar.

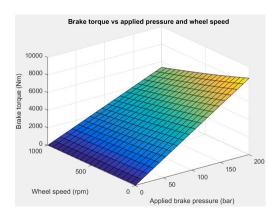
#### **Dependencies**

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

#### Wheel speed breakpoints, brake\_n\_bpt — Breakpoints vector

Wheel speed breakpoints, in rpm.

#### **Dependencies**


To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

#### Brake torque map, f\_brake\_t — Lookup table

array

The lookup table for the brake torque,  $f_{brake}(P, N)$ , is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- P is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.



#### **Dependencies**

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

#### **Tire**

#### Tire file or object, tireParamSet — Tire file

vdynPassCar.mat(default)|.tir|.txt

Tire file .tir or object containing empirical data to model tire longitudinal and lateral behavior with the Magic Formula. If you provide an .txt file, make sure the file contains names that correspond to the block parameters.

To update the block parameters with fitting coefficients from a file:

- 1 On the **Wheel and Tire Parameters > Tire** pane, select **Select file**.
- **2** Select the tire coefficient file.
- 3 Select **Apply**.
- Select **Update mask values from file**. In the dialog box that prompts you for confirmation, click **OK**. The block updates the parameters.

#### Simulation

#### Maximum pressure, PRESMAX — Pressure

1003118 (default) | scalar

Maximum pressure, PRESMAX, in Pa.

#### Minimum pressure, PRESMIN — Pressure

9982 (default) | scalar

Minimum pressure, *PRESMIN*, in Pa.

Maximum normal force, FZMAX — Force 10000 (default) | scalar

Maximum normal force, FZMAX, in N.

Minimum normal force, FZMIN — Force 100 (default) | scalar

Minimum normal force, FZMIN, in N.

Velocity tolerance used to handle low velocity situations, VXLOW — Tolerance 0.1 (default) | scalar

Velocity tolerance used to handle low velocity situations, VXLOW, in m/s.

Max allowable slip ratio (absolute), KPUMAX — Ratio 1.5 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.

Minimum allowable slip ratio (absolute), KPUMIN — Ratio -1.5 (default) | scalar

Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.

Max allowable slip angle (absolute), ALPMAX — Angle 1.5708 (default) | scalar

Max allowable slip angle (absolute), ALPMAX, in rad.

Minimum allowable slip angle (absolute), ALPMIN — Angle -1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.

**Maximum allowable camber angle, CAMMAX — Angle** 0.173 (default) | scalar

Maximum allowable camber angle *CAMMAX*, in rad.

Minimum allowable camber angle, CAMMIN — Angle -0.173 (default) | scalar

Minimum allowable camber angle, CAMMIN, in rad.

Nominal longitudinal speed, LONGVL — Speed 16.7 (default) | scalar

Nominal longitudinal speed, *LONGVL*, in m/s.

#### Wheel

Initial rotational velocity, omegao — Velocity
0 (default) | scalar

Initial rotational velocity, in rad/s.

#### Rotational damping, br — Damping

1e-3 (default) | scalar

Rotational damping, *br*, in N·m·s/rad.

#### Unloaded radius, UNLOADED\_RADIUS — Radius

0.309 (default) | scalar

Unloaded radius, UNLOADED RADIUS, in m.

#### Nominal pressure, NOMPRES — Pressure

224006 (default) | scalar

Nominal pressure, NOMPRES, in Pa.

#### Nominal normal force, FNOMIN — Force

4025 (default) | scalar

Nominal normal force, FNOMIN, in N.

#### Wheel width, WIDTH — Width

0.209 (default) | scalar

Wheel width, WIDTH, in m.

#### Inertial

#### Wheel mass, MASS — Mass

9.465 (default) | scalar

Wheel mass, MASS, in kg.

#### Rotational inertia (rolling axis), IYY — Inertia

0.74 (default) | scalar

Rotational inertia (rolling axis), *IYY*, in kg·m<sup>2</sup>.

#### Gravity, GRAVITY — Gravity

-9.81 (default) | scalar

Gravity, GRAVITY, in m/s^2.

#### **Vertical**

#### Initial tire deflection, zo — Deflection

0 (default) | scalar

Initial tire deflection, zo, in m.

#### Initial wheel vertical velocity (wheel fixed frame), zdoto — Velocity

0 (default) | scalar

Initial wheel vertical velocity (wheel fixed frame), *zdoto*, in m/s.

### Effective rolling radius at low load stiffness, BREFF — Stiffness 8.25094594147963 (default) | scalar

Effective rolling radius at low load stiffness, *BREFF*, dimensionless.

#### Effective rolling radius peak value, DREFF — Radius 0.260468730454265 (default) | scalar

Effective rolling radius peak value, *DREFF*, dimensionless.

# **Effective rolling radius at high load stiffness, FREFF — Radius** 0.0735298544471851 (default) | scalar

Effective rolling radius at high load stiffness, FREFF, dimensionless.

# Unloaded to nominal rolling radius ratio, Q\_REO — Ratio 1.00866439868088 (default) | scalar

Unloaded to nominal rolling radius ratio, Q REO, dimensionless.

## **Radius rotational speed dependence, Q\_V1 — Speed** 0.000760413786224011 (default) | scalar

Radius rotational speed dependence, Q V1, dimensionless.

## Stiffness rotational speed dependence, Q\_V2 — Speed 0.0463384792019201 (default) | scalar

Stiffness rotational speed dependence, Q V2, dimensionless.

# Linear load change with deflection, Q\_FZ1 — Load change 0 (default) | scalar

Linear load change with deflection, *Q FZ1*, dimensionless.

# Quadratic load change with deflection, Q\_FZ2 — Load change 15.6870832810226 (default) | scalar

Quadratic load change with deflection, Q FZ2, dimensionless.

# Linear load change with deflection and quadratic camber, Q\_FZ3 — Load change 0 (default) | scalar

Linear load change with deflection and quadratic camber, Q FZ3, dimensionless.

## **Load response to longitudinal force, Q\_FCX — Force** 0.138643970247602 (default) | scalar

Load response to longitudinal force, Q FCX, dimensionless.

### **Load response to lateral force, Q\_FCY — Force** 0.10843499565426 (default) | scalar

Load response to lateral force, *Q\_FCY*, dimensionless.

# Vertical stiffness change due to lateral load dependency on lateral stiffness, $Q_FCY2-Stiffness$

-0.465763352339538 (default) | scalar

Vertical stiffness change due to lateral load dependency on lateral stiffness, *Q\_FCY2*, dimensionless.

#### Stiffness response to pressure, PFZ1 — Stiffness

0.69958166705601 (default) | scalar

Stiffness response to pressure, *PFZ1*, dimensionless.

#### Vertical tire stiffness, VERTICAL\_STIFFNESS — Stiffness

207885.061134007 (default) | scalar

Vertical tire stiffness, VERTICAL STIFFNESS, in N/m.

#### Vertical tire damping, VERTICAL\_DAMPING — Damping

494.649255786991 (default) | scalar

Vertical tire damping, VERTICAL DAMPING, in N\*s/m.

#### Structural

#### Longitudinal stiffness, LONGITUDINAL\_STIFFNESS — Stiffness

388714.175879854 (default) | scalar

Longitudinal stiffness, LONGITUDINAL\_STIFFNESS, in N/m.

#### Longitudinal stiffness, LATERAL\_STIFFNESS — Stiffness

157087.404633332 (default) | scalar

Longitudinal stiffness, LATERAL STIFFNESS, in N/m.

### Linear vertical deflection influence on longitudinal stiffness, PCFX1 — Deflection influence

0.18539229191199 (default) | scalar

Linear vertical deflection influence on longitudinal stiffness, PCFX1, dimensionless.

### Quadratic vertical deflection influence on longitudinal stiffness, PCFX2 — Deflection influence

0 (default) | scalar

Quadratic vertical deflection influence on longitudinal stiffness, PCFX2, dimensionless.

### Pressure dependency on longitudinal stiffness, PCFX3 — Pressure dependency 0 (default) | scalar

Pressure dependency on longitudinal stiffness, *PCFX3*, dimensionless.

#### Linear vertical deflection influence on lateral stiffness, PCFY1 — Deflection influence

0.163183345037677 (default) | scalar

Linear vertical deflection influence on lateral stiffness, PCFY1, dimensionless.

### Quadratic vertical deflection influence on lateral stiffness, PCFY2 — Deflection influence

0 (default) | scalar

Quadratic vertical deflection influence on lateral stiffness, PCFY2, dimensionless.

## Pressure dependency on longitudinal stiffness, PCFY3 — Pressure dependency 0.249094918231954 (default) | scalar

Pressure dependency on longitudinal stiffness, *PCFY3*, dimensionless.

#### **Contact Patch**

### **Contact length square root term, Q\_RA1 — Length term** 0.675942571700787 (default) | scalar

Contact length square root term, *Q RA1*, dimensionless.

### Contact length linear term, Q\_RA2 — Length term 0.73800463546164 (default) | scalar

Contact length linear term, Q RA2, dimensionless.

#### Contact width root term, Q\_RB1 — Width term 1.04487486456705 (default) | scalar

Contact width root term, Q RB1, dimensionless.

## Contact width linear term, Q\_RB2 — Width term -1.191763806629 (default) | scalar

Contact width linear term Q RB2, dimensionless.

#### Longitudinal

#### Cfx shape factor, PCX1 — Shape factor

1.58523057950359 (default) | scalar

Shape factor,  $C_{fx}$ , PCX1, dimensionless.

## **Longitudinal friction at nominal normal load, PDX1 — Friction** 1.0239116238178 (default) | scalar

Longitudinal friction at nominal normal load, *PDX1*, dimensionless.

## Frictional variation with load, PDX2 — Friction variation -0.0842405110022724 (default) | scalar

Frictional variation with load, PDX2, dimensionless.

## Frictional variation with camber, PDX3 — Friction variation $\theta$ (default) | scalar

Frictional variation with camber, *PDX3*, in 1/rad^2.

### **Longitudinal curvature at nominal normal load, PEX1 — Curvature** 0.110312777158455 (default) | scalar

Longitudinal curvature at nominal normal load, *PEX1*, dimensionless.

# Variation of curvature factor with load, PEX2 — Curvature variation 0.313468516038146 (default) | scalar

Variation of curvature factor with load, PEX2, dimensionless.

# Variation of curvature factor with square of load, PEX3 — Curvature variation 0 (default) | scalar

Variation of curvature factor with square of load, *PEX3*, dimensionless.

# **Longitudinal curvature factor with slip, PEX4 — Curvature** 0.0016060905760045 (default) | scalar

Longitudinal curvature factor with slip, *PEX4*, dimensionless.

# **Longitudinal slip stiffness at nominal normal load, PKX1 — Stiffness** 21.3872544684023 (default) | scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

## Variation of slip stiffness with load, PKX2 — Stiffness variation 14.0006541873175 (default) | scalar

Variation of slip stiffness with load, *PKX1*, dimensionless.

## Slip stiffness exponent factor, PKX3 — Slip stiffness -0.405326109653452 (default) | scalar

Slip stiffness exponent factor, PKX3, dimensionless.

# Horizontal shift in slip ratio at nominal normal load, PHX1 — Slip ratio shift 0.000212599305364818 (default) | scalar

Horizontal shift in slip ratio at nominal normal load, *PHX1*, dimensionless.

# Variation of horizontal slip ratio with load, PHX2 — Slip variation 0.00115950515263055 (default) $\mid$ scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

# **Vertical shift in load at nominal normal load, PVX1 — Load shift** (default) | scalar | 1.59236164471432e-05

Vertical shift in load at nominal normal load, PVX1, dimensionless.

### Variation of vertical shift with load, PVX2 — Load variation 0.000104321112127671 (default) | scalar

Variation of vertical shift with load, *PVX2*, dimensionless.

## Linear variation of longitudinal slip stiffness with tire pressure, $\mbox{PPX1}-\mbox{Stiffness variation}$

-0.349461321276586 (default) | scalar

Linear variation of longitudinal slip stiffness with tire pressure, *PPX1*, dimensionless.

#### Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 — Stiffness variation

0.387840040616429 (default) | scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

### Linear variation of peak longitudinal friction with tire pressure, PPX3 — Friction variation

-0.0969947336569324 (default) | scalar

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

#### Quadratic variation of peak longitudinal friction with tire pressure, PPX4 — Friction variation

0.0632271859795801 (default) | scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

## Combined slip Fx slope factor reduction, RBX1 — Combined slip longitudinal force slope factor reduction

12.7633329850276 (default) | scalar

Combined slip longitudinal force,  $F_x$ , slope factor reduction, *RBX1*, dimensionless.

#### Slip ratio Fx slope reduction variation, RBX2 — Slip ratio longitudinal force slope reduction variation

9.5787123658471 (default) | scalar

Slip ratio longitudinal force,  $F_x$ , slope reduction variation, *RBX2*, dimensionless.

# Camber influence on combined slip Fx stiffness, RBX3 — Camber influence on combined slip longitudinal force stiffness

0 (default) | scalar

Camber influence on combined slip longitudinal force, F<sub>x</sub>, stiffness, RBX3, dimensionless.

## Shape factor for combined slip Fx reduction, RCX1 — Shape factor for combined slip longitudinal force reduction

1.02796280922059 (default) | scalar

Shape factor for combined slip longitudinal force,  $F_v$ , reduction, RCX1, dimensionless.

### Combined Fx curvature factor, REX1 — Combined longitudinal force curvature factor -0.45202516851367 (default) | scalar

Combined longitudinal force,  $F_x$ , curvature factor, *REX1*, dimensionless.

### Combined Fx curvature factor with load, REX2 — Combined longitudinal force curvature factor

-0.47304886171176 (default) | scalar

Combined longitudinal force,  $F_x$ , curvature factor with load, *REX2*, dimensionless.

### Combined slip Fx shift factor reduction, RHX1 — Combined slip longitudinal force slip factor

0.000233272373115809 (default) | scalar

Combined slip longitudinal force,  $F_x$ , shift factor reduction, RHX1, dimensionless.

#### Overturning

### Vertical shift of overturning moment, QSX1 — Overturning moment -0.00788307788961443 (default) | scalar

Vertical shift of overturning moment, QSX1, dimensionless.

Overturning moment due to camber, QSX2 — Overturning moment due to camber 0.954629515459396 (default) | scalar

Overturning moment due to camber, QSX2, dimensionless.

Overturning moment due to Fy, QSX3 — Overturning moment due to lateral force 0.0155855777667025 (default)  $\mid$  scalar

Overturning moment due to lateral force, QSX3, dimensionless.

Mx combined lateral force load and camber, QSX4 — Overturning moment 0.125904607142414 (default) | scalar

Overturning moment,  $M_{v}$ , moment combined lateral force load and camber, QSX4, dimensionless.

Mx load effect due to lateral force and camber, QSX5 — Overturning moment 1.01110069703963 (default) | scalar

Overturning moment,  $M_x$ , load effect due to lateral force and camber, QSX5, dimensionless.

## Mx load effect due to B-factor, QSX6 — Overturning moment 20.1938577118433 (default) | scalar

Overturning moment,  $M_x$ , load effect due to B-factor, QSX6, dimensionless.

# Mx due to camber and load, QSX7 — Overturning moment 0.310818120717083 (default) | scalar

Overturning moment,  $M_{\rm x}$ , due to camber and load, QSX7, dimensionless.

# Mx due to lateral force and load, QSX8 — Overturning moment -0.0430823751139655 (default) | scalar

Overturning moment,  $M_x$ , due to lateral force and load, QSX8, dimensionless.

Mx due to B-factor of lateral force and load, QSX9 — Overturning moment 0.636494404888216 (default) | scalar

Overturning moment,  $M_x$ , due to B-factor of lateral force and load, QSX9, dimensionless.

Mx due to vertical force and camber, QSX10 — Overturning moment 0.142438060591663 (default) | scalar

Overturning moment,  $M_{x}$ , due to vertical force and camber, QSX10, dimensionless.

Mx due to B-factor of vertical force and camber, QSX11 — Overturning moment 0.346766530036373 (default) | scalar

Overturning moment,  $M_{x}$ , due to B-factor of vertical force and camber, QSX11, dimensionless.

Mx due to squared camber, QSX12 — Overturning moment 0 (default) | scalar

Overturning moment,  $M_x$ , due to squared camber, QSX12, dimensionless.

Mx due to lateral force, QSX13 — Overturning moment  $\theta$  (default) | scalar

Overturning moment,  $M_x$ , due to lateral force, QSX13, dimensionless.

Mx due to lateral force with camber, QSX14 — Overturning moment 0 (default)  $\mid$  scalar

Overturning moment,  $M_x$ , due to lateral force with camber, QSX14, dimensionless.

Mx due to inflation pressure, PPMX1 — Overturning moment due to pressure  $0 (default) \mid scalar$ 

Overturning moment,  $M_x$ , due to inflation pressure, *PPMX1*, dimensionless.

#### Lateral

Cfy shape factor for lateral force, PCY1 — Lateral force shape factor 1.34299950037631 (default) | scalar

Shape factor for lateral force,  $C_{fv}$ , PCY1, dimensionless.

Lateral friction muy, PDY1 — Lateral friction

0.878267729082195 (default) | scalar

Lateral friction,  $\mu_{v}$ , *PDY1*, dimensionless.

Lateral friction variation of muy with load, PDY2 — Lateral friction variation -0.0644597923147385 (default) | scalar

Variation of lateral friction,  $\mu_{vv}$  with load, *PDY2*, dimensionless.

Lateral friction variation of muy with squared camber, PDY3 — Lateral friction variation

0 (default) | scalar

Variation of lateral friction,  $\mu_{\nu}$ , with squared camber, *PDY3*, dimensionless.

### Efy lateral curvature at nominal force FZNOM, PEY1 — Lateral curvature at nominal force

-0.809776534470972 (default) | scalar

Lateral curvature,  $Ef_v$ , at nominal force,  $F_{ZNOM}$ , PEY1, dimensionless.

### **Efy curvature variation with load PEY2 — Lateral curvature variation** -0.600180598867198 (default) | scalar

Lateral curvature,  $Ef_v$ , variation with load, PEY2, dimensionless.

### **Efy curvature constant camber dependency, PEY3 — Lateral curvature constant** 0.0991732552633487 (default) | scalar

Lateral curvature,  $Ef_{\nu}$ , constant camber dependency, *PEY3*, dimensionless.

# **Efy curvature variation with camber, PEY4 — Lateral curvature variation** -6.5577974035573 (default) | scalar

Lateral curvature,  $Ef_{\nu}$ , variation with camber, *PEY4*, dimensionless.

## **Efy curvature variation with camber squared, PEY5 — Lateral curvature variation** 0 (default) | scalar

Lateral curvature,  $Ef_{\nu}$ , variation with camber squared, *PEY5*, dimensionless.

#### Maximum KFy/FZNOM stiffness, PKY1 — Maximum stiffness - 15.5714726518315 (default) | scalar

Maximum lateral force stiffness,  $KF_v$ , to nominal force,  $F_{ZNOM}$ , ratio, PKY1, dimensionless.

#### Load at maximum KFy/FZNOM stiffness, PKY2 — Load

1.73126522291751 (default) | scalar

Load at maximum lateral force stiffness,  $KF_{v}$ , to nominal force,  $F_{ZNOM}$ , ratio, PKY2, dimensionless.

# **KFy/FZNOM** stiffness variation with camber, **PKY3** — Stiffness variation 0.365349873517229 (default) | scalar

Lateral force stiffness,  $KF_y$ , to nominal force,  $F_{ZNOM}$ , stiffness variation with camber, PKY3, dimensionless.

#### KFy curvature, PKY4 — Lateral force stiffness curvature

1.98176755955416 (default) | scalar

Lateral force stiffness,  $KF_{\nu}$  curvature, PKY4, dimensionless.

# Variation of peak stiffness with squared camber, PKY5 — Stiffness variation $\theta$ (default) | scalar

Variation of peak stiffness with squared camber, PKY5, dimensionless.

### Fy camber stiffness factor, PKY6 — Lateral force camber stiffness factor -0.884005199550313 (default) | scalar

Lateral force,  $F_{v}$ , camber stiffness factor, *PKY6*, dimensionless.

#### Camber stiffness vertical load dependency, PKY7 — Stiffness

-0.237259727611847 (default) | scalar

Camber stiffness vertical load dependency, PKY7, dimensionless.

## SHY horizontal shift at FZNOM, PHY1 — Horizontal shift at nominal force -0.00183370557235628 (default) | scalar

Horizontal shift,  $S_{HY}$ , at nominal force,  $F_{ZNOM}$ , PHY1, dimensionless.

# SHY variation with load, PHY2 — Horizontal shift variation 0.00346401302716671 (default) | scalar

Horizontal shift,  $S_{HY}$ , variation with load, PHY2, dimensionless.

# Svy/Fz vertical shift at FZNOM, PVY1 — Vertical shift at nominal force -0.00675427560163264 (default) | scalar

Vertical shift,  $S_{vv}$ , at nominal force,  $F_{ZNOM}$ , PVY1, dimensionless.

# Svy/Fz variation with load, PVY2 — Vertical shift variation with load 0.036379218103843 (default) | scalar

Vertical shift,  $S_{vv}$ , variation with load, PVY2, dimensionless.

# Svy/Fz variation with camber, PVY3 — Vertical shift variation with camber -0.163543984089166 (default) | scalar

Vertical shift,  $S_{vv}$ , variation with camber, *PVY3*, dimensionless.

### Svy/Fz variation with load and camber, PVY4 — Vertical shift variation with load and camber

-0.491003349625726 (default) | scalar

Vertical shift,  $S_{vv}$ , variation with load and camber, *PVY4*, dimensionless.

# Cornering stiffness variation with inflation pressure, PPY1-Stiffness variation with pressure

-0.62059646553185 (default) | scalar

Cornering stiffness variation with inflation pressure, *PPY1*, dimensionless.

## Cornering stiffness variation with inflation pressure induced nominal load dependency, PPY2 — Stiffness variation with pressure

-0.0647824842338686 (default) | scalar

Cornering stiffness variation with inflation pressure induced nominal load dependency, *PPY2*, dimensionless.

### Linear inflation pressure on peak lateral friction, PPY3 — Pressure -0.164648843290686 (default) | scalar

Linear inflation pressure on peak lateral friction, *PPY3*, dimensionless.

### Quadratic inflation pressure on peak lateral friction, PPY4 — Pressure 0.283193909060098 (default) | scalar

Quadratic inflation pressure on peak lateral friction, *PPY4*, dimensionless.

#### Inflation pressure effect on camber stiffness, PPY5 — Pressure

0 (default) | scalar

Inflation pressure effect on camber stiffness, PPY5, dimensionless.

### Combined Fy reduction slope factor, RBY1 — Combined lateral force reduction slope factor

10.7588809173639 (default) | scalar

Combined lateral force,  $F_{vv}$ , reduction slope factor, *RBY1*, dimensionless.

### Fy slope reduction with slip angle, RBY2 — Lateral force slope reduction with slip angle

7.70420065295029 (default) | scalar

Lateral force,  $F_{v}$ , slope reduction with slip angle, *RBY2*, dimensionless.

### Fy shift reduction with slip angle, RBY3 — Lateral force shift reduction with slip angle

3.40283755070691e-06 (default) | scalar

Lateral force,  $F_v$ , shift reduction with slip angle, *RBY3*, dimensionless.

### Fy combined stiffness variation from camber, RBY4 — Lateral force combined stiffness variation from camber

0 (default) | scalar

Lateral force,  $F_{\nu}$ , combined stiffness variation from camber, *RBY4*, dimensionless.

#### Fy combined reduction shape factor, RCY1 — Lateral force combined reduction shape factor

1.06691874059059 (default) | scalar

Lateral force,  $F_{\nu}$ , combined reduction shape factor, *RCY1*, dimensionless.

## Fy combined curvature factor, REY1 — Lateral force combined curvature factor 0.308244924574305 (default) | scalar

Lateral force,  $F_{v}$ , combined curvature factor, *REY1*, dimensionless.

### Fy combined curvature factor with load, REY2 — Lateral force combined curvature factor with load

7.48775032604508e-06 (default) | scalar

Lateral force,  $F_{v}$ , combined curvature factor with load, *REY2*, dimensionless.

### Fy combined reduction shift factor, RHY1 — Lateral force combined reduction shift factor

0.0118479204960415 (default) | scalar

Lateral force,  $F_{\nu}$ , combined reduction shift factor, *RHY1*, dimensionless.

# Fy combined reduction shift factor with load, RHY2 — Lateral force combined reduction shift factor with load

7.63650177161071e-06 (default) | scalar

Lateral force,  $F_{\nu}$ , combined reduction shift factor with load, *RHY2*, dimensionless.

### Slip ratio side force Svyk/Muy\*Fz at FZNOM, RVY1 — Slip ratio slide force at nominal force

0.0560024425050078 (default) | scalar

Slip ratio side force at nominal force,  $F_{ZNOM}$ , RVY1, dimensionless.

# Side force Svyk/Muy\*Fz variation with load, RVY2 — Side force variation with load 7.48487127056197e-06 (default) | scalar

Side force variation with load, RVY2, dimensionless.

#### Side force Svyk/Muy\*Fz variation with camber, RVY3 — Side force variation with camber

0 (default) | scalar

Side force variation with camber, RVY3, dimensionless.

### Side force Svyk/Muy\*Fz variation with slip angle, RVY4 — Side force variation with slip angle

98.4047026517149 (default) | scalar

Side force variation with slip angle, RVY4, dimensionless.

### Side force Svyk/Muy\*Fz variation with slip ratio, RVY5 — Side force variation with slip ratio

2.02759273900054 (default) | scalar

Side force variation with slip ratio, *RVY5*, dimensionless.

### Side force Svyk/Muy\*Fz variation with slip ratio arctangent, RVY6 — Side force variation with slip ratio arctangent

15.7623064923347 (default) | scalar

Side force variation with slip ratio arctangent, RVY6, dimensionless.

#### Rolling

#### Torque resistance coefficient, QSY1 — Torque resistance

0.00699077564863536 (default) | scalar

Torque resistance coefficient, QSY1, dimensionless.

# Torque resistance due to Fx, QSY2 — Torque resistance due to longitudinal force $\theta$ (default) | scalar

Torque resistance due to longitudinal force,  $F_{x}$ , QSY2, dimensionless.

### **Torque resistance due to speed, QSY3 — Torque resistance due to speed** (default) | scalar | 0.00153535478298811

Torque resistance due to speed, *QSY3*, dimensionless.

## Torque resistance due to speed^4, QSY4 — Torque resistance due to speed 8.55710322455322e-05 (default) | scalar

Torque resistance due to speed^4, *QSY*4, dimensionless.

Torque resistance due to square of camber, QSY5 — Torque resistance due to camber  $\theta$  (default) | scalar

Torque resistance due to square of camber, QSY5, dimensionless.

### Torque resistance due to square of camber and load, QSY6 — Torque resistance due to camber and load

0 (default) | scalar

Torque resistance due to square of camber and load, QSY6, dimensionless.

## **Torque resistance due to load, QSY7 — Torque resistance due to load** 0.89443879773793 (default) | scalar

Torque resistance due to load, QSY7, dimensionless.

## Torque resistance due to pressure, QSY8 — Torque resistance due to pressure -0.403227641260894 (default) | scalar

Torque resistance due to pressure, QSY8, dimensionless.

#### Aligning

#### Trail slope factor for trail Bpt at FZNOM, QBZ1 — Trail slope factor at nominal force

11.666656027484 (default) | scalar

Trail slope factor for trail Bpt at nominal force,  $F_{ZNOM}$ , QBZ1, dimensionless.

## Bpt slope variation with load, QBZ2 — Slope variation with load -1.30355438574485 (default) | scalar

Slope variation with load, QBZ2, dimensionless.

# Bpt slope variation with square of load, QBZ3 — Slope variation with load $\theta$ (default) | scalar

Slope variation with square of load, QBZ3, dimensionless.

# Bpt slope variation with camber, QBZ4 — Slope variation with camber 0.177918305399071 (default) | scalar

Slope variation with camber, *QBZ4*, dimensionless.

### Bpt slope variation with absolute value of camber, QBZ5 — Slope variation with camber

-0.162481135068033 (default) | scalar

Slope variation with absolute value of camber, *OBZ5*, dimensionless.

# Bpt slope variation with square of camber, QBZ6 — Slope variation with camber $\theta$ (default) | scalar

Slope variation with square of camber, *QBZ6*, dimensionless.

#### Br of Mzr slope scaling factor, QBZ9 — Slope scaling factor

30.1445534682089 (default) | scalar

Slope scaling factor, QBZ9, dimensionless.

## Br of Mzr cornering stiffness factor, QBZ10 — Cornering stiffness factor $\theta$ (default) | scalar

Br of Mzr cornering stiffness factor, QBZ10, dimensionless.

### Cpt pneumatic trail shape factor, QCZ1 — Pneumatic trail shape factor 1.29026978207574 (default) | scalar

Pneumatic trail shape factor,  $C_{pt}$ , QCZ1, dimensionless.

#### Dpt peak trail, QDZ1 — Peak trail

0.0886972644991399 (default) | scalar

Peak trail,  $D_{nt}$ , QDZ1, dimensionless.

### **Dpt peak trail variation with load, QDZ2 — Peak trail variation with load** -0.0058634820161856 (default) | scalar

Peak trail,  $D_{pt}$ , variation with load, QDZ2, dimensionless.

## Dpt peak trail variation with camber, QDZ3 — Peak trail variation with camber 0.3805597481383 (default) | scalar

Peak trail,  $D_{pt}$ , variation with camber, *QDZ3*, dimensionless.

#### Dpt peak trail variation with square of camber, QDZ4 — Peak trail variation with camber

0 (default) | scalar

Peak trail,  $D_{nt}$ , variation with square of camber, QDZ4, dimensionless.

#### Dmr peak residual torque, QDZ6 — Peak residual torque

0.00160914918118959 (default) | scalar

Peak residual torque,  $D_{mr}$ , QDZ6, dimensionless.

#### Dmr peak residual torque variation with load, QDZ7 — Peak residual torque variation with load

-0.00211036330862154 (default) | scalar

Peak residual torque,  $D_{mr}$ , variation with load, QDZ7, dimensionless.

### Dmr peak residual torque variation with camber, QDZ8 — Peak residual torque variation with camber

-0.13921904912557 (default) | scalar

Peak residual torque,  $D_{mr}$ , variation with camber, QDZ8, dimensionless.

# Dmr peak residual torque variation with camber and load, QDZ9 — Peak residual torque variation with camber and load

0.00816585550028243 (default) | scalar

Peak residual torque,  $D_{mr}$ , variation with camber and load, QDZ9, dimensionless.

Dmr peak residual torque variation with square of camber, QDZ10 — Peak residual torque variation with camber

0 (default) | scalar

Peak residual torque,  $D_{mr}$ , variation with square of camber, QDZ10, dimensionless.

Dmr peak residual torque variation with square of load, QDZ11 — Peak residual torque variation with load

0 (default) | scalar

Peak residual torque,  $D_{mr}$ , variation with square of load, QDZ11, dimensionless.

Ept trail curvature at FZNOM, QEZ1 — Trail curvature at nominal force -2.19802254534746 (default) | scalar

Trail curvature,  $E_{pt}$ , at nominal force,  $F_{ZNOM}$ , QEZ1, dimensionless.

**Ept variation with load, QEZ2 — Trail curvature variation with load** 1.01850535789165 (default) | scalar

Trail curvature,  $E_{pt}$  variation with load, *QEZ2*, dimensionless.

Ept variation with square of load, QEZ3 — Trail curvature variation with load  $\theta$  (default) | scalar

Trail curvature,  $E_{nt}$  variation with square of load, *QEZ3*, dimensionless.

Ept variation with sign of alpha-t, QEZ4 — Trail curvature variation 0.278379679112054 (default) | scalar

Trail curvature,  $E_{nt}$  variation with sign of alpha-t, QEZ4, dimensionless.

Ept variation with sign of alpha-t and camber, QEZ5 — Variation -0.548414722765386 (default) | scalar

Trail curvature,  $E_{pt}$  variation with sign of alpha-t and camber, *QEZ5*, dimensionless.

Sht horizontal trail shift at FZNOM, QHZ1 — Horizontal trail shift at nominal load 0.00148361198869669 (default) | scalar

Horizontal trail shift,  $Sh_t$ , at nominal load,  $F_{ZNOM}$ , QHZ1, dimensionless.

Sht variation with load, QHZ2 — Horizontal trail shift variation with load 0.00202017567585904 (default) | scalar

Horizontal trail shift,  $Sh_t$ , variation with load, QHZ2, dimensionless.

Sht variation with camber, QHZ3 — Horizontal trail shift variation with camber 0.240316641332066 (default) | scalar

Horizontal trail shift,  $Sh_t$ , variation with camber, QHZ3, dimensionless.

### Sht variation with load and camber, QHZ4 — Horizontal trail shift variation with load and camber

-0.210114035738085 (default) | scalar

Horizontal trail shift,  $Sh_t$ , variation with load and camber, QHZ4, dimensionless.

## Inflation pressure influence on trail length, PPZ1 — Pressure influence on trail length

-0.443927982388615 (default) | scalar

Inflation pressure influence on trail length, PPZ1, dimensionless.

# Inflation pressure influence on residual aligning torque, PPZ2 — Pressure influence on aligning torque

0 (default) | scalar

Inflation pressure influence on residual aligning torque, *PPZ2*, dimensionless.

### Nominal value of s/R0: effect of Fx on Mz, SSZ1 — Effect of longitudinal force on aligning torque

0.00914999585397887 (default) | scalar

Nominal value of s/R0: effect of longitudinal force,  $F_x$ , on aligning torque,  $M_z$ , SSZ1, dimensionless.

#### s/R0 variation with lateral to nominal force ratio, SSZ2 — Variation with lateral to nominal force ratio

0.0389830656052735 (default) | scalar

Variation with lateral to nominal force ratio, SSZ2, dimensionless.

### s/R0 variation with camber, SSZ3 — Variation with camber 0 (default) | scalar

Variation with camber, SSZ3, dimensionless.

## **s/R0 variation with camber and load, SSZ4 — Variation with camber and load** 0 (default) | scalar

Variation with camber and load, SSZ4, dimensionless.

#### **Turnslip**

## Fx peak reduction due to spin, PDXP1 — Longitudinal force peak reduction due to spin 0.396718274678791 (default) | scalar

Longitudinal force,  $F_{v}$ , peak reduction due to spin, *PDXP1*, dimensionless.

# Fx peak reduction due to spin with varying load, PDXP2 — Longitudinal force peak reduction due to spin

0 (default) | scalar

Longitudinal force,  $F_{x}$ , peak reduction due to spin with varying load, PDXP2, dimensionless.

# Fx peak reduction due to spin with slip ratio, PDXP3 — Longitudinal force peak reduction due to spin $\,$

0 (default) | scalar

Longitudinal force,  $F_x$ , peak reduction due to spin with slip ratio, *PDXP3*, dimensionless.

Cornering stiffness reduction due to spin, PKYP1 — Stiffness reduction due to spin 1.00587060633573 (default) | scalar

Cornering stiffness reduction due to spin, *PKYP1*, dimensionless.

Fy peak reduction due to spin, PDYP1 — Lateral force peak reduction due to spin 0.40483048923438 (default) | scalar

Lateral force,  $F_{yy}$  peak reduction due to spin, *PDYP1*, dimensionless.

## Fy peak reduction due to spin with varying load, PDYP2 — Lateral force peak reduction due to spin

0 (default) | scalar

Lateral force,  $F_{vv}$  peak reduction due to spin with varying load, *PDYP2*, dimensionless.

# Fy peak reduction due to spin with slip angle, PDYP3 — Lateral force peak reduction due to spin

0 (default) | scalar

Lateral force,  $F_{\nu\nu}$  peak reduction due to spin with slip angle, *PDYP3*, dimensionless.

## Fy peak reduction due to square root of spin, PDYP4 — Lateral force peak reduction due to spin

0 (default) | scalar

Lateral force,  $F_{\nu\nu}$ , peak reduction due to square root of spin, *PDYP4*, dimensionless.

# Fy vs. slip angle response lateral shift limit, PHYP1 — Lateral force versus slip angle response

0.992731942067188 (default) | scalar

Lateral force,  $F_{v}$ , versus slip angle response lateral shift limit, *PHYP1*, dimensionless.

# Fy vs. slip angle response max lateral shift limit, PHYP2 — Lateral force versus slip angle response

0.150352945499914 (default) | scalar

Lateral force,  $F_{vv}$  versus slip angle response max lateral shift limit, *PHYP2*, dimensionless.

## Fy vs. slip angle response max lateral shift limit with load, PHYP3 — Lateral force versus slip angle response

0 (default) | scalar

Lateral force,  $F_{vv}$  versus slip angle response max lateral shift limit with load, *PHYP3*, dimensionless.

# Fy vs. slip angle response lateral shift curvature factor, PHYP4 — Lateral force versus slip angle response

-3.98988682633674 (default) | scalar

Lateral force,  $F_{vv}$  versus slip angle response lateral shift curvature factor, *PHYP4*, dimensionless.

# Camber stiffness reduction due to spin, PECP1 — Camber stiffness reduction 0.502379254513503 (default) | scalar

Camber stiffness reduction due to spin, PECP1, dimensionless.

#### Camber stiffness reduction due to spin with load, PECP2 — Camber stiffness reduction

0 (default) | scalar

Camber stiffness reduction due to spin with load, *PECP2*, dimensionless.

#### Turn slip pneumatic trail reduction factor, QDTP1 — Turn slip pneumatic trail reduction factor

10.0178654287947 (default) | scalar

Turn slip pneumatic trail reduction factor, QDTP1, dimensionless.

# Turn moment for constant turning and zero longitudinal speed, QCRP1 — Turn moment for constant turning

0.200627747200702 (default) | scalar

Turn moment for constant turning and zero longitudinal speed, QCRP1, dimensionless.

### Turn slip moment increase with spin at 90deg slip angle, QCRP2 — Turn slip moment

0.0995735881599772 (default) | scalar

Turn slip moment increase with spin at 90-degree slip angle, QCRP2, dimensionless.

### Residual spin torque reduction from side slip, QBRP1 — Residual spin torque reduction

0.0997107127960717 (default) | scalar

Residual spin torque reduction from side slip, *QBRP1*, dimensionless.

### Turn slip moment peak magnitude, QDRP1 — Turn slip moment peak magnitude 1.01432910167423 (default) | scalar

Turn slip moment peak magnitude, QDRP1, dimensionless.

# Turn slip moment curvature, QDRP2 — Turn slip moment curvature $\theta$ (default) | scalar

Turn slip moment curvature, *QDRP2*, dimensionless.

#### References

- [1] Besselink, I. J. M., A. J. C. Schmeitz, and H. B. Pacejka. "An improved Magic Formula/Swift tyre model that can handle inflation pressure changes." *Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility*. Vol. 48, 2010. doi: 10.1080/00423111003748088.
- [2] Pacejka, H. B. *Tire and Vehicle Dynamics*. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
- [3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.

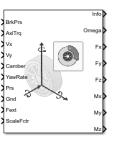
#### **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

#### **See Also**

Longitudinal Wheel


#### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2018a

#### Fiala Wheel 2DOF

Fiala wheel 2DOF wheel with disc, drum, or mapped brake **Library:** Vehicle Dynamics Blockset / Wheels and Tires



#### **Description**

The Fiala Wheel 2DOF block implements a simplified tire with lateral and longitudinal slip capability based on the E. Fiala model<sup>[1]</sup>. The block uses a translational friction model to calculate the forces and moments during combined longitudinal and lateral slip, requiring fewer parameters than the Combined Slip Wheel 2DOF block. If you do not have the tire coefficients needed by the Magic Formula, consider using this block for studies that do not involve extensive nonlinear combined lateral slip or lateral dynamics. If your study does require nonlinear combined slip or lateral dynamics, consider using the Combined Slip Wheel 2DOF block.

The block determines the wheel rotation rate, vertical motion, and forces and moments in all six degrees-of-freedom (DOFs) based on the driveline torque, brake pressure, road height, wheel camber angle, and inflation pressure. You can use this block for these types of analyses:

- Driveline and vehicle simulations that require low frequency tire-road and braking forces for vehicle acceleration, braking, and wheel rolling resistance calculations with minimal tire parameters.
- · Wheel interaction with an idealized road surface.
- Ride and handling maneuvers for vehicles undergoing mild combined slip. For this analysis, you
  can connect the block to driveline and chassis components such as differentials, suspension, and
  vehicle body systems.
- Yaw stability. For this analyses, you can connect this block to more detailed braking system models.
- Tire stiffness and unsprung mass interactions with ground variations, load transfer, or chassis motion using the block vertical DOF.

The block integrates rotational wheel, vertical mass, and braking dynamics models. For the slip-dependent tire forces and moments, the block implements the Fiala tire model.

Use the **Brake Type** parameter to select the brake.

| Brake Type Setting | Brake Implementation                                                 |
|--------------------|----------------------------------------------------------------------|
| None               | None                                                                 |
|                    | Brake that converts the brake cylinder pressure into a braking force |

| Brake Type Setting | Brake Implementation                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------|
| Drum               | Simplex drum brake that converts the applied force and brake geometry into a net braking torque |
| Mapped             | Lookup table that is a function of the wheel speed and applied brake pressure                   |

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

| Setting               | Block Implementation                                                                                                                                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | None                                                                                                                                                                    |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity.      |
| ISO 28580             | Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results. |
| Magic Formula         | Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                      |
| Mapped torque         | Lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                |

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

| Setting                      | Block Implementation                                                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                         | Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.                                                                            |
| Mapped stiffness and damping | Vertical motion depends on wheel stiffness and damping.<br>Stiffness is a function of tire sidewall displacement and<br>pressure. Damping is a function of tire sidewall velocity and<br>pressure. |

#### **Rotational Wheel Dynamics**

The block calculates the inertial response of the wheel subject to:

- · Axle losses
- · Brake and drive torque
- Tire rolling resistance
- · Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$T_i = T_a - T_b + T_d$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first-order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$T_d(s) = \frac{1}{\frac{|\omega|R_e}{L_e}s + 1} (F_\chi R_e + M_y)$$

To calculate the rolling resistance torque, you can specify one of these  ${\bf Rolling}$   ${\bf Resistance}$  parameters.

| Setting               | Block Implementation                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | Block sets rolling resistance, $M_y$ , to zero.                                                                                                                                                                                                                                                                                                                                          |
| Pressure and velocity | Block uses the method in SAE Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. The rolling resistance is a function of tire pressure, normal force, and velocity. Specifically, $M_y = R_e \{a+b V_x +cV_x^2\} \{F_z\beta p_i\alpha\} \tanh(4V_x)$                                                                                                                   |
| ISO 28580             | Block uses the method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results. The method accounts for normal load, parasitic loss, and thermal corrections from test conditions. Specifically, $M_y = R_e(\frac{F_z C_r}{1 + K_t (T_{amb} - T_{meas})} - F_{pl}) \tanh(\omega)$ |
| Magic Formula         | Block calculates the rolling resistance, $M_y$ , using the Magic Formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                                                                                                                                                                            |
| Mapped torque         | For the rolling resistance, $M_y$ , the block uses a lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                                                                                                                                                                            |

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

| If                                            | Lock-Up<br>Condition | Friction Model                                        | Dynamic Model                           |
|-----------------------------------------------|----------------------|-------------------------------------------------------|-----------------------------------------|
| $\omega \neq 0$                               | Unlocked             | $T_f = T_k$                                           | $\dot{\omega}J = -\omega b + T_i + T_o$ |
| or                                            |                      | where,                                                |                                         |
| $ T_S <  T_i + T_f - \omega b $               |                      | $T_k = F_c R_{eff} \mu_k \tanh[4(-\omega_d)]$         |                                         |
|                                               |                      | $T_S = F_c R_{eff} \mu_S$                             |                                         |
|                                               |                      | $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$ |                                         |
| $\omega = 0$                                  | Locked               | $T_f = T_S$                                           | $\omega = 0$                            |
| and                                           |                      |                                                       |                                         |
| $T_S \ge \left  T_i + T_f - \omega b \right $ |                      |                                                       |                                         |

The equations use these variables.

 $\omega$  Wheel angular velocity

a Velocity-independent force component

| b                             | Linear velocity force component                                     |
|-------------------------------|---------------------------------------------------------------------|
| $\boldsymbol{c}$              | Quadratic velocity force component                                  |
| $L_e$                         | Tire relaxation length                                              |
| J                             | Moment of inertia                                                   |
| $M_{y}$                       | Rolling resistance torque                                           |
| $T_a$                         | Applied axle torque                                                 |
| $T_b$                         | Braking torque                                                      |
| $T_d$                         | Combined tire torque                                                |
| $T_f$                         | Frictional torque                                                   |
| $T_i$                         | Net input torque                                                    |
| $T_k$                         | Kinetic frictional torque                                           |
| $T_o$                         | Net output torque                                                   |
| $T_s$                         | Static frictional torque                                            |
| $F_c$                         | Applied clutch force                                                |
| $F_{x}$                       | Longitudinal force developed by the tire road interface due to slip |
| $R_{\it eff}$                 | Effective clutch radius                                             |
| $R_o$                         | Annular disk outer radius                                           |
| $R_i$                         | Annular disk inner radius                                           |
| $R_e$                         | Effective tire radius while under load and for a given pressure     |
| $V_{\scriptscriptstyle \chi}$ | Longitudinal axle velocity                                          |
| $F_z$                         | Vehicle normal force                                                |
| $C_r$                         | Rolling resistance constant                                         |
| $T_{amb}$                     | Ambient temperature                                                 |
| $T_{meas}$                    | Measured temperature for rolling resistance constant                |
| $F_{pl}$                      | Parasitic force loss                                                |
| $K_t$                         | Thermal correction factor                                           |
| α                             | Tire pressure exponent                                              |
| β                             | Normal force exponent                                               |
| $p_i$                         | Tire pressure                                                       |
| $\mu_s$                       | Coefficient of static friction                                      |
| $\mu_k$                       | Coefficient of kinetic friction                                     |

#### **Longitudinal Force**

The block implements the longitudinal force as a function of wheel slip relative to the road surface using these equations.

| Calculation   | Equation                                                        |
|---------------|-----------------------------------------------------------------|
| Critical slip | $\kappa'_{Critical} = \left  \frac{\mu F_z}{2C_\kappa} \right $ |

| Calculation          | Equation                                                                                                                                                                        |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Longitudinal force   | $C_k  \kappa'$ when $ \kappa'  \leq \kappa'_{Critical}$                                                                                                                         |
|                      | $F_{x} = \left\{ \tanh(4\kappa') \left( \mu  F_{z}  - \left  \frac{(\mu F_{z})^{2}}{4\kappa' C_{\kappa}} \right  \right)  \text{when }  \kappa'  > \kappa'_{Critical} \right\}$ |
| Friction coefficient | $\mu = (\mu_{S} - (\mu_{S} - \mu_{k}) \kappa_{k\alpha}) \lambda_{\mu}$                                                                                                          |
| Slip coefficient     | $\kappa_{k\alpha} = \sqrt{\kappa^{2} + \tan^{2}(\alpha^{\prime})}$                                                                                                              |

The equations use these variables.

| $K^{I}$                       | Slip state                                                         |
|-------------------------------|--------------------------------------------------------------------|
| $F_{\scriptscriptstyle \chi}$ | Longitudinal force acting on axle along tire-fixed <i>x</i> -axis, |
| $C_{\kappa}$                  | Longitudinal stiffness                                             |
| $F_z$                         | Vertical contact patch normal force along tire-fixed z-axis,       |
| μ                             | Friction coefficient                                               |
| $\mu_s$                       | Coefficient of static friction                                     |
| $\mu_k$                       | Coefficient of kinetic friction                                    |
| $K_{ka}$                      | Comprehensive slip coefficient                                     |
| $\alpha'$                     | Slip angle state                                                   |
| $\lambda_{\mu}$               | Friction scaling                                                   |
| •                             |                                                                    |

#### **Lateral Force**

The block implements the lateral force as a function of wheel slip angle state using these equations.

| Calculation         | Equation                                                                                                                                                                                                                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Critical slip angle | $\alpha'_{Critical} = \operatorname{atan}(\frac{3\mu F_2 }{C_a})$                                                                                                                                                          |
| Lateral force       | $F_{y} = \begin{cases} -\tanh(4\alpha')\mu F_{z}  & \text{when }  \alpha'  > \alpha'_{Critical} \\ -\tanh(4\alpha')\mu F_{z} (1-\xi^{3}) + \gamma C_{\gamma} & \text{when }  \alpha'  \leq \alpha'_{Critical} \end{cases}$ |
|                     | $\xi = 1 - \frac{C_a  \tan(\alpha') }{3\mu  F_z }$                                                                                                                                                                         |

The equations use these variables.

| α'         | Slip angle state                                               |
|------------|----------------------------------------------------------------|
| $F_{y}$    | Lateral force acting on axle along tire-fixed y-axis,          |
| $F_z$      | Vertical contact patch normal force along tire-fixed $z$ -axis |
| $C_{\chi}$ | Camber stiffness                                               |
| $C_{lpha}$ | Lateral stiffness per slip angle                               |
| $\mu$      | Friction coefficient                                           |

#### **Vertical Dynamics**

For the vertical dynamics, the block implements these equations.

| Calculation                  | Equation                          |
|------------------------------|-----------------------------------|
| Vertical response            | $\ddot{z}m = F_{ztire} + mg - Fz$ |
| Tire normal force            | $F_{ztire} = \rho_z k - b\dot{z}$ |
| Vertical sidewall deflection | $\rho_z = z_{gnd} - z, z \ge 0$   |

The equations use these variables.

| z           | Tire deflection along tire-fixed <i>z</i> -axis          |
|-------------|----------------------------------------------------------|
| $z_{gnd}$   | Ground displacement along tire-fixed $z$ -axis           |
| $F_{ztire}$ | Tire normal force along tire-fixed $z$ -axis             |
| $F_z$       | Vertical force acting on axle along tire-fixed $z$ -axis |
| $ ho_z$     | Vertical sidewall deflection along tire-fixed $z$ -axis  |
| k           | Vertical sidewall stiffness                              |
| b           | Vertical sidewall damping                                |

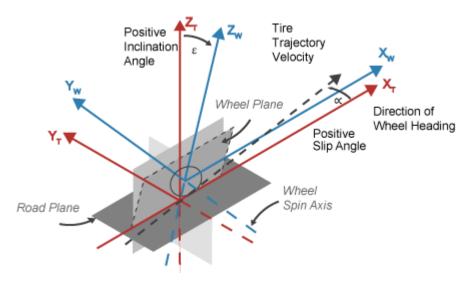
#### Overturning, Aligning, and Scaling

This table summarizes the overturning, aligning, and scaling implementation.

| Calculation        | Implementation                                                                                                                  |                                          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Overturning moment | The Fiala model does not define an over-<br>implements this equation, requiring min<br>$M_{\rm X} = F_{\rm V} R_e \cos(\gamma)$ | 3                                        |
|                    | $11\chi - 1$ yregods( $\gamma$ )                                                                                                |                                          |
| Aligning moment    | The block implements the aligning momerate damping and slip angle state.                                                        | ent as a combination of yaw              |
|                    | $\int \dot{\psi} b_{M_Z}$                                                                                                       | when $ \alpha'  > \alpha'_{Critical}$    |
|                    | $M_z = \begin{cases} \dot{\psi}b_{M_z} \\ \tanh(4\alpha')w\mu F_z (1-\xi)\xi^3 + \dot{\psi}b_{M_z} \end{cases}$                 | when $ \alpha'  \leq \alpha'_{Critical}$ |
|                    | $\xi = 1 - \frac{C_a  \tan(\alpha') }{3\mu  F_z }$                                                                              |                                          |
| Friction scaling   | To vary the coefficient of friction, use the                                                                                    | e ScaleFctr input port.                  |

The equations use these variables.

| $M_{\chi}$ | Overturning moment acting on axle about tire-fixed $x$ -axis |
|------------|--------------------------------------------------------------|
| $M_z$      | Aligning moment acting on axle about tire-fixed $z$ -axis    |
| $R_e$      | Effective contact patch to wheel carrier radial distance     |
| γ          | Camber angle                                                 |
| k          | Vertical sidewall stiffness                                  |

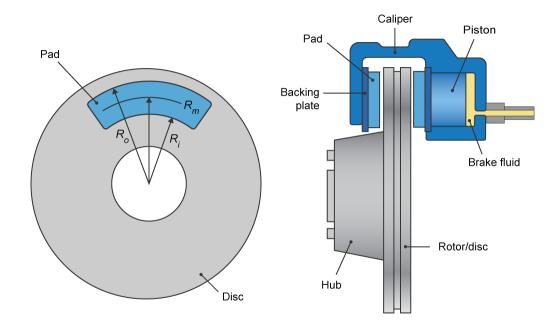

| b            | Vertical sidewall damping                                           |
|--------------|---------------------------------------------------------------------|
| $\dot{\psi}$ | Tire angular velocity about the tire-fixed $z$ -axis (yaw rate)     |
| W            | Tire width                                                          |
| $\alpha'$    | Slip angle state                                                    |
| $b_{Mz}$     | Linear yaw rate resistance                                          |
| $F_{y}$      | Lateral force acting on axle along tire-fixed y-axis                |
| $C_{\chi}$   | Camber stiffness                                                    |
| $C_{\alpha}$ | Lateral stiffness per slip angle                                    |
| μ            | Friction coefficient                                                |
| $F_{z}$      | Vertical contact patch normal force along tire-fixed <i>z</i> -axis |

#### **Tire and Wheel Coordinate Systems**

To resolve the forces and moments, the block uses the Z-Up orientation of the tire and wheel coordinate systems.

- Tire coordinate system axes  $(X_T, Y_T, Z_T)$  are fixed in a reference frame attached to the tire. The origin is at the tire contact with the ground.
- Wheel coordinate system axes  $(X_W, Y_W, Z_W)$  are fixed in a reference frame attached to the wheel. The origin is at the wheel center.

#### **Z-Up Orientation**<sup>2</sup>




#### **Brakes**

#### Disc

If you specify the **Brake Type** parameter Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.

<sup>2.</sup> Reprinted with permission Copyright © 2008 SAE International. Further distribution of this material is not permitted without prior permission from SAE.



A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$T = \begin{cases} \frac{\mu P \pi B_a ^2 R_m N_{pads}}{4} & \text{when } N \neq 0 \\ \frac{\mu_{static} P \pi B_a ^2 R_m N_{pads}}{4} & \text{when } N = 0 \end{cases}$$

$$Rm = \frac{Ro + Ri}{2}$$

The equations use these variables.

| T              | Brake torque                                              |
|----------------|-----------------------------------------------------------|
| P              | Applied brake pressure                                    |
| N              | Wheel speed                                               |
| $N_{pads}$     | Number of brake pads in disc brake assembly               |
| $\mu_{static}$ | Disc pad-rotor coefficient of static friction             |
| μ              | Disc pad-rotor coefficient of kinetic friction            |
| $B_a$          | Brake actuator bore diameter                              |
| $R_m$          | Mean radius of brake pad force application on brake rotor |
| $R_o$          | Outer radius of brake pad                                 |
|                |                                                           |

 $R_i$  Inner radius of brake pad

#### Drum

If you specify the **Brake Type** parameter Drum, the block implements a static (steady-state) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in *Fundamentals of Machine Elements*.

$$\begin{split} T_{rshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T_{lshoe} &= \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{-2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar(2\theta_1 - 2\theta_2 + \sin2\theta_2 - \sin2\theta_1)}\right)P \\ T &= \begin{cases} T_{rshoe} + T_{lshoe} & \text{when } N \neq 0 \\ (T_{rshoe} + T_{lshoe})\frac{\mu_{static}}{\mu} & \text{when } N = 0 \end{cases} \end{split}$$



The equations use these variables.

T Brake torque

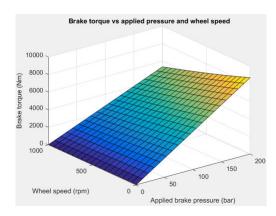
P Applied brake pressure

N Wheel speed

| $\mu_{static}$        | Disc pad-rotor coefficient of static friction                                     |
|-----------------------|-----------------------------------------------------------------------------------|
| μ                     | Disc pad-rotor coefficient of kinetic friction                                    |
| $T_{rshoe}$           | Right shoe brake torque                                                           |
| $T_{lshoe}$           | Left shoe brake torque                                                            |
| а                     | Distance from drum center to shoe hinge pin center                                |
| $\boldsymbol{c}$      | Distance from shoe hinge pin center to brake actuator connection on brake shoe $$ |
| r                     | Drum internal radius                                                              |
| $B_a$                 | Brake actuator bore diameter                                                      |
| $\Theta_1$            | Angle from shoe hinge pin center to start of brake pad material on shoe           |
| $oldsymbol{\Theta}_2$ | Angle from shoe hinge pin center to end of brake pad material on shoe             |

### **Mapped**

If you specify the **Brake Type** parameter Mapped, the block uses a lookup table to determine the brake torque.


$$T = \begin{cases} f_{brake}(P,N) & \text{when } N \neq 0 \\ \left(\frac{\mu_{static}}{\mu}\right) f_{brake}(P,N) & \text{when } N = 0 \end{cases}$$

The equations use these variables.

| T                 | Brake torque                                                            |
|-------------------|-------------------------------------------------------------------------|
| $f_{brake}(P, N)$ | Brake torque lookup table                                               |
| P                 | Applied brake pressure                                                  |
| N                 | Wheel speed                                                             |
| $\mu_{static}$    | Friction coefficient of drum pad-face interface under static conditions |
| μ                 | Friction coefficient of disc pad-rotor interface                        |

The lookup table for the brake torque,  $f_{brake}(P, N)$ , is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- N is wheel speed, in rpm.



# **Ports**

#### Input

#### **BrkPrs** — **Brake** pressure

scalar | N-by-1 vector

Brake pressure, in Pa.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Dependencies**

To enable this port, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

### AxlTrq — Axle torque

scalar | N-by-1 vector

Axle torque,  $T_a$ , about wheel spin axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Vx — Longitudinal velocity

scalar | N-by-1 vector

Axle longitudinal velocity,  $V_x$ , along tire-fixed x-axis, in m/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Vy — Lateral velocity

scalar | N-by-1 vector

Axle lateral velocity,  $V_{\nu}$ , along tire-fixed y-axis, in m/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Camber — Camber angle

scalar | N-by-1 vector

Camber angle,  $\chi$ , in rad.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### YawRate — Tire angular velocity

scalar | N-by-1 vector

Tire angular velocity, *r*, about the tire-fixed *z*-axis (yaw rate), in rad/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# Prs — Tire inflation pressure

scalar | N-by-1 vector

Tire inflation pressure,  $p_i$ , in Pa.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Gnd** — **Ground displacement**

scalar | N-by-1 vector

Ground displacement along tire-fixed *z*-axis, in m. Positive input produces wheel lift.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Fext — Axle force applied to tire

scalar | N-by-1 vector

Axle force applied to tire,  $F_{ext}$ , along vehicle-fixed z-axis (positive input compresses the tire), in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# ScaleFctrs — Scale factor

scalar | N-by-1 vector

Scale factor to account for variations in the coefficient of friction.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### Output

#### Info - Block data

bus

Block data, returned as a bus signal containing these block values.

| Signal | Description                                        | Units |
|--------|----------------------------------------------------|-------|
| AxlTrq | Axle torque about wheel-fixed <i>y</i> -axis       | N·m   |
| Omega  | Wheel angular velocity about wheel-fixed y-axis    | rad/s |
| Fx     | Longitudinal vehicle force along tire-fixed x-axis | N     |
| Fy     | Lateral vehicle force along tire-fixed y-axis      | N     |
| Fz     | Vertical vehicle force along tire-fixed z-axis     | N     |
| Mx     | Overturning moment about tire-fixed x-axis         | N·m   |
| Му     | Rolling resistance torque about tire-fixed y-axis  | N·m   |
| Mz     | Aligning moment about tire-fixed z-axis            | N·m   |

| Signal | Description                                                                         | Units |
|--------|-------------------------------------------------------------------------------------|-------|
| Vx     | Vehicle longitudinal velocity along tire-fixed x-axis                               | m/s   |
| Vy     | Vehicle lateral velocity along tire-fixed y-axis                                    | m/s   |
| Re     | Loaded effective radius                                                             | m     |
| Карра  | Longitudinal slip ratio                                                             | NA    |
| Alpha  | Side slip angle                                                                     | rad   |
| a      | Contact patch half length                                                           | m     |
| b      | Contact patch half width                                                            | m     |
| Gamma  | Camber angle                                                                        | rad   |
| psidot | Tire angular velocity about the tire-fixed $z$ -axis (yaw rate)                     | rad/s |
| BrkTrq | Brake torque about the vehicle-fixed <i>y</i> -axis                                 | N·m   |
| BrkPrs | Brake pressure                                                                      | Pa    |
| Z      | Axle vertical displacement along tire-fixed z-axis                                  | m     |
| zdot   | Axle vertical velocity along tire-fixed z-axis                                      | m/s   |
| Gnd    | Ground displacement along tire-fixed $z$ -axis (positive input produces wheel lift) | m     |
| GndFz  | Vertical sidewall force on ground along tire-fixed $z$ -axis                        | N     |
| Prs    | Tire inflation pressure                                                             | Pa    |

# **Omega — Wheel angular velocity**

scalar | N-by-1 vector

Wheel angular velocity,  $\omega$ , about wheel-fixed y-axis, in rad/s.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# Fx — Longitudinal axle force

scalar | N-by-1 vector

Longitudinal force acting on axle,  $F_x$ , along tire-fixed x-axis, in N. Positive force acts to move the vehicle forward.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

### Fy — Lateral axle force

scalar | N-by-1 vector

Lateral force acting on axle,  $F_{v}$ , along tire-fixed y-axis, in N.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# Fz — Vertical axle force

scalar | N-by-1 vector

Vertical force acting on axle,  $F_z$ , along tire-fixed z-axis, in N.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# Mx — Overturning moment

scalar | N-by-1 vector

Longitudinal moment acting on axle,  $M_x$ , about tire-fixed x-axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# My — Rolling resistive moment

scalar | N-by-1 vector

Lateral moment acting on axle,  $M_{\nu}$ , about tire-fixed y-axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

# Mz — Aligning moment

scalar | N-by-1 vector

Vertical moment acting on axle,  $M_z$ , about tire-fixed z-axis, in N·m.

Vector is the number of wheels, N, by 1. If you provide a scalar value, the block assumes that number of wheels is one.

#### **Parameters**

# **Block Options**

# **Brake Type — Select type**

None | Disc | Drum | Mapped

Use the **Brake Type** parameter to select the brake.

| Brake Type Setting | Brake Implementation                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------|
| None               | None                                                                                            |
| Disc               | Brake that converts the brake cylinder pressure into a braking force                            |
| Drum               | Simplex drum brake that converts the applied force and brake geometry into a net braking torque |
| Mapped             | Lookup table that is a function of the wheel speed and applied brake pressure                   |

### Rolling Resistance — Select type

None (default) | Pressure and velocity | ISO 28580 | Magic Formula | Mapped torque

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

| Setting               | Block Implementation                                                                                                                                                     |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | None                                                                                                                                                                     |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for Measuring<br>Tire Rolling Resistance. The rolling resistance is a function of<br>tire pressure, normal force, and velocity. |
| ISO 28580             | Method specified in ISO 28580:2018, Passenger car, truck and bus tyre rolling resistance measurement method — Single point test and correlation of measurement results.  |
| Magic Formula         | Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                       |
| Mapped torque         | Lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                 |

| Selecting             | Parameters                                  |  |  |
|-----------------------|---------------------------------------------|--|--|
| Pressure and velocity | Velocity independent force coefficient, aMy |  |  |
|                       | Linear velocity force component, bMy        |  |  |
|                       | Quadratic velocity force component, cMy     |  |  |
|                       | Tire pressure exponent, alphaMy             |  |  |
|                       | Normal force exponent, betaMy               |  |  |
| ISO 28580             | Parasitic losses force, Fpl                 |  |  |
|                       | Rolling resistance constant, Cr             |  |  |
|                       | Thermal correction factor, Kt               |  |  |
|                       | Measured temperature, Tmeas                 |  |  |
|                       | Parasitic losses force, Fpl                 |  |  |
|                       | Ambient temperature, Tamb                   |  |  |

| Selecting     | Parameters                                                                                          |  |  |
|---------------|-----------------------------------------------------------------------------------------------------|--|--|
| Magic Formula | Rolling resistance torque coefficient, QSY  Longitudinal force rolling resistance coefficient, QSY2 |  |  |
|               |                                                                                                     |  |  |
|               | Linear rotational speed rolling resistance coefficient,<br>QSY3                                     |  |  |
|               | Quartic rotational speed rolling resistance coefficient,<br>QSY4                                    |  |  |
|               | Camber squared rolling resistance torque, QSY5                                                      |  |  |
|               | Load based camber squared rolling resistance torque,<br>QSY6                                        |  |  |
|               | Normal load rolling resistance coefficient, QSY7                                                    |  |  |
|               | Pressure load rolling resistance coefficient, QSY8                                                  |  |  |
|               | Rolling resistance scaling factor, lam_My                                                           |  |  |
| Mapped torque | Spin axis velocity breakpoints, VxMy                                                                |  |  |
|               | Normal force breakpoints, FzMy                                                                      |  |  |
|               | Rolling resistance torque map, MyMap                                                                |  |  |

Vertical Motion — Select type
None (default) | Mapped stiffness and damping

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

| Setting                      | Block Implementation                                                                                                                                                                               |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| None                         | Block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.                                                                            |  |  |
| Mapped stiffness and damping | Vertical motion depends on wheel stiffness and damping.<br>Stiffness is a function of tire sidewall displacement and<br>pressure. Damping is a function of tire sidewall velocity and<br>pressure. |  |  |

| Selecting                    | Enables These Parameters                                   |
|------------------------------|------------------------------------------------------------|
| Mapped stiffness and damping | Wheel mass, MASS                                           |
|                              | Initial tire deflection, zo                                |
|                              | Initial velocity, zdoto                                    |
|                              | Initial wheel vertical velocity (wheel fixed frame), zdoto |
|                              | Vertical deflection breakpoints, zFz                       |
|                              | Pressure breakpoints, pFz                                  |
|                              | Force due to deflection, Fzz                               |
|                              | Vertical velocity breakpoints, zdotFz                      |
|                              | Force due to velocity, Fzzdot                              |

# **Longitudinal and Lateral**

# Longitudinal stiffness, Ckappa — Longitudinal stiffness

1e7 (default) | scalar

Longitudinal stiffness,  $C_{\kappa}$ , in N.

# Lateral stiffness per slip angle, Calpha — Lateral stiffness

4.5e4 (default) | scalar

Lateral stiffness per slip angle,  $C_{\alpha}$ , in N/rad.

# Camber stiffness, Cgamma — Camber stiffness

1e3 (default) | scalar

Camber stiffness,  $C_{\chi}$ , in N/rad.

# Kinematic friction, muMin — Friction

.8 (default) | scalar

Kinematic friction,  $\mu_k$ , dimensionless.

# Static friction, muMax — Friction

1 (default) | scalar

Static friction,  $\mu_s$ , dimensionless.

### Longitudinal relaxation length, Lrelx — Length

.05 (default) | scalar

Longitudinal relaxation length,  $L_{relx}$ , in m.

# Lateral relaxation length, Lrely — Length

.15 (default) | scalar

Lateral relaxation length,  $L_{rely}$ , in m/rad.

# Rolling

# Rotational damping, br — Damping

1e-3 (default) | scalar

Rotational damping, *br*, in N·m·s/rad.

# Rotational inertia (rolling axis), IYY — Inertia

0.74 (default) | scalar

Rotational inertia (rolling axis), *IYY*, in kg·m<sup>2</sup>.

# Initial rotational velocity, omegao — Velocity

0 (default) | scalar

Initial rotational velocity, in rad/s.

# Unloaded radius, UNLOADED\_RADIUS — Radius

0.309384029954441 (default) | scalar

Unloaded radius, in m.

#### **Pressure and Velocity**

# Velocity independent force coefficient, aMy — Force coefficient

8e-4 (default) | scalar

Velocity-independent force coefficient, a, in s/m.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

### Linear velocity force component, bMy — Force component

.001 (default) | scalar

Linear velocity force component, *b*, in s/m.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

# Quadratic velocity force component, cMy — Force component

1.6e-4 (default) | scalar

Ouadratic velocity force component, c, in s^2/m^2.

### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

#### Tire pressure exponent, alphaMy — Pressure exponent

-0.003 (default) | scalar

Tire pressure exponent,  $\alpha$ , dimensionless.

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

# Normal force exponent, betaMy — Force exponent

0.97 (default) | scalar

Normal force exponent,  $\beta$ , dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

#### ISO 28580

# Parasitic losses force, Fpl — Force loss

10 (default) | scalar

Parasitic force loss,  $F_{pl}$ , in N.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# Rolling resistance constant, Cr — Constant

1e-3 (default) | scalar

Rolling resistance constant,  $C_r$ , in N/kN. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

### Thermal correction factor, Kt — Correction factor

.008 (default) | scalar

Thermal correction factor,  $K_t$ , in 1/degC.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

### Measured temperature, Tmeas — Temperature

298.15 (default) | scalar

Measured temperature,  $T_{meas}$ , in K.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

#### Ambient temperature, Tamb — Temperature

298.15 (default) | scalar

Measured temperature,  $T_{amb}$ , in K.

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# Input ambient temperature — Selection

off (default) | on

Select to create input port Tamb.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# **Magic Formula**

# Rolling resistance torque coefficient, QSY1 — Torque coefficient

0.007 (default) | scalar

Rolling resistance torque coefficient, dimensionless.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Longitudinal force rolling resistance coefficient, QSY2 — Force resistance coefficient

0 (default) | scalar

Longitudinal force rolling resistance coefficient, dimensionless.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Linear rotational speed rolling resistance coefficient, QSY3 — Linear speed coefficient

0.0015 (default) | scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Quartic rotational speed rolling resistance coefficient, QSY4 — Quartic speed coefficient

8.5e-05 (default) | scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Camber squared rolling resistance torque, QSY5 — Camber resistance torque $\theta$ (default) | scalar

Camber squared rolling resistance torque, in 1/rad^2.

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Load based camber squared rolling resistance torque, QSY6 — Load resistance torque

0 (default) | scalar

Load based camber squared rolling resistance torque, in 1/rad^2.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Normal load rolling resistance coefficient, QSY7 — Normal resistance coefficient 0.9 (default) | scalar

Normal load rolling resistance coefficient, dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Pressure load rolling resistance coefficient, QSY8 — Pressure resistance coefficient

-0.4 (default) | scalar

Pressure load rolling resistance coefficient, dimensionless.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Rolling resistance scaling factor, lam\_My — Scale

1 (default) | scalar

Rolling resistance scaling factor, dimensionless.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

#### Mapped

# Spin axis velocity breakpoints, VxMy — Breakpoints

-20:1:20 (default) | vector

Spin axis velocity breakpoints, in m/s.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

# Normal force breakpoints, FzMy — Breakpoints

0:200:1e4 (default) | vector

Normal force breakpoints, in N.

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

# **Rolling resistance torque map, MyMap — Lookup table** array

Rolling resistance torque versus axle speed and normal force, in N·m.

### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

# **Aligning**

# Wheel width, WIDTH — Width

0.209 (default) | scalar

Wheel width, WIDTH, in m.

# Linear yaw rate resistance, bMz — Resistance

0 | scalar

Linear yaw rate resistance,  $b_{Mz}$ , in N·m·s/rad.

#### **Brake**

# Static friction coefficient, mu\_static — Static friction

.3 (default) | scalar

Static friction coefficient, dimensionless.

#### **Dependencies**

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

# Kinetic friction coefficient, mu\_kinetic — Kinetic friction

.2 (default) | scalar

Kinematic friction coefficient, dimensionless.

# **Dependencies**

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

# Disc

# Disc brake actuator bore, disc\_abore — Bore distance

.05 (default) | scalar

Disc brake actuator bore, in m.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the Brake Type parameter.

# Brake pad mean radius, Rm — Radius

```
.177 (default) | scalar
```

Brake pad mean radius, in m.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

# Number of brake pads, num\_pads — Count

2 (default) | scalar

Number of brake pads.

#### **Dependencies**

To enable the disc brake parameters, select Disc for the **Brake Type** parameter.

#### Drum

# Drum brake actuator bore, disc\_abore — Bore distance

0.0508 (default) | scalar

Drum brake actuator bore, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Shoe pin to drum center distance, drum\_a — Distance

```
0.123 (default) | scalar
```

Shoe pin to drum center distance, in m.

# **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# **Shoe pin center to force application point distance, drum\_c — Distance** 0.212 (default) | scalar

Shoe pin center to force application point distance, in m.

#### **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

#### Drum internal radius, drum r — Radius

```
0.15 (default) | scalar
```

Drum internal radius, in m.

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Shoe pin to pad start angle, drum\_thetal — Angle 0 (default) | scalar

Shoe pin to pad start angle, in deg.

# **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Shoe pin to pad end angle, drum\_theta2 — Angle 126 (default) | scalar

Shoe pin to pad end angle, in deg.

# **Dependencies**

To enable the drum brake parameters, select Drum for the **Brake Type** parameter.

# Mapped

# Brake actuator pressure breakpoints, brake\_p\_bpt — Breakpoints vector

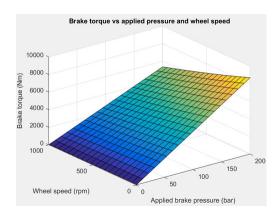
Brake actuator pressure breakpoints, in bar.

#### **Dependencies**

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

# Wheel speed breakpoints, brake\_n\_bpt — Breakpoints vector

Wheel speed breakpoints, in rpm.


# **Dependencies**

To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

# Brake torque map, f\_brake\_t — Lookup table array

The lookup table for the brake torque,  $f_{brake}(P, N)$ , is a function of applied brake pressure and wheel speed, where:

- T is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.



To enable the mapped brake parameters, select Mapped for the **Brake Type** parameter.

### **Vertical**

#### Wheel mass, m — Mass

9.46491996974568 (default) | scalar

Wheel mass, in kg. Used in the vertical motion calculations.

#### **Dependencies**

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

# Initial tire deflection, zo — Deflection

0 (default) | scalar

Initial axle displacement along wheel-fixed *z*-axis, in m.

# **Dependencies**

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

# Initial wheel vertical velocity (wheel fixed frame), zdoto — Velocity 0 (default) | scalar

Initial axle velocity along wheel-fixed *z*-axis, in m.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

### **Gravitational acceleration, GRAVITY — Gravity**

-9.81 (default) | scalar

Gravitational acceleration, in m/s^2.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

# **Mapped Stiffness and Damping**

# Vertical deflection breakpoints, zFz — Breakpoints

```
[0 .01 .1] (default) | vector
```

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

#### **Dependencies**

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

# Pressure breakpoints, pFz — Breakpoints

```
[10000 1000000] (default) | vector
```

Vector of pressure data points corresponding to the force table, in Pa.

## **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

# Force due to deflection, Fzz — Force

```
[0 1e3 1e4; 0 1e4 1e5] (default) | vector
```

Force due to sidewall deflection and pressure along wheel-fixed *z*-axis, in N.

### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

# Vertical velocity breakpoints, zdotFz — Breakpoints

```
[-20 0 20] (default) | scalar
```

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

#### **Dependencies**

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

### Force due to velocity, Fzzdot — Force

```
[500 0 -500;250 0 -250] (default) | array
```

Force due to sidewall velocity and pressure along wheel-fixed z-axis, in N.

# Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

#### Simulation

#### Maximum normal force, FZMAX — Force

10000 (default) | scalar

Maximum normal force, in N. Used with all vertical force calculations.

#### Minimum normal force, FZMIN — Force

0 (default) | scalar

Minimum normal force, in N. Used with all vertical force calculations.

# Maximum pressure, PRESMAX — Pressure

1003118 (default) | scalar

Maximum pressure, PRESMAX, in Pa.

### Minimum pressure, PRESMIN — Pressure

9982 (default) | scalar

Minimum pressure, *PRESMIN*, in Pa.

# Max allowable slip ratio (absolute), KPUMAX — Ratio

1.5 (default) | scalar

Max allowable slip ratio (absolute), KPUMAX, dimensionless.

# Minimum allowable slip ratio (absolute), KPUMIN — Ratio

-1.5 (default) | scalar

Minimum allowable slip ratio (absolute), KPUMIN, dimensionless.

# Max allowable slip angle (absolute), ALPMAX — Angle

1.5708 (default) | scalar

Max allowable slip angle (absolute), *ALPMAX*, in rad.

# Minimum allowable slip angle (absolute), ALPMIN — Angle

-1.5708 (default) | scalar

Minimum allowable slip angle (absolute), ALPMIN, in rad.

### Maximum allowable camber angle, CAMMAX — Angle

0.173 (default) | scalar

Maximum allowable camber angle *CAMMAX*, in rad.

### Minimum allowable camber angle, CAMMIN — Angle

-0.173 (default) | scalar

Minimum allowable camber angle, CAMMIN, in rad.

# Minimum ambient temperature, TMIN — Tmin

0 (default) | scalar

Minimum ambient temperature,  $T_{MIN}$ , in K.

#### **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# Maximum ambient temperature, TMAX — Tmax

400 (default) | scalar

Maximum ambient temperature,  $T_{MAX}$ , in K.

# **Dependencies**

To create this parameter, select the **Rolling Resistance** parameter ISO 28580.

# References

- [1] Fiala, E. "Seitenkrafte am Rollenden Luftreifen." VDI Zeitschrift, V.D.I.. Vol 96, 1954.
- [2] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452 199906. Warrendale, PA: SAE International, June 1999.
- [3] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.
- [4] Pacejka, H. B. *Tire and Vehicle Dynamics*. 3rd ed. Oxford, UK: SAE and Butterworth-Heinemann, 2012.

# **Extended Capabilities**

# C/C++ Code Generation

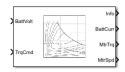
Generate C and C++ code using Simulink® Coder™.

# See Also

Longitudinal Wheel

### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"


# Introduced in R2019a

# **Propulsion Blocks**

# **Mapped Motor**

Mapped motor and drive electronics operating in torque-control mode **Library:** Powertrain Blockset / Propulsion / Electric Motors

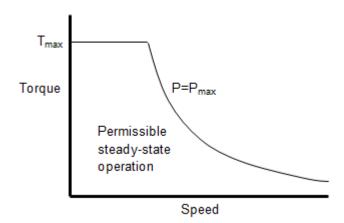
Vehicle Dynamics Blockset / Powertrain / Propulsion



# **Description**

The Mapped Motor block implements a mapped motor and drive electronics operating in torque-control mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:


- Port configuration Input torque or speed.
- Electrical torque range Torque speed envelope or maximum motor power and torque.
- Electrical loss Single operating point, measured efficiency, or measured loss. If you have Model-Based Calibration Toolbox™, you can virtually calibrate the measured loss tables.

#### **Electrical Torque**

To specify the range of torque and speed that the block allows, on the **Electrical Torque** tab, for **Parametrized by**, select one of these options.

| Setting                         | Block Implementation                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------|
| Tabulated torque-speed envelope | Range specified as a set of speed data points and corresponding maximum torque values. |
| Maximum torque and power        | Range specified with maximum torque and maximum power.                                 |

For either method, the block implements an envelope similar to this.



# **Electrical Losses**

To specify the electrical losses, on the  $\bf Electrical\ Losses$  tab, for  $\bf Parameterize\ losses\ by$ , select one of these options.

| Setting                              | Block Implementation                                                                                                                                                                |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency                    | Sum of these terms, measured at a single measurement point:                                                                                                                         |
| measurement                          | • Fixed losses independent of torque and speed, $P_0$ . Use $P_0$ to account for fixed converter losses.                                                                            |
|                                      | • A torque-dependent electrical loss $k\tau^2$ , where $k$ is a constant and $\tau$ is the torque. Represents ohmic losses in the copper windings.                                  |
|                                      | • A speed-dependent electrical loss $k_{\rm w}\omega^2$ , where $k_{\rm w}$ is a constant and $\omega$ is the speed. Represents iron losses due to eddy currents.                   |
| Tabulated loss data                  | Loss lookup table that is a function of motor speeds and load torques.                                                                                                              |
|                                      | If you have Model-Based Calibration Toolbox, click <b>Calibrate Maps</b> to virtually calibrate the 2D lookup tables using measured data.                                           |
| Tabulated loss data with temperature | Loss lookup table that is a function of motor speeds, load torques, and operating temperature.                                                                                      |
|                                      | If you have Model-Based Calibration Toolbox, click <b>Calibrate Maps</b> to virtually calibrate the 3D lookup tables using measured data.                                           |
| Tabulated efficiency data            | 2D efficiency lookup table that is a function of motor speeds and load torques:                                                                                                     |
|                                      | Converts the efficiency values you provide into losses and uses<br>the tabulated losses for simulation.                                                                             |
|                                      | Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                                      | Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                                      | Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |

| Setting                                    | Block Implementation                                                                                                                                                                |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabulated efficiency data with temperature | 3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature:                                                                             |
|                                            | Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                                            | Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                                            | Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                                            | Does not extrapolate loss values for speed, torque, or<br>temperature magnitudes that exceed the range of the table.                                                                |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

**Note** Due to system losses, the motor can draw a current when the motor torque is zero.

### **Virtual Calibration**

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

- 1 On the **Electrical Losses** tab, set **Parameterize losses by** to either:
  - Tabulated loss data
  - Tabulated loss data with temperature
- 2 Click Calibrate Maps.

The dialog box steps through these tasks.

| Task                        | Description                                                                                                                                                                                                                                                  |                      |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Import Loss Data            | Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot>                                |                      |  |
|                             |                                                                                                                                                                                                                                                              |                      |  |
|                             | Parameterize losses by                                                                                                                                                                                                                                       | Required Data        |  |
|                             | Tabulated loss                                                                                                                                                                                                                                               | Motor speed, rad/s   |  |
|                             | data                                                                                                                                                                                                                                                         | • Motor torque, N·m  |  |
|                             |                                                                                                                                                                                                                                                              | Power loss, W        |  |
|                             | Tabulated loss                                                                                                                                                                                                                                               | Motor speed, rad/s   |  |
|                             | data with temperature                                                                                                                                                                                                                                        | Motor torque, N·m    |  |
|                             | cemperature                                                                                                                                                                                                                                                  | Motor temperature, K |  |
|                             |                                                                                                                                                                                                                                                              | Power loss, W        |  |
|                             | Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range.  To filter or edit the data, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Data Editor opens. |                      |  |
|                             |                                                                                                                                                                                                                                                              |                      |  |
| Generate Response<br>Models | Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).                                                                                                                                                               |                      |  |
|                             | To assess or adjust the response model fit, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).                                     |                      |  |
| Generate<br>Calibration     | Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables.                                                                                                                                                              |                      |  |
|                             | To assess or adjust the calibration, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox).                                    |                      |  |

| Task                    | Description                          | Description                                                                                                                              |  |  |  |
|-------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Update block parameters | Update these param                   | Update these parameters with the calibration.                                                                                            |  |  |  |
|                         | Parameterize losses by               | Parameters                                                                                                                               |  |  |  |
|                         | Tabulated loss data                  | <ul><li>Vector of speeds(w) for tabulated losses, w_eff_bp</li><li>Vector of torques (T) for tabulated losses,</li></ul>                 |  |  |  |
|                         |                                      | T_eff_bp • Corresponding losses, losses_table                                                                                            |  |  |  |
|                         | Tabulated loss data with temperature | <ul> <li>Vector of speeds(w) for tabulated losses, w_eff_bp</li> <li>Vector of torques (T) for tabulated losses,<br/>T_eff_bp</li> </ul> |  |  |  |
|                         |                                      | <ul> <li>Vector of temperatures for tabulated losses,<br/>Temp_eff_bp</li> </ul>                                                         |  |  |  |
|                         |                                      | Corresponding losses, losses_table_3d                                                                                                    |  |  |  |

# **Battery Current**

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.

$$BattAmp = \frac{MechPwr + PwrLoss}{BattVolt}$$

The equation uses these variables.

BattVoltBattery voltageMechPwrMechanical powerPwrLossPower lossBattCurrBattery current

# **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal |                                                                                                                                          | Description | Variable         | Equations  |                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------|------------------------------------------|
|            | PwrTrnsfrd                                                                                                                               | PwrMtr      | Mechanical power | $P_{mot}$  | $P_{mot} = \omega_m T_e$                 |
| fo         | <ul> <li>Positive signals indicate power flow into the block.</li> <li>Negative signals indicate power flow out of the block.</li> </ul> | PwrBus      | Electrical power | $P_{bus}$  | $P_{bus} = P_{mot} + P_{loss}$           |
|            | PwrNotTrnsfrd  • Negative signals indicate power loss.                                                                                   | PwrLoss     | Motor power loss | $P_{loss}$ | $P_{stored} = \omega_m \dot{\omega}_m J$ |

| Bus Signal                                                               |        | Description        | Variable  | Equations                                       |
|--------------------------------------------------------------------------|--------|--------------------|-----------|-------------------------------------------------|
| <ul><li>PwrStored</li><li>Positive signals indicat power gain.</li></ul> | edShft | Motor power stored | $P_{str}$ | $P_{loss} = -(P_{mot} + P_{loss} - P_{stored})$ |

The equations use these variables.

 $T_e$  Motor output shaft torque

 $\omega$  Motor shaft speed

J Motor inertia

# **Ports**

# Input

# BattVolt — Battery voltage

scalar

Battery voltage, BattVolt, in V.

# TrqCmd — Commanded motor torque

scalar

Commanded motor torque,  $Trq_{cmd}$ , in N·m.

### **Dependencies**

To create this input port, for the **Port configuration**, select **Torque**.

# MtrSpd — Motor output shaft speed

scalar

Motor shaft speed,  $Mtr_{spd}$ , in rad/s.

#### **Dependencies**

To create this input port, for the **Port configuration**, select **Speed**.

# Output

# Info — Bus signal

bus

The bus signal contains these block calculations.

| Signal  |            |        | Description                            | Units |
|---------|------------|--------|----------------------------------------|-------|
| MechPwr |            |        | Mechanical power                       | rad   |
| PwrLoss |            |        | Internal inverter and motor power loss | N·m   |
| PwrInfo | PwrTrnsfrd | PwrMtr | Mechanical power                       | W     |
|         |            | PwrBus | Electrical power                       | W     |

| Signal |               |                   | Description        | Units |
|--------|---------------|-------------------|--------------------|-------|
|        | PwrNotTrnsfrd | PwrLoss           | Motor power loss   | W     |
|        | PwrStored     | PwrStored<br>Shft | Motor power stored | W     |

# BattCurr — Battery current

scalar

Battery current draw or demand,  $I_{batt}$ , in A.

# MtrTrq — Motor torque

scalar

Motor output shaft torque,  $Mtr_{trq}$ , in N·m.

# MtrSpd — Motor shaft speed

scalar

Motor shaft speed,  $Mtr_{spd}$ , in rad/s.

# **Dependencies**

To create this output port, for the **Port configuration**, select **Torque**.

## **Parameters**

# **Block Options**

# Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

| Port Configuration | Creates Ports  |
|--------------------|----------------|
| Torque             | Outpost MtrSpd |
| Speed              | Input MtrSpd   |

### Calibrate Maps — Calibrate tables with measured data

selection

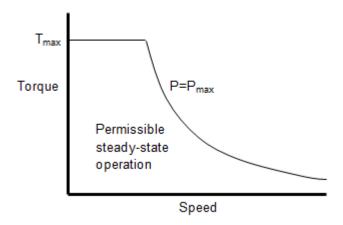
If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

- 1 On the **Electrical Losses** tab, set **Parameterize losses by** to either:
  - · Tabulated loss data
  - Tabulated loss data with temperature
- 2 Click Calibrate Maps.

The dialog box steps through these tasks.

| Task                        | Description                                                                                                                                                                                                                                                                                                                |                      |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
| Import Loss Data            | Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autoblksshared/mbctemplates/MappedMotorDataset.xlsx.</matlabroot>                                                                                                                                                                       |                      |  |  |
|                             | For more information, see "Using Data" (Model-Based Calibration Toolbox).                                                                                                                                                                                                                                                  |                      |  |  |
|                             | Parameterize losses by                                                                                                                                                                                                                                                                                                     | Required Data        |  |  |
|                             | Tabulated loss                                                                                                                                                                                                                                                                                                             | Motor speed, rad/s   |  |  |
|                             | data                                                                                                                                                                                                                                                                                                                       | Motor torque, N·m    |  |  |
|                             |                                                                                                                                                                                                                                                                                                                            | Power loss, W        |  |  |
|                             | Tabulated loss                                                                                                                                                                                                                                                                                                             | Motor speed, rad/s   |  |  |
|                             | data with temperature                                                                                                                                                                                                                                                                                                      | • Motor torque, N·m  |  |  |
|                             | Comperator                                                                                                                                                                                                                                                                                                                 | Motor temperature, K |  |  |
|                             |                                                                                                                                                                                                                                                                                                                            | Power loss, W        |  |  |
|                             | Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range.                                                                                                                                                                                       |                      |  |  |
|                             | To filter or edit the data, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Data Editor opens.                                                                                                                                                                                                     |                      |  |  |
| Generate Response<br>Models | Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).                                                                                                                                                                                                                             |                      |  |  |
|                             | To assess or adjust the response model fit, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).                                                                                                   |                      |  |  |
| Generate<br>Calibration     | Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables.  To assess or adjust the calibration, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox). |                      |  |  |
|                             |                                                                                                                                                                                                                                                                                                                            |                      |  |  |

| Task                    | Description                          | Description                                                                                                                                                                                                                                                           |  |  |
|-------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Update block parameters | Update these param                   | Update these parameters with the calibration.                                                                                                                                                                                                                         |  |  |
|                         | Parameterize losses by               | Parameters                                                                                                                                                                                                                                                            |  |  |
|                         | Tabulated loss data                  | <ul> <li>Vector of speeds(w) for tabulated losses, w_eff_bp</li> <li>Vector of torques (T) for tabulated losses,<br/>T_eff_bp</li> <li>Corresponding losses, losses_table</li> </ul>                                                                                  |  |  |
|                         | Tabulated loss data with temperature | <ul> <li>Vector of speeds(w) for tabulated losses, w_eff_bp</li> <li>Vector of torques (T) for tabulated losses,         T_eff_bp</li> <li>Vector of temperatures for tabulated losses,         Temp_eff_bp</li> <li>Corresponding losses, losses_table_3d</li> </ul> |  |  |


### **Electrical Torque**

# Parameterized by — Select type

Tabulated torque-speed envelope (default) | Maximum torque and power

| Setting                         | Block Implementation                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------|
| Tabulated torque-speed envelope | Range specified as a set of speed data points and corresponding maximum torque values. |
| Maximum torque and power        | Range specified with maximum torque and maximum power.                                 |

For either method, the block implements an envelope similar to this.



# Vector of rotational speeds, $w_t - Rotational$ speeds

[0 375 750 800] (default) | vector

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

To create this parameter, for the **Parameterized by** parameter, select **Tabulated torque-speed** envelope.

# Vector of maximum torque values, T\_t — Torque [0.09 0.08 0.07 0] (default) | vector

Maximum torque values for permissible steady state, in N·m.

#### **Dependencies**

To create this parameter, for the **Parameterized by** parameter, select **Tabulated torque-speed** envelope.

# Maximum torque, torque\_max — Torque

.1 (default) | scalar

The maximum permissible motor torque, in N·m.

#### **Dependencies**

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

# Maximum power, power\_max — Power

30 (default) | scalar

The maximum permissible motor power, in W.

# **Dependencies**

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

# Torque control time constant, Tc - Time constant

0.02 (default) | scalar

Time constant with which the motor driver tracks a torque demand, in s.

#### **Electrical Losses**

# Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

| Setting                              | Block Implementation                                                                                                                                                                |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement     | Sum of these terms, measured at a single measurement point:                                                                                                                         |
|                                      | • Fixed losses independent of torque and speed, $P_0$ . Use $P_0$ to account for fixed converter losses.                                                                            |
|                                      | • A torque-dependent electrical loss $k\tau^2$ , where $k$ is a constant and $\tau$ is the torque. Represents ohmic losses in the copper windings.                                  |
|                                      | • A speed-dependent electrical loss $k_{\rm w}\omega^2$ , where $k_{\rm w}$ is a constant and $\omega$ is the speed. Represents iron losses due to eddy currents.                   |
| Tabulated loss data                  | Loss lookup table that is a function of motor speeds and load torques.                                                                                                              |
|                                      | If you have Model-Based Calibration Toolbox, click <b>Calibrate Maps</b> to virtually calibrate the 2D lookup tables using measured data.                                           |
| Tabulated loss data with temperature | Loss lookup table that is a function of motor speeds, load torques, and operating temperature.                                                                                      |
|                                      | If you have Model-Based Calibration Toolbox, click <b>Calibrate Maps</b> to virtually calibrate the 3D lookup tables using measured data.                                           |
| Tabulated efficiency data            | 2D efficiency lookup table that is a function of motor speeds and load torques:                                                                                                     |
|                                      | Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                                      | Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                                      | Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                                      | Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |

| Setting                                    | Block Implementation                                                                                                                                                                |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabulated efficiency data with temperature | 3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature:                                                                             |
|                                            | Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                                            | Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                                            | Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                                            | Does not extrapolate loss values for speed, torque, or<br>temperature magnitudes that exceed the range of the table.                                                                |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

**Note** Due to system losses, the motor can draw a current when the motor torque is zero.

# Motor and drive overall efficiency, eff — Efficiency

100 (default) | scalar

The block defines overall efficiency as:

$$\eta = 100 \frac{\tau_0 \omega_0}{\tau_0 \omega_0 + P_0 + k \tau_0^2 + k_w \omega_0^2}$$

The equation uses these variables.

| $	au_0$       | Torque at which efficiency is measured      |
|---------------|---------------------------------------------|
| $\omega_0$    | Speed at which efficiency is measured       |
| $P_0$         | Fixed losses independent of torque or speed |
| $k\tau_0^2$   | Torque-dependent electrical losses          |
| $k_w\omega^2$ | Speed-dependent iron losses                 |

At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# **Speed at which efficiency is measured, w\_eff — Speed** 375 (default) | scalar

Speed at which efficiency is measured, in rad/s.

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# Torque at which efficiency is measured, T\_eff — Torque

0.08 (default) | scalar

Torque at which efficiency is measured, in N·m.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select **Single efficiency** measurement.

# Iron losses, Piron — Power

0 (default) | scalar

Iron losses at the speed and torque at which efficiency is defined, in W.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# Fixed losses independent of torque and speed, Pbase — Power

0 (default) | scalar

Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

# **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# Vector of speeds (w) for tabulated losses, w\_eff\_bp — Breakpoints [-8000 -4000 0 4000 8000] (default) | 1-by-M vector

[ 0000 4000 0 4000 0000] (dciddit) | 1 by 11 vector

Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are  $\bf 1$  by the number of speed breakpoints,  $\bf M$ .

# Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select one of these:

- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

# Vector of torques (T) for tabulated losses, T\_eff\_bp — Breakpoints [0 0.03 0.06 0.09] (default) | 1-by-N vector

Torque breakpoints for lookup table when calculating losses, in N·m. Array dimensions are 1 by the

number of torque breakpoints, N.

To create this parameter, for the **Parameterize losses by** parameter, select one of these:

- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

# Vector of temperatures for tabulated losses, Temp\_eff\_bp — Breakpoints [233.15 293.15 373.15] (default) | 1-by-L vector

Temperature breakpoints for lookup table when calculating losses, in K. Array dimensions are 1 by the number of temperature breakpoints, L.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select one of these:

- Tabulated loss data with temperature
- Tabulated efficiency data with temperature

# Corresponding losses, losses\_table — 2D lookup table

M-by-N matrix

Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, and torque, N, breakpoint vector dimensions.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated loss** data.

## Corresponding losses, losses\_table\_3d — 3D lookup table

M-by-N-by-L array

Array of values for electrical losses as a function of speed, torque, and temperature, in W. Each value specifies the losses for a specific combination of speed, torque, and temperature. The array dimensions must match the speed, M, torque, N, and temperature, L, breakpoint vector dimensions.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated loss data** with temperature.

# Corresponding efficiency, efficiency\_table — 2D lookup table

M-by-N matrix

Array of efficiency as a function of speed and torque, in %. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, and torque, N, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** efficiency data.

# Corresponding efficiency, efficiency\_table\_3d — 3D lookup table M-by-N-by-L array

Array of efficiency as a function of speed and torque, in %. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, M, torque, N, and temperature, L, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

#### **Dependencies**

To create this parameter, for the **Parameterize losses by** parameter, select **Tabulated** efficiency data.

#### Mechanical

## Rotor inertia, J — Inertia

5e-6 (default) | scalar

Rotor resistance to change in motor motion, in kg\*m<sup>2</sup>. The value can be zero.

#### **Dependencies**

To create this parameter, for the **Port configuration** parameter, select **Torque**.

#### Rotor damping, b — Damping

1e-5 (default) | scalar

Rotor damping, in  $N \cdot m/(rad/s)$ . The value can be zero.

#### **Dependencies**

To create this parameter, for the **Port configuration** parameter, select **Torque**.

#### Initial rotor speed, omega\_o — Speed

0 (default) | scalar

Rotor speed at the start of the simulation, in rad/s.

#### **Dependencies**

To create this parameter, for the **Port configuration** parameter, select **Torque**.

# **Extended Capabilities**

# C/C++ Code Generation

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

# **See Also**

Open Differential

Introduced in R2017a

# **Mapped CI Engine**

Compression-ignition engine model using lookup tables

**Library:** Powertrain Blockset / Propulsion / Combustion Engines Vehicle Dynamics Blockset / Powertrain / Propulsion

FuelMassCmd Info

## **Description**

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- · Hardware-in-the-loop (HIL) engine control design
- · Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature,  $Temp_{Enq}$ .

| Input Command Setting | Input Engine Temperature Parameter Setting | Lookup Tables                    |
|-----------------------|--------------------------------------------|----------------------------------|
| Fuel mass             | off                                        | <i>f</i> ( <i>F</i> , <i>N</i> ) |
|                       | on                                         | $f(F,N,Temp_{Eng})$              |
| Torque                | off                                        | f(T,N)                           |
|                       | on                                         | $f(T,N,Temp_{Eng})$              |

The block enables you to specify lookup tables for these engine characteristics:

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions
- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide (CO<sub>2</sub>) emissions
- Particulate matter (PM) emissions

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

#### **Virtual Calibration**

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

| Task                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                                                                                                                    |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Import firing data       | Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autodemos/projectsrc/CIDynamometer/CalMappedEng/CiEngineData.xlsx.  For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot>                                                                                                                                                                                                                       |                                                                                                                                                                       |                                                                                                                                                                                                                                    |  |
|                          | Input<br>command                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Required Data                                                                                                                                                         | Optional Data                                                                                                                                                                                                                      |  |
|                          | Fuel mass                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Engine speed, rpm</li> <li>Commanded fuel mass per injection, mg</li> <li>Engine torque, N·m</li> </ul>                                                      | <ul> <li>Air mass flow rate, kg/s</li> <li>Brake specific fuel consumption, g/(kW·h)</li> <li>CO2 mass flow rate, kg/s</li> </ul>                                                                                                  |  |
|                          | Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Engine speed, rpm</li> <li>Engine torque, N·m</li> </ul>                                                                                                     | <ul> <li>CO mass flow rate, kg/s</li> <li>Exhaust temperature, K</li> <li>Fuel mass flow rate, kg/s</li> <li>HC mass flow rate, kg/s</li> <li>NOx mass flow rate, kg/s</li> <li>Particulate matter mass flow rate, kg/s</li> </ul> |  |
|                          | the fuel. Data sl<br>Model-Based Ca<br>maximum torqu<br>To filter or edit                                                                                                                                                                                                                                                                                                                                                                                           | ta at steady-state operating cornould cover the engine speed and libration Toolbox uses the firing e.  the data, select <b>Edit in Applica</b> box Data Editor opens. | nd torque operating range.<br>g data boundary as the                                                                                                                                                                               |  |
| Import non-firing data   | <ul> <li>Import this non-firing data from a file. For example, open <matlabroot>/toolbox/autoblks/autodemos/projectsrc/CIDynamometer/CalMappedEng/CiEngineData.xlsx.</matlabroot></li> <li>Engine speed, rpm</li> <li>Engine torque, N·m</li> <li>Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.</li> </ul> |                                                                                                                                                                       |                                                                                                                                                                                                                                    |  |
| Generate response models | For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).  To assess or adjust the response model fit, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).                                                                                                   |                                                                                                                                                                       |                                                                                                                                                                                                                                    |  |

| Task                    | Description                                                                                                                                                                                                               |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Generate calibration    | Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.                                                                                                     |
|                         | To assess or adjust the calibration, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox). |
| Update block parameters | Update the block lookup table and breakpoint parameters with the calibration.                                                                                                                                             |

#### **Cylinder Air Mass**

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

| L                | Normalized cylinder air mass                                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $M_{Nom}$        | Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in $kg$ |
| Cps              | Crankshaft revolutions per power stroke, rev/stroke                                                                               |
| $P_{std}$        | Standard pressure                                                                                                                 |
| $T_{std}$        | Standard temperature                                                                                                              |
| $R_{air}$        | Ideal gas constant for air and burned gas mixture                                                                                 |
| $V_d$            | Displaced volume                                                                                                                  |
| $N_{cyl}$        | Number of engine cylinders                                                                                                        |
| N                | Engine speed                                                                                                                      |
| $\dot{m}_{intk}$ | Engine air mass flow, in g/s                                                                                                      |

#### **Turbocharger Lag**

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

| Calculation                                                                                                                           | Input command Parameter Setting                                                                                                  |                                                                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                       | Fuel mass                                                                                                                        | Torque                                                                                                                           |  |
| Dynamic torque                                                                                                                        | $\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} (F_{cmd} - F_{max})$                                                                 | $\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$                                                                 |  |
| Fuel mass per injection or torque - with                                                                                              | F =                                                                                                                              | $T_{target} =$                                                                                                                   |  |
| turbocharger lag                                                                                                                      | $\begin{cases} F_{cmd} & \text{when } F_{cmd} < F_{\text{max}} \\ F_{max} & \text{when } F_{cmd} \ge F_{\text{max}} \end{cases}$ | $\begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{\text{max}} \\ T_{max} & \text{when } T_{cmd} \ge T_{\text{max}} \end{cases}$ |  |
|                                                                                                                                       | $\int F_{max}$ when $F_{cmd} \ge F_{max}$                                                                                        | $T_{max}$ when $T_{cmd} \ge T_{max}$                                                                                             |  |
| Fuel mass per injection or torque- without turbocharger lag                                                                           | $F = F_{cmd} = F_{max}$                                                                                                          | $T_{target} = T_{cmd} = T_{max}$                                                                                                 |  |
| Boost time constant                                                                                                                   | τ <sub>bst</sub> =                                                                                                               | $\tau_{bst} =$                                                                                                                   |  |
|                                                                                                                                       | $\tau_{bst, rising}$ when $F_{cmd} > F_{max}$                                                                                    | $\tau_{tx} = \tau_{tst, rising}$ when $T_{cmd} > T_{max}$                                                                        |  |
|                                                                                                                                       | $\left\{ \tau_{bst, falling}  \text{when } F_{cmd} \le F_{ms} \right\}$                                                          | $\tau_{bst, falling}$ when $T_{cmd} \le T_{max}$                                                                                 |  |
| Final time constant                                                                                                                   | $\tau = \int \tau_{nat}$ when $T_{brake} < f$                                                                                    | $f_{bst}(N)$                                                                                                                     |  |
| Final time constant $\tau_{eng} = \begin{cases} \tau_{nat} & \text{when } T_{brak} \\ \tau_{bst} & \text{when } T_{brak} \end{cases}$ |                                                                                                                                  | $arepsilon_{bst}(N)$                                                                                                             |  |

The equations use these variables.

 $T_{brake}$  Brake torque

F Fuel mass per injection

 $F_{cmd}$ ,  $F_{max}$  Commanded and maximum fuel mass per injection, respectively

 $T_{target}$ ,  $T_{cmd}$ ,  $T_{max}$  Target, commanded, and maximum torque, respectively

 $au_{bst}$  Boost time constant

 $\tau_{bst,rising}$ ,  $\tau_{bst,falling}$  Boost rising and falling time constant, respectively

 $au_{eng}$  Final time constant

 $au_{nat}$  Time constant below the boost torque speed line

 $f_{bst}(N)$  Boost torque/speed line

N Engine speed

#### **Fuel Flow**

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$Q_{fuel} = \frac{\dot{m}_{fuel}}{\left(\frac{1000kg}{m^3}\right) Sg_{fuel}}$$

The equation uses these variables.

 $\dot{m}_{fuel}$  Fuel mass flow

 $Sg_{fuel}$  Specific gravity of fuel

 $Q_{fuel}$  Volumetric fuel flow

#### **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal                                                                                           |                                                                                               |            | Description         | Equations                            |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|---------------------|--------------------------------------|
| PwrInf<br>o                                                                                          | PwrTrnsfrd — Power transferred<br>between blocks                                              | PwrCrkshft | Crankshaft<br>power | $-	au_{eng}\omega$                   |
|                                                                                                      | <ul> <li>Positive signals indicate flow into block</li> </ul>                                 |            |                     |                                      |
|                                                                                                      | <ul> <li>Negative signals indicate flow out of block</li> </ul>                               |            |                     |                                      |
| PwrNotTrnsfrd — Power crossing the block boundary, but not transferred                               |                                                                                               | PwrFuel    | Fuel input<br>power | $\dot{m}_{fuel}LHV$                  |
|                                                                                                      | <ul><li>Positive signals indicate an input</li><li>Negative signals indicate a loss</li></ul> | PwrLoss    | Power loss          | $	au_{eng}\omega$<br>- $m_{fuel}LHV$ |
| PwrStored — Stored energy rate of change                                                             |                                                                                               |            | Not used            |                                      |
| <ul><li>Positive signals indicate an increase</li><li>Negative signals indicate a decrease</li></ul> |                                                                                               |            |                     |                                      |

The equations use these variables.

 $\tau_{eng}$  Fuel mass per injection time constant

#### **Ports**

#### Input

#### FuelMassCmd — Injected fuel mass command

scalar

Injected fuel mass command, F, in mg/inj.

#### **Dependencies**

To enable this port, for **Input command**, select Fuel mass.

#### TrqCmd — Torque command

scalar

Torque command, T, in N·m.

#### **Dependencies**

To enable this port, for **Input command**, select **Torque**.

## EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

# **EngTemp** — **Engine** temperature

scalar

Engine temperature,  $Temp_{Eng}$ , in K.

## **Dependencies**

To enable this port, select **Input engine temperature**.

## **Output**

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal         | Description                                                                                                                                                  | Units             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| IntkGasMassFlw | Engine air mass flow output                                                                                                                                  | kg/s              |
| NrmlzdAirChrg  | Normalized engine cylinder air mass                                                                                                                          | N/A               |
| Afr            | Air-fuel ratio (AFR)                                                                                                                                         | N/A               |
| FuelMassFlw    | Engine fuel flow output                                                                                                                                      | kg/s              |
| FuelVolFlw     | Volumetric fuel flow                                                                                                                                         | m <sup>3</sup> /s |
| ExhManGasTemp  | Engine exhaust gas temperature                                                                                                                               | K                 |
| EngTrq         | Engine torque output                                                                                                                                         | N·m               |
| EngSpd         | Engine speed                                                                                                                                                 | rpm               |
| CrkAng         | Engine crankshaft absolute angle degree crankshaft $\int_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$ where $Cps$ is crankshaft revolutions per power stroke. |                   |
| Bsfc           | Engine brake-specific fuel consumption (BSFC) g/kWh                                                                                                          |                   |
| ЕоНС           | Engine out hydrocarbon emission mass kg/s flow                                                                                                               |                   |
| EoC0           | Engine out carbon monoxide emission kg/s mass flow rate                                                                                                      |                   |
| EoN0x          | Engine out nitric oxide and nitrogen dioxide emissions mass flow kg/s                                                                                        |                   |
| EoC02          | Engine out carbon dioxide emission mass flow                                                                                                                 | kg/s              |

| Signal    |              |            | Description                                      | Units |
|-----------|--------------|------------|--------------------------------------------------|-------|
| EoPM      |              |            | Engine out particulate matter emission mass flow | kg/s  |
| PwrInfo   | PwrTrnsfrd   | PwrCrkshft | Crankshaft power                                 | W     |
|           | PwrNotTrnsfr | PwrFuel    | Fuel input power                                 | W     |
|           | d            | PwrLoss    | Power loss                                       | W     |
| PwrStored |              |            | Not used                                         |       |

#### EngTrq — Power

scalar

Engine power,  $T_{brake}$ , in N·m.

#### **Parameters**

#### **Block Options**

#### Input command — Table functions

Fuel mass (default) | Torque

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature,  $Temp_{Eng}$ .

| Input Command Setting | Input Engine Temperature Parameter Setting | Lookup Tables       |
|-----------------------|--------------------------------------------|---------------------|
| Fuel mass             | off                                        | f(F,N)              |
|                       | on                                         | $f(F,N,Temp_{Eng})$ |
| Torque                | off                                        | f(T,N)              |
|                       | on                                         | $f(T,N,Temp_{Eng})$ |

#### **Dependencies**

- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f tbrake f bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f\_tbrake\_t\_bpt.
- Selecting Input engine temperature enables Breakpoints for temperature input, f\_tbrake\_engtmp\_bpt.

# Include turbocharger lag effect — Increase time constant off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

| Calculation                                                       | Input command Parameter Setting                                                                                                                 |                                                                                                                                  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                   | Fuel mass                                                                                                                                       | Torque                                                                                                                           |  |
| Dynamic torque                                                    | $\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} (F_{cmd} - F_{max})$                                                                                | $\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$                                                                 |  |
| Fuel mass per injection or torque - with                          | F =                                                                                                                                             | $T_{target} =$                                                                                                                   |  |
| turbocharger lag                                                  | $\begin{cases} F_{cmd} & \text{when } F_{cmd} < F_{\text{max}} \\ F_{max} & \text{when } F_{cmd} \ge F_{\text{max}} \end{cases}$                | $\begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{\text{max}} \\ T_{max} & \text{when } T_{cmd} \ge T_{\text{max}} \end{cases}$ |  |
|                                                                   | $\begin{cases} F_{max} & \text{when } F_{cmd} \ge F_{max} \end{cases}$                                                                          | $\begin{cases} T_{max} & \text{when } T_{cmd} \ge T_{max} \end{cases}$                                                           |  |
| Fuel mass per injection<br>or torque- without<br>turbocharger lag | $F = F_{cmd} = F_{max}$                                                                                                                         | $T_{target} = T_{cmd} = T_{max}$                                                                                                 |  |
| Boost time constant                                               | τ <sub>bst</sub> =                                                                                                                              | $	au_{bst} =$                                                                                                                    |  |
|                                                                   | $\begin{cases} \tau_{bst,  rising} & \text{when } F_{cmd} > F_{ma} \\ \tau_{bst,  falling} & \text{when } F_{cmd} \leq F_{ma} \end{cases}$      | $\tau_{tx} = \tau_{tst, rising}$ when $T_{cmd} > T_{max}$                                                                        |  |
| Final time constant                                               | $\tau_{eng} = \begin{cases} \tau_{nat} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$ |                                                                                                                                  |  |

The equations use these variables.

 $T_{brake}$  Brake torque

F Fuel mass per injection

 $F_{cmd}$ ,  $F_{max}$  Commanded and maximum fuel mass per injection, respectively

 $T_{target}$ ,  $T_{cmd}$ ,  $T_{max}$  Target, commanded, and maximum torque, respectively

 $au_{bst}$  Boost time constant

 $\tau_{bst,rising}$ ,  $\tau_{bst,falling}$  Boost rising and falling time constant, respectively

 $au_{eng}$  Final time constant

 $au_{nat}$  Time constant below the boost torque speed line

 $f_{bst}(N)$  Boost torque/speed line

N Engine speed

#### **Dependencies**

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f\_tbrake\_bst
- Time constant below boost line, tau\_nat
- Rising maximum fuel mass boost time constant, tau bst rising
- · Falling maximum fuel mass boost time constant, tau bst falling

# Input engine temperature — Create input port

off (default) | on

Select this to create the EngTemp input port.

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, F, engine torque, T, engine speed, N, and engine temperature,  $Temp_{Enq}$ .

| Input Command Setting | Input Engine Temperature Parameter Setting | Lookup Tables       |
|-----------------------|--------------------------------------------|---------------------|
| Fuel mass             | off                                        | f(F,N)              |
|                       | on                                         | $f(F,N,Temp_{Eng})$ |
| Torque                | off                                        | f(T,N)              |
|                       | on                                         | $f(T,N,Temp_{Eng})$ |

#### Configuration

# Calibrate Maps — Calibrate tables with measured data

selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

| Task               | Description                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Import firing data | Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autodemos/projectsrc/CIDynamometer/CalMappedEng/CiEngineData.xlsx.  For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot> |                                                                                                                                                                          |                                                                                                                                                                                                                                                                        |  |
|                    | Input<br>command                                                                                                                                                                                                                              | Required Data                                                                                                                                                            | Optional Data                                                                                                                                                                                                                                                          |  |
|                    | Fuel mass Torque                                                                                                                                                                                                                              | <ul> <li>Engine speed, rpm</li> <li>Commanded fuel mass per injection, mg</li> <li>Engine torque, N·m</li> <li>Engine speed, rpm</li> <li>Engine torque, N·m</li> </ul>  | <ul> <li>Air mass flow rate, kg/s</li> <li>Brake specific fuel consumption, g/(kW·h)</li> <li>CO2 mass flow rate, kg/s</li> <li>CO mass flow rate, kg/s</li> <li>Exhaust temperature, K</li> <li>Fuel mass flow rate, kg/s</li> <li>HC mass flow rate, kg/s</li> </ul> |  |
|                    | the fuel. Data s<br>Model-Based C<br>maximum torqu<br>To filter or edit                                                                                                                                                                       | ata at steady-state operating conhould cover the engine speed an alibration Toolbox uses the firing ie.  the data, select <b>Edit in Applic</b> albox Data Editor opens. | nd torque operating range.<br>g data boundary as the                                                                                                                                                                                                                   |  |

| Task                     | Description                                                                                                                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Import non-firing data   | Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/autoblks/autodemos/projectsrc/CIDynamometer/ CalMappedEng/CiEngineData.xlsx.</matlabroot>                                                |
|                          | Engine speed, rpm                                                                                                                                                                                                         |
|                          | • Engine torque, N·m                                                                                                                                                                                                      |
|                          | Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.                    |
| Generate response models | For both firing and non-firing data, the Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs).                                                                                   |
|                          | To assess or adjust the response model fit, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).  |
| Generate calibration     | Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.                                                                                                     |
|                          | To assess or adjust the calibration, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox). |
| Update block parameters  | Update the block lookup table and breakpoint parameters with the calibration.                                                                                                                                             |

To enable this parameter, clear **Input engine temperature**.

Breakpoints for commanded fuel mass input, f\_tbrake\_f\_bpt — Breakpoints 1-by-M vector

Breakpoints, in mg/inj.

#### **Dependencies**

Setting **Input command** to Fuel mass enables this parameter.

Breakpoints for commanded torque input,  $f_tbrake_t_bpt - Breakpoints$  1-by-M vector

Breakpoints, in  $N \cdot m$ .

#### **Dependencies**

Setting **Input command** to **Torque** enables this parameter.

Breakpoints for engine speed input,  $f_tbrake_n_bpt - Breakpoints$  1-by-N vector

Breakpoints, in rpm.

# Breakpoints for temperature input, f\_tbrake\_engtmp\_bpt — Breakpoints

[233.15 273.15 373.15] (default) | 1-by-L vector

Breakpoints, in K.

#### **Dependencies**

To enable this parameter, select **Input engine temperature**.

#### Number of cylinders, NCyl — Number

4 (default) | scalar

Number of cylinders.

#### Crank revolutions per power stroke, Cps — Crank revolutions

2 (default) | scalar

Crank revolutions per power stroke.

#### Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Volume displaced by engine, in m<sup>3</sup>.

## Fuel lower heating value, Lhv — Heating value

45e6 (default) | scalar

Fuel lower heating value, LHV, in J/kg.

#### Fuel specific gravity, Sg — Specific gravity

0.832 (default) | scalar

Specific gravity of fuel,  $Sg_{fuel}$ , dimensionless.

#### Ideal gas constant air, Rair — Constant

287 (default) | scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg·K).

#### Air standard pressure, Pstd — Pressure

101325 (default) | scalar

Standard air pressure, in Pa.

#### Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, in K.

#### Boost torque line, f\_tbrake\_bst — Boost lag

[90,95,95,95,96,100,104,104,104,100,95,85,75,67,60,55] (default) | 1-by-M vector

Boost torque line,  $f_{bst}(N)$ , in N·m.

#### **Dependencies**

To enable this parameter, select **Include turbocharger lag effect**.

#### Time constant below boost line — Time constant below

0.1 (default) | scalar

Time constant below boost line,  $\tau_{nat}$ , in s.

#### **Dependencies**

To enable this parameter, select **Include turbocharger lag effect**.

# Rising maximum fuel mass boost time constant, tau\_bst\_rising — Rising time constant

1.0 (default) | scalar

Rising maximum fuel mass boost time constant,  $\tau_{bst,rising}$ , in s.

#### **Dependencies**

To enable this parameter, select Include turbocharger lag effect.

# Falling maximum fuel mass boost time constant, tau\_bst\_falling — Falling time constant

0.7 (default) | scalar

Falling maximum fuel mass boost time constant,  $\tau_{bst.falling}$ , in s.

#### **Dependencies**

To enable this parameter, select Include turbocharger lag effect.

# Turbocharger time constant blend fuel mass fraction, f\_blend\_frac — Time constant

0.01 (default) | scalar

Turbocharger time constant blend fuel mass fraction, in s.

#### **Dependencies**

To enable this parameter, select **Include turbocharger lag effect**.

#### **Power**

#### Brake torque map, f\_tbrake — 2D lookup table

M-by-N matrix

| <b>Input Command Setting</b> | Description                                                                                                                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The engine brake torque lookup table is a function of commanded fuel mass and engine speed, $T_{brake} = f(F, N)$ , where:  • $T_{brake}$ is engine torque, in N·m.  • $F$ is commanded fuel mass, in mg per injection.  • $N$ is engine speed, in rpm. |
| Torque                       | The engine brake torque lookup table is a function of target torque and engine speed, $T_{brake} = f(T_{target}, N)$ , where:  • $T_{brake}$ is engine torque, in N·m.  • $T_{target}$ is target torque, in N·m.  • $N$ is engine speed, in rpm.        |

To enable this parameter, clear **Input engine temperature**.

#### Plot brake torque map — Plot table

button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

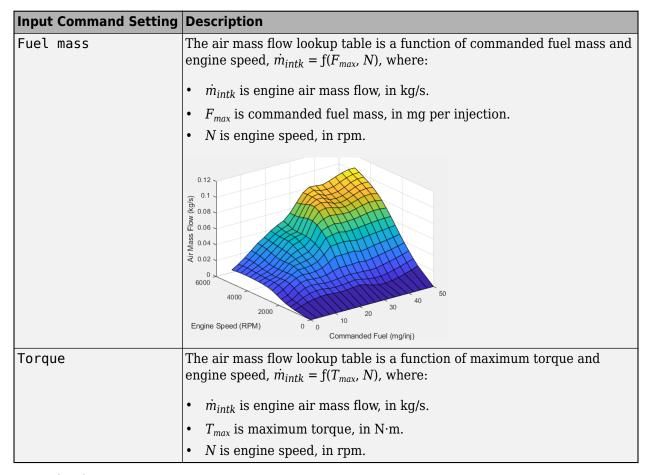
# Brake torque map, f\_tbrake\_3d — 3D lookup table M-by-N-by-L array

 Input Command Setting
 Description

 Fuel mass
 The engine brake torque lookup table is a function of commanded fuel mass and engine speed,  $T_{brake} = f(F, N, Temp_{Eng})$ , where:

  $T_{brake}$  is engine torque, in N·m.
 F is commanded fuel mass, in mg per injection.
  $Temp_{Eng}$  is engine temperature, in K.

 Temp\_{Eng}
 is engine temperature, in K.


| <b>Input Command Setting</b> | Description                                                                                                                               |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Torque                       | The engine brake torque lookup table is a function of target torque and engine speed, $T_{brake} = f(T_{target}, N, Temp_{Eng})$ , where: |
|                              | • $T_{brake}$ is engine torque, in N·m.                                                                                                   |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                  |
|                              | • $N$ is engine speed, in rpm.                                                                                                            |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                               |

To enable this parameter, select **Input engine temperature**.

Air

Air mass flow map, f\_air — 2D lookup table

M-by-N matrix



#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

#### Plot air mass map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear Input engine temperature.

## Air mass flow map, f\_air\_3d — 3D lookup table M-by-N-by-L array

| Input Command Setting | Description                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass             | The air mass flow lookup table is a function of commanded fuel mass and engine speed, $\dot{m}_{intk} = f(F_{max}, N, Temp_{Eng})$ , where: |
|                       | • $\dot{m}_{intk}$ is engine air mass flow, in kg/s.                                                                                        |
|                       | • $F_{max}$ is commanded fuel mass, in mg per injection.                                                                                    |
|                       | ullet N is engine speed, in rpm.                                                                                                            |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                 |
| Torque                | The air mass flow lookup table is a function of maximum torque and engine speed, $\dot{m}_{intk} = f(T_{max}, N, Temp_{Eng})$ , where:      |
|                       | • $\dot{m}_{intk}$ is engine air mass flow, in kg/s.                                                                                        |
|                       | • $T_{max}$ is maximum torque, in N·m.                                                                                                      |
|                       | ullet N is engine speed, in rpm.                                                                                                            |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                 |

#### **Dependencies**

To enable this parameter, select **Input engine temperature**.

#### Fuel

## Fuel flow map, $f_fuel - 2D$ lookup table M-by-N matrix

| <b>Input Command Setting</b> | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, $MassFlow = f(F, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | MassFlow is engine fuel mass flow, in kg/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | ullet F is commanded fuel mass, in mg per injection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | • $N$ is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | 0.01<br>0.006<br>0.006<br>0.000<br>0.000<br>Engine Speed (RPM)  0.001<br>0.002<br>0.002<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0. |
| Torque                       | The engine fuel flow lookup table is a function of target torque and engine speed, $MassFlow = f(T_{target}, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | , and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | MassFlow is engine fuel mass flow, in kg/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              | ullet N is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

To enable this parameter, clear **Input engine temperature**.

# Plot fuel flow map — Plot table

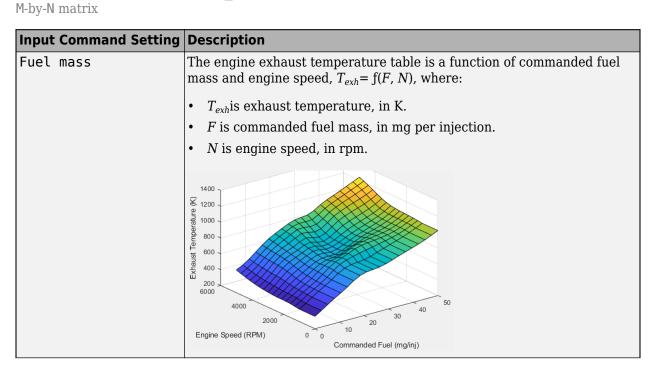
button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# Fuel flow map, f\_fuel\_3d — 3D lookup table


M-by-N-by-L array

| Input Command Setting | Description                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass             | The engine fuel flow lookup table is a function of commanded fuel mass, engine speed, and engine temperature, $MassFlow = f(F, N, Temp_{Eng})$ , where:       |
|                       | MassFlow is engine fuel mass flow, in kg/s.                                                                                                                   |
|                       | F is commanded fuel mass, in mg per injection.                                                                                                                |
|                       | ullet N is engine speed, in rpm.                                                                                                                              |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                                   |
| Torque                | The engine fuel flow lookup table is a function of target torque and engine speed, and engine temperature, $MassFlow = f(T_{target}, N, Temp_{Eng})$ , where: |
|                       | MassFlow is engine fuel mass flow, in kg/s.                                                                                                                   |
|                       | • $T_{target}$ is target torque, in N·m.                                                                                                                      |
|                       | ullet N is engine speed, in rpm.                                                                                                                              |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                                   |

To enable this parameter, select **Input engine temperature**.

#### **Temperature**

# Exhaust temperature map, $f_{\text{texh}} - 2D$ lookup table



| <b>Input Command Setting</b> | Description                                                                                                                 |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Torque                       | The engine exhaust temperature table is a function of target torque and engine speed, $T_{exh} = f(T_{target}, N)$ , where: |
|                              | • $T_{exh}$ is exhaust temperature, in K.                                                                                   |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                    |
|                              | ullet N is engine speed, in rpm.                                                                                            |

To enable this parameter, clear **Input engine temperature**.

## Plot exhaust temperature map — Plot table

button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Exhaust temperature map, f\_texh\_3d — 3D lookup table

M-by-N-by-L array

| <b>Input Command Setting</b> | Description                                                                                                                             |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{exh} = f(F, N, Temp_{Eng})$ , where:    |
|                              | • $T_{exh}$ is exhaust temperature, in K.                                                                                               |
|                              | F is commanded fuel mass, in mg per injection.                                                                                          |
|                              | ullet N is engine speed, in rpm.                                                                                                        |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                             |
| Torque                       | The engine exhaust temperature table is a function of target torque and engine speed, $T_{exh} = f(T_{target}, N, Temp_{Eng})$ , where: |
|                              | • $T_{exh}$ is exhaust temperature, in K.                                                                                               |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                |
|                              | • $N$ is engine speed, in rpm.                                                                                                          |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                             |

#### **Dependencies**

To enable this parameter, select **Input engine temperature**.

#### **Efficiency**

## BSFC map, f\_eff — 2D lookup table

M-by-N matrix

| <b>Input Command Setting</b> | Description                                                                                                                                                                                                                                             |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, $BSFC = f(F, N)$ , where:  • $BSFC$ is BSFC, in g/kWh.  • $F$ is commanded fuel mass, in mg per injection.  • $N$ is engine speed, in rpm. |
|                              | Engine Speed (RPM) 0 0 Commanded Fuel (mg/inj)                                                                                                                                                                                                          |
| Torque                       | The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $BSFC = f(T_{target}, N)$ , where:                                                                                                               |
|                              | • BSFC is BSFC, in g/kWh.                                                                                                                                                                                                                               |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                |
|                              | • $N$ is engine speed, in rpm.                                                                                                                                                                                                                          |

To enable this parameter, clear **Input engine temperature**.

## Plot BSFC map — Plot table

button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## BSFC map, f\_eff\_3d — 3D lookup table

M-by-N-by-L array

| <b>Input Command Setting</b> | Description                                                                                                                                        |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, $BSFC = f(F, N, Temp_{Eng})$ , where: |
|                              | • BSFC is BSFC, in g/kWh.                                                                                                                          |
|                              | F is commanded fuel mass, in mg per injection.                                                                                                     |
|                              | • $N$ is engine speed, in rpm.                                                                                                                     |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                        |

| <b>Input Command Setting</b> | Description                                                                                                                                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Torque                       | The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $BSFC = f(T_{target}, N, Temp_{Eng})$ , where: |
|                              | • BSFC is BSFC, in g/kWh.                                                                                                                             |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                              |
|                              | • $N$ is engine speed, in rpm.                                                                                                                        |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                           |

To enable this parameter, select **Input engine temperature**.

## нс

EO HC map,  $f_hc - 2D$  lookup table M-by-N matrix

| <b>Input Command Setting</b> | Description                                                                                                                                                                                                                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $EO\ HC = f(F,N)$ , where:  • $EO\ HC$ is engine-out hydrocarbon emissions, in kg/s.  • $F$ is commanded fuel mass, in mg per injection.  • $N$ is engine speed, in rpm. |
|                              | Commanded Fuel (mg/inj)                                                                                                                                                                                                                                               |
| Torque                       | The engine-out hydrocarbon emissions are a function of target torque and engine speed, $EO\ HC = f(T_{target}, N)$ , where:                                                                                                                                           |
|                              | • EO HC is engine-out hydrocarbon emissions, in kg/s.                                                                                                                                                                                                                 |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                              |
|                              | N is engine speed, in rpm.                                                                                                                                                                                                                                            |

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot EO HC map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# EO HC map, f\_hc\_3d — 3D lookup table

M-by-N-by-L array

| Input Command Setting | Description                                                                                                                               |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass             | The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, $EO\ HC = f(F, N, Temp_{Eng})$ , where:      |  |
|                       | EO HC is engine-out hydrocarbon emissions, in kg/s.                                                                                       |  |
|                       | F is commanded fuel mass, in mg per injection.                                                                                            |  |
|                       | • $N$ is engine speed, in rpm.                                                                                                            |  |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                               |  |
| Torque                | The engine-out hydrocarbon emissions are a function of target torque and engine speed, $EO\ HC = f(T_{target},\ N,\ Temp_{Eng})$ , where: |  |
|                       | • EO HC is engine-out hydrocarbon emissions, in kg/s.                                                                                     |  |
|                       | • $T_{target}$ is target torque, in N·m.                                                                                                  |  |
|                       | • $N$ is engine speed, in rpm.                                                                                                            |  |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                               |  |

#### **Dependencies**

To enable this parameter, select **Input engine temperature**.

#### CO

# E0 C0 map, $f_{co} - 2D$ lookup table

M-by-N matrix

| <b>Input Command Setting</b> | Description                                                                                                                                                                                                                                                                   |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $EO\ CO = f(F,N)$ , where:  • $EO\ CO$ is engine-out carbon monoxide emissions, in kg/s.  • $F$ is commanded fuel mass, in mg per injection.  • $N$ is engine speed, in rpm. |
| Torque                       | The engine-out carbon monoxide emissions are a function of target torque and engine speed, $EO\ CO = f(T_{target}, N)$ , where:  • $EO\ CO$ is engine-out carbon monoxide emissions, in kg/s.  • $T_{target}$ is target torque, in N·m.  • $N$ is engine speed, in rpm.       |

To enable this parameter, clear **Input engine temperature**.

## Plot E0 C0 map — Plot table

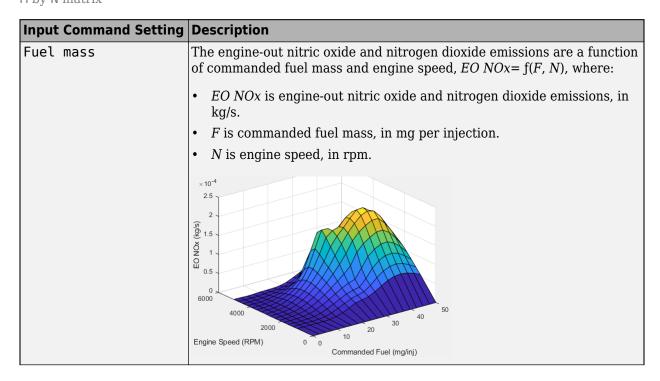
button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# E0 C0 map, f\_co\_3d — 3D lookup table


M-by-N-by-L array

| <b>Input Command Setting</b> | Description                                                                                                                                   |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass                    | The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, $EO\ CO = f(F, N, Temp_{Eng})$ , where:      |  |
|                              | EO CO is engine-out carbon monoxide emissions, in kg/s.                                                                                       |  |
|                              | F is commanded fuel mass, in mg per injection.                                                                                                |  |
|                              | ullet N is engine speed, in rpm.                                                                                                              |  |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                   |  |
| Torque                       | The engine-out carbon monoxide emissions are a function of target torque and engine speed, $EO\ CO = f(T_{target},\ N,\ Temp_{Eng})$ , where: |  |
|                              | • EO CO is engine-out carbon monoxide emissions, in kg/s.                                                                                     |  |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                      |  |
|                              | • $N$ is engine speed, in rpm.                                                                                                                |  |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                   |  |

To enable this parameter, select **Input engine temperature**.

#### NOx

**EO NOx map, f\_nox — 2D lookup table** M-by-N matrix



| <b>Input Command Setting</b> | Description                                                                                                                                         |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Torque                       | The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, $EO\ NOx = f(T_{target},\ N)$ , where: |  |
|                              | EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.                                                                          |  |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                            |  |
|                              | • $N$ is engine speed, in rpm.                                                                                                                      |  |

To enable this parameter, clear **Input engine temperature**.

# Plot E0 NOx map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## EO NOx map, f\_nox\_3d — 3D lookup table

M-by-N-by-L array

| Input Command Setting | Description                                                                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass             | The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, $EO$ $NOx = f(F, N, Temp_{Eng})$ , where:   |
|                       | EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.                                                                                                          |
|                       | F is commanded fuel mass, in mg per injection.                                                                                                                                      |
|                       | N is engine speed, in rpm.                                                                                                                                                          |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                                                         |
| Torque                | The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque, engine speed, and engine temperature, $EO\ NOx = f(T_{target}, N, Temp_{Eng})$ , where: |
|                       | • EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.                                                                                                        |
|                       | • $T_{target}$ is target torque, in N·m.                                                                                                                                            |
|                       | ullet N is engine speed, in rpm.                                                                                                                                                    |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                                                         |

#### **Dependencies**

To enable this parameter, select **Input engine temperature**.

CO2

## E0 C02 map, f\_co2 — 2D lookup table

M-by-N matrix

| <b>Input Command Setting</b> | Description                                                                                                                                                                                                                                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                    | The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, <i>EO CO2</i> = f( <i>F</i> , <i>N</i> ), where:  • <i>EO CO2</i> is engine-out carbon dioxide emissions, in kg/s.  • <i>F</i> is commanded fuel mass, in mg per injection.  • <i>N</i> is engine speed, in rpm. |
|                              | 0.015<br>0.005<br>0.005<br>0.005<br>Engine Speed (RPM)  0 0 10 20 30 40 50 Commanded Fuel (mg/inj)                                                                                                                                                                                                               |
| Torque                       | The engine-out carbon dioxide emissions are a function of target torque and engine speed, $EO\ CO2 = f(T_{target}, N)$ , where:  • $EO\ CO2$ is engine-out carbon dioxide emissions, in kg/s.                                                                                                                    |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                                                                         |
|                              | • $N$ is engine speed, in rpm.                                                                                                                                                                                                                                                                                   |

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot CO2 map — Plot table

button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear Input engine temperature.

# E0 C02 map, $f_{co2_3d} - 3D$ lookup table

M-by-N-by-L array

| <b>Input Command Setting</b> | Description                                                                                                                                                       |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass                    | The engine-out carbon dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, $EO\ CO2 = f(F, N, Temp_{Eng})$ , where:     |  |
|                              | • EO CO2 is engine-out carbon dioxide emissions, in kg/s.                                                                                                         |  |
|                              | F is commanded fuel mass, in mg per injection.                                                                                                                    |  |
|                              | ullet N is engine speed, in rpm.                                                                                                                                  |  |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                                       |  |
| Torque                       | The engine-out carbon dioxide emissions are a function of target torque engine speed, and engine temperature, $EO\ CO2 = f(T_{target},\ N,\ Temp_{Eng})$ , where: |  |
|                              | • EO CO2 is engine-out carbon dioxide emissions, in kg/s.                                                                                                         |  |
|                              | • $T_{target}$ is target torque, in N·m.                                                                                                                          |  |
|                              | • $N$ is engine speed, in rpm.                                                                                                                                    |  |
|                              | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                                       |  |

To enable this parameter, select **Input engine temperature**.

#### РМ

# EO PM map, f\_pm — 2D lookup table

M-by-N matrix

| Input Command Setting | Description                                                                                                         |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass             | The engine-out PM emissions are a function of commanded fuel mass and engine speed, where:                          |  |
|                       | • EO PM is engine-out PM emissions, in kg/s.                                                                        |  |
|                       | ullet F is commanded fuel mass, in mg per injection.                                                                |  |
|                       | ullet N is engine speed, in rpm.                                                                                    |  |
| Torque                | The engine-out PM emissions are a function of target torque and engine speed, $EO\ PM = f(T_{target},\ N)$ , where: |  |
|                       | • EO PM is engine-out PM emissions, in kg/s.                                                                        |  |
|                       | • $T_{target}$ is target torque, in N·m.                                                                            |  |
|                       | ullet N is engine speed, in rpm.                                                                                    |  |

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# Plot EO PM map — Plot table

button

Click to plot table.

To enable this parameter, clear **Input engine temperature**.

## EO PM map, f\_pm\_3d — 3D lookup table

M-by-N-by-L array

| Input Command Setting | Description                                                                                                                                  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass             | The engine-out PM emissions are a function of commanded fuel mass, engine speed, and engine temperature, where:                              |  |
|                       | • EO PM is engine-out PM emissions, in kg/s.                                                                                                 |  |
|                       | F is commanded fuel mass, in mg per injection.                                                                                               |  |
|                       | ullet N is engine speed, in rpm.                                                                                                             |  |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                  |  |
| Torque                | The engine-out PM emissions are a function of target torque, engine speed, and engine temperature, $EO\ PM = f(T_{target},\ N,\ T)$ , where: |  |
|                       | • EO PM is engine-out PM emissions, in kg/s.                                                                                                 |  |
|                       | • $T_{target}$ is target torque, in N·m.                                                                                                     |  |
|                       | N is engine speed, in rpm.                                                                                                                   |  |
|                       | • $Temp_{Eng}$ is engine temperature, in K.                                                                                                  |  |

#### **Dependencies**

To enable this parameter, select **Input engine temperature**.

# **Extended Capabilities**

## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

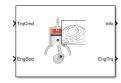
# See Also

Mapped Motor | Mapped SI Engine

#### **Topics**

"Engine Calibration Maps"

"Model-Based Calibration Toolbox"


#### Introduced in R2017a

# **Mapped SI Engine**

Spark-ignition engine model using lookup tables

**Library:** Powertrain Blockset / Propulsion / Combustion Engines

Vehicle Dynamics Blockset / Powertrain / Propulsion



# **Description**

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- · Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque,  $T_{cmd}$ , brake torque,  $T_{brake}$ , and engine speed, N. If you select **Input engine temperature**, the tables are also a function of engine temperature,  $T_{cmp}$ .

| Table       | ole Input Engine Temperature Parameter Setting |                               |
|-------------|------------------------------------------------|-------------------------------|
|             | off                                            | on                            |
| Power       | $f(T_{cmd}, N)$                                | $f(T_{cmd}, N, Temp_{Eng})$   |
| Air         | $f(T_{brake},N)$                               | $f(T_{brake}, N, Temp_{Eng})$ |
| Fuel        |                                                |                               |
| Temperature |                                                |                               |
| Efficiency  |                                                |                               |
| HC          |                                                |                               |
| CO          |                                                |                               |
| NOx         |                                                |                               |
| CO2         |                                                |                               |
| PM          |                                                |                               |

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

#### **Virtual Calibration**

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

| Task                     | Description                                                                                                                                  |                                                                                                                                                                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Import firing data       | autoblks/autodemos/pro<br>SiEngineData.xlsx.                                                                                                 | ile. For example, open <matlabroot>/toolbox/jectsrc/SIDynamometer/CalMappedEng/</matlabroot>                                                                                                                                                                |
|                          | For more information, see "Using Data" (Model-Based Calibration Toolbox).                                                                    |                                                                                                                                                                                                                                                             |
|                          | Required Data                                                                                                                                | Optional Data                                                                                                                                                                                                                                               |
|                          | Engine speed, rpm                                                                                                                            | Air mass flow rate, kg/s                                                                                                                                                                                                                                    |
|                          | • Engine torque, N·m                                                                                                                         | Brake specific fuel consumption, g/(kW·h)                                                                                                                                                                                                                   |
|                          |                                                                                                                                              | CO2 mass flow rate, kg/s                                                                                                                                                                                                                                    |
|                          |                                                                                                                                              | CO mass flow rate, kg/s                                                                                                                                                                                                                                     |
|                          |                                                                                                                                              | • Exhaust temperature, K                                                                                                                                                                                                                                    |
|                          |                                                                                                                                              | <ul><li>Fuel mass flow rate, kg/s</li><li>HC mass flow rate, kg/s</li></ul>                                                                                                                                                                                 |
|                          |                                                                                                                                              | NOx mass flow rate, kg/s                                                                                                                                                                                                                                    |
|                          |                                                                                                                                              | Particulate matter mass flow rate, kg/s                                                                                                                                                                                                                     |
| Import non-firing        | the fuel. Data should cover the Model-Based Calibration Tool maximum torque.  To filter or edit the data, sele Calibration Toolbox Data Edit | state operating conditions when injectors deliver ne engine speed and torque operating range. lbox uses the firing data boundary as the ct <b>Edit in Application</b> . The Model-Based tor opens.  om a file. For example, open <matlabroot>/</matlabroot> |
| data                     | toolbox/autoblks/autod<br>CalMappedEng/SiEngineD                                                                                             | emos/projectsrc/SIDynamometer/                                                                                                                                                                                                                              |
|                          | • Engine speed, rpm                                                                                                                          |                                                                                                                                                                                                                                                             |
|                          | • Engine torque, N·m                                                                                                                         |                                                                                                                                                                                                                                                             |
|                          | 3 .                                                                                                                                          | data at steady-state operating conditions when orque points must be less than zero. Non-firing peed only.                                                                                                                                                   |
| Generate response models | For both firing and non-firing test plans to fit data to Gauss                                                                               | data, the Model-Based Calibration Toolbox uses sian process models (GPMs).                                                                                                                                                                                  |
|                          | Model-Based Calibration Tool                                                                                                                 | nse model fit, select <b>Edit in Application</b> . The lbox Model Browser opens. For more information, del-Based Calibration Toolbox).                                                                                                                      |
| Generate calibration     | Model-Based Calibration Too<br>models and generates calibra                                                                                  | lbox calibrates the firing and non-firing response ated tables.                                                                                                                                                                                             |
|                          | Based Calibration Toolbox CA                                                                                                                 | ation, select <b>Edit in Application</b> . The Model-AGE Browser opens. For more information, see (Model-Based Calibration Toolbox).                                                                                                                        |

| Task                    | Description                                                                   |
|-------------------------|-------------------------------------------------------------------------------|
| Update block parameters | Update the block lookup table and breakpoint parameters with the calibration. |

## **Cylinder Air Mass**

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

| L                | Normalized cylinder air mass                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $M_{Nom}$        | Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg |
| Cps              | Crankshaft revolutions per power stroke, rev/stroke                                                                             |
| $P_{std}$        | Standard pressure                                                                                                               |
| $T_{std}$        | Standard temperature                                                                                                            |
| $R_{air}$        | Ideal gas constant for air and burned gas mixture                                                                               |
| $V_d$            | Displaced volume                                                                                                                |
| $N_{cyl}$        | Number of engine cylinders                                                                                                      |
| N                | Engine speed                                                                                                                    |
| $\dot{m}_{intk}$ | Engine air mass flow, in g/s                                                                                                    |

#### **Turbocharger Lag**

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

| Dynamic torque      | $\frac{dT_{brake}}{dt} = \frac{1}{\tau_{eng}} (T_{stdy} - T_{brake})$                                                                                           |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Boost time constant | $\tau_{bst} = \begin{cases} \tau_{bst,  rising} & \text{when } T_{stdy} > T_{brake} \\ \tau_{bst,  falling} & \text{when } T_{stdy} \leq T_{brake} \end{cases}$ |  |
| Final time constant | $\tau_{eng} = \begin{cases} \tau_{thr} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$                 |  |

The equations use these variables.

 $T_{brake}$  Brake torque

 $T_{stdy}$  Steady-state target torque

 $\tau_{bst}$  Boost time constant

 $au_{bst,rising}$ , Boost rising and falling time constant, respectively

 $\tau_{bst,falling}$ 

 $au_{eng}$  Final time constant

 $au_{thr}$  Time constant during throttle control

 $f_{bst}(N)$  Boost torque speed line

N Engine speed

#### **Fuel Flow**

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.

$$Q_{fuel} = \frac{\dot{m}_{fuel}}{\left(\frac{1000kg}{m^3}\right) Sg_{fuel}}$$

The equation uses these variables.

 $\dot{m}_{fuel}$  Fuel mass flow

 $Sg_{\it fuel}$  Specific gravity of fuel  $Q_{\it fuel}$  Volumetric fuel flow

#### **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Signal                           |                                                                        |            | Description         | Equations                                     |
|--------------------------------------|------------------------------------------------------------------------|------------|---------------------|-----------------------------------------------|
| PwrInf<br>o                          | PwrTrnsfrd — Power transferred between blocks                          | PwrCrkshft | Crankshaft<br>power | $-	au_{eng}\omega$                            |
|                                      | Positive signals indicate flow into<br>block                           |            |                     |                                               |
|                                      | Negative signals indicate flow out of block                            |            |                     |                                               |
|                                      | PwrNotTrnsfrd — Power crossing the block boundary, but not transferred | PwrFuel    | Fuel input<br>power | $\dot{m}_{fuel}LHV$                           |
|                                      | Positive signals indicate an input                                     | PwrLoss    | Power loss          | τ <sub>eng</sub> ω<br>– m <sub>fuel</sub> LHV |
|                                      | Negative signals indicate a loss                                       |            |                     | - IIIfuelLIIV                                 |
|                                      | PwrStored — Stored energy rate of change                               |            | Not used            | •                                             |
|                                      | Positive signals indicate an increase                                  |            |                     |                                               |
| Negative signals indicate a decrease |                                                                        |            |                     |                                               |

The equations use these variables.

LHV Fuel lower heating value

 $\omega$  Engine speed, rad/s

 $\dot{m}_{fuel}$  Fuel mass flow

 $au_{eng}$  Fuel mass per injection time constant

#### **Ports**

## Input

## TrqCmd — Commanded torque

scalar

Torque,  $T_{cmd}$ , in N·m.

#### EngSpd — Engine speed

scalar

Engine speed, N, in rpm.

#### **EngTemp** — **Engine temperature**

scalar

Engine temperature,  $Temp_{Enq}$ , in K.

## **Dependencies**

To enable this port, select **Input engine temperature**.

#### **Output**

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal          | Description                         | Units |
|-----------------|-------------------------------------|-------|
| IntkGassMassFlw | Engine air mass flow output         | kg/s  |
| NrmlzdAirChrg   | Normalized engine cylinder air mass | N/A   |
| Afr             | Air-fuel ratio (AFR)                | N/A   |
| FuelMassFlw     | Engine fuel flow output             | kg/s  |
| FuelVolFlw      | Volumetric fuel flow                | m³/s  |
| ExhManGasTemp   | Engine exhaust gas temperature      | K     |
| EngTrq          | Engine torque output                | N·m   |
| EngSpd          | Engine speed                        | rpm   |

| Signal  |               |                                                                                                                              | Description                                                      | Units                     |
|---------|---------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|
| CrkAng  |               | Engine crankshaft absolute angle $\int_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$ where $Cps$ is crankshaft revolutions per |                                                                  | degrees<br>crank<br>angle |
| Bsfc    |               |                                                                                                                              | power stroke.  Engine brake-specific fuel consumption (BSFC)     | g/kWh                     |
| ЕоНС    |               |                                                                                                                              | Engine out hydrocarbon emission mass flow                        | kg/s                      |
| EoC0    |               |                                                                                                                              | Engine out carbon monoxide emission mass flow rate               | kg/s                      |
| EoN0x   | EoN0x         |                                                                                                                              | Engine out nitric oxide and nitrogen dioxide emissions mass flow | kg/s                      |
| EoC02   | EoC02         |                                                                                                                              | Engine out carbon dioxide emission mass flow                     | kg/s                      |
| ЕоРМ    |               |                                                                                                                              | Engine out particulate matter emission mass flow                 | kg/s                      |
| PwrInfo | PwrTrnsfrd    | PwrCrkshft                                                                                                                   | Crankshaft power                                                 | W                         |
|         | PwrNotTrnsfrd | PwrFuel                                                                                                                      | Fuel input power                                                 | W                         |
|         |               | PwrLoss                                                                                                                      | Power loss                                                       | W                         |
|         | PwrStored     |                                                                                                                              | Not used                                                         |                           |

## EngTrq — Engine brake torque

scalar

Engine brake torque,  $T_{brake}$ , in N·m.

#### **Parameters**

#### **Block Options**

# $\label{local_equation} \textbf{Include turbocharger lag effect-Increase time constant}$

off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

| Dynamic torque | $\frac{dT_{brake}}{dt} = \frac{1}{\tau_{ena}} (T_{stdy} - T_{brake})$ |
|----------------|-----------------------------------------------------------------------|
|                | di t <sub>eng</sub> s                                                 |

| Boost time constant | $-\int \tau_{bst,  risi}$                                         | $T_{ng}$ when $T_{stdy} > T_{brake}$ |
|---------------------|-------------------------------------------------------------------|--------------------------------------|
|                     | $ \tau_{bst} = \begin{cases} \tau_{bst, fal} \end{cases} $        | $ling$ when $T_{stdy} \le T_{brake}$ |
| Final time constant | $\tau - \int \tau_{thr}$                                          | when $T_{brake} < f_{bst}(N)$        |
|                     | $	au_{eng} = \left\{ egin{array}{c} 	au_{bst} \end{array}  ight.$ | when $T_{brake} \ge f_{bst}(N)$      |

The equations use these variables.

 $T_{brake}$  Brake torque

 $T_{stdy}$  Steady-state target torque

 $\tau_{bst}$  Boost time constant

 $\tau_{bst,rising}$ , Boost rising and falling time constant, respectively

 $au_{bst,falling}$ 

 $au_{eng}$  Final time constant

 $au_{thr}$  Time constant during throttle control

 $f_{bst}(N)$  Boost torque speed line

N Engine speed

## **Dependencies**

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f\_tbrake\_bst
- Time constant below boost line, tau\_thr
- · Rising torque boost time constant, tau\_bst\_rising
- Falling torque boost time constant, tau\_bst\_falling

# Input engine temperature — Create input port

off (default) | on

Select this to create the EngTemp input port.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque,  $T_{cmd}$ , brake torque,  $T_{brake}$ , and engine speed, N. If you select **Input engine temperature**, the tables are also a function of engine temperature,  $T_{emp}$ .

| Table       | Input Engine Temperature Parameter Setting |                               |  |  |
|-------------|--------------------------------------------|-------------------------------|--|--|
|             | off                                        | on                            |  |  |
| Power       | $f(T_{cmd},N)$                             | $f(T_{cmd}, N, Temp_{Eng})$   |  |  |
| Air         | $f(T_{brake},N)$                           | $f(T_{brake}, N, Temp_{Eng})$ |  |  |
| Fuel        |                                            |                               |  |  |
| Temperature |                                            |                               |  |  |
| Efficiency  |                                            |                               |  |  |
| HC          |                                            |                               |  |  |
| CO          |                                            |                               |  |  |

| Table | Input Engine Temperature Parameter Setting |    |  |  |
|-------|--------------------------------------------|----|--|--|
|       | off                                        | on |  |  |
| NOx   |                                            |    |  |  |
| CO2   |                                            |    |  |  |
| PM    |                                            |    |  |  |

# Configuration

# Calibrate Maps — Calibrate tables with measured data

selection

If you have Model-Based Calibration Toolbox, click **Calibrate Maps** to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

| Task               | Description                                                                                                                                                                                                                                                                                                                    | Description                                 |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
| Import firing data | Import this loss data from a file. For example, open <matlabroot>/toolbox/autoblks/autodemos/projectsrc/SIDynamometer/CalMappedEng/SiEngineData.xlsx.  For more information, see "Using Data" (Model-Based Calibration Toolbox).</matlabroot>                                                                                  |                                             |  |  |  |
|                    | Required Data                                                                                                                                                                                                                                                                                                                  | Optional Data                               |  |  |  |
|                    | Engine speed, rpm                                                                                                                                                                                                                                                                                                              | Air mass flow rate, kg/s                    |  |  |  |
|                    | • Engine torque, N·m                                                                                                                                                                                                                                                                                                           | • Brake specific fuel consumption, g/(kW·h) |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | CO2 mass flow rate, kg/s                    |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | CO mass flow rate, kg/s                     |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | Exhaust temperature, K                      |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | Fuel mass flow rate, kg/s                   |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | HC mass flow rate, kg/s                     |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | NOx mass flow rate, kg/s                    |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                | Particulate matter mass flow rate, kg/s     |  |  |  |
|                    | Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque.  To filter or edit the data, select <b>Edit in Application</b> . The Model-Based |                                             |  |  |  |
|                    | Calibration Toolbox Data E                                                                                                                                                                                                                                                                                                     |                                             |  |  |  |

| Task                                                                                                                                                     | Description                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Import non-firing data                                                                                                                                   | Import this non-firing data from a file. For example, open <matlabroot>/ toolbox/autoblks/autodemos/projectsrc/SIDynamometer/ CalMappedEng/SiEngineData.xlsx.</matlabroot>                                                |  |
|                                                                                                                                                          | Engine speed, rpm                                                                                                                                                                                                         |  |
|                                                                                                                                                          | • Engine torque, N·m                                                                                                                                                                                                      |  |
|                                                                                                                                                          | Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.                    |  |
| Generate response models  For both firing and non-firing data, the Model-Based Calibration Too test plans to fit data to Gaussian process models (GPMs). |                                                                                                                                                                                                                           |  |
|                                                                                                                                                          | To assess or adjust the response model fit, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).  |  |
| Generate calibration                                                                                                                                     | Model-Based Calibration Toolbox calibrates the firing and non-firing response models and generates calibrated tables.                                                                                                     |  |
|                                                                                                                                                          | To assess or adjust the calibration, select <b>Edit in Application</b> . The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Lookup Tables" (Model-Based Calibration Toolbox). |  |
| Update block parameters                                                                                                                                  | Update the block lookup table and breakpoint parameters with the calibration.                                                                                                                                             |  |

To enable this parameter, clear **Input engine temperature**.

Breakpoints for commanded torque, f\_tbrake\_t\_bpt — Breakpoints 1-by-M vector

Breakpoints, in  $N \cdot m$ .

Breakpoints for engine speed input,  $f_tbrake_n_bpt - Breakpoints$  1-by-N vector

Breakpoints, in rpm.

Breakpoints for temperature input, f\_tbrake\_engtmp\_bpt — Breakpoints [233.15 273.15 373.15] (default) | 1-by-L vector

Breakpoints, in K.

## **Dependencies**

To enable this parameter, select **Input engine temperature**.

Number of cylinders, NCyl — Number 4 (default) | scalar

Number of cylinders.

# Crank revolutions per power stroke, Cps — Crank revolutions

2 (default) | scalar

Crank revolutions per power stroke.

## Total displaced volume, Vd — Volume

0.0015 (default) | scalar

Volume displaced by engine, in m<sup>3</sup>.

# Fuel lower heating value, Lhv — Heating value

45e6 (default) | scalar

Fuel lower heating value, *LHV*, in J/kg.

# Fuel specific gravity, Sg — Specific gravity

0.745 (default) | scalar

Specific gravity of fuel,  $Sg_{fuel}$ , dimensionless.

## Ideal gas constant air, Rair — Constant

287 (default) | scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg\*K).

## Air standard pressure, Pstd — Pressure

101325 (default) | scalar

Standard air pressure, in Pa.

## Air standard temperature, Tstd — Temperature

293.15 (default) | scalar

Standard air temperature, in K.

## Boost torque line, f\_tbrake\_bst — Boost lag

1-by-M vector

Boost torque line,  $f_{bst}(N)$ , in N·m.

## **Dependencies**

To enable this parameter, select **Include turbocharger lag effect**.

## Time constant below boost line — Time constant below

0.2 (default) | scalar

Time constant below boost line,  $\tau_{thr}$ , in s.

## **Dependencies**

To enable this parameter, select Include turbocharger lag effect.

# Rising torque boost time constant, tau\_bst\_rising — Rising time constant

1.5 (default) | scalar

Rising torque boost time constant,  $\tau_{bst,rising}$ , in s.

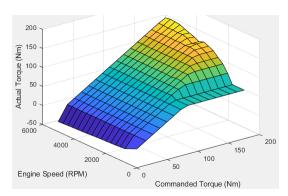
To enable this parameter, select Include turbocharger lag effect.

# Falling torque boost time constant, tau\_bst\_falling — Falling time constant 1 (default) | scalar

Falling torque boost time constant,  $\tau_{\textit{bst,falling}}$ , in s.

## **Dependencies**

To enable this parameter, select **Include turbocharger lag effect**.


#### **Power**

## Brake torque map, f\_tbrake — 2D lookup table

M-by-N matrix

The engine torque lookup table is a function of commanded engine torque and engine speed,  $T = f(T_{cmd}, N)$ , where:

- T is engine torque, in N·m.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## Plot brake torque map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# Brake torque map, f\_tbrake\_3d — 3D lookup table

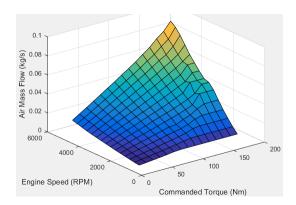
M-by-N-by-L array

The engine torque lookup table is a function of commanded engine torque, engine speed, and engine temperature,  $T = f(T_{cmd}, N, Temp_{End})$ , where:

- T is engine torque, in N·m.
- $T_{cmd}$  is commanded engine torque, in N·m.

- *N* is engine speed, in rpm.
- $Temp_{Eng}$  is engine temperature, in K.

To enable this parameter, select **Input engine temperature**.


#### Air

# Air mass flow map, f\_air — 2D lookup table

M-by-N matrix

The engine air mass flow lookup table is a function of commanded engine torque and engine speed,  $\dot{m}_{intk} = f(T_{cmd}, N)$ , where:

- $\dot{m}_{intk}$  is engine air mass flow, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot air mass map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Air mass flow map, f\_air\_3d — 3D lookup table

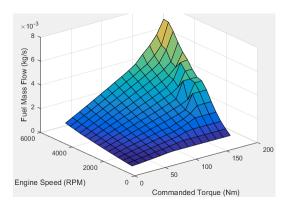
M-by-N-by-L array

The engine air mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature,  $\dot{m}_{intk} = f(T_{cmd}, N, Temp_{End})$ , where:

- $\dot{m}_{intk}$  is engine air mass flow, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.

- *N* is engine speed, in rpm.
- $Temp_{Enq}$  is engine temperature, in K.

To enable this parameter, select **Input engine temperature**.


## **Fuel**

# Fuel flow map, f\_fuel — 2D lookup table

M-by-N matrix

The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed,  $MassFlow = f(T_{cmd}, N)$ , where:

- *MassFlow* is engine fuel mass flow, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot fuel flow map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# Fuel flow map, f\_fuel\_3d — 3D lookup table

M-by-N-by-L array

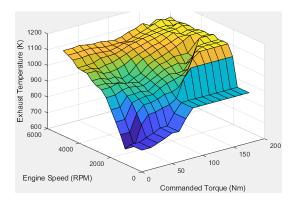
The engine fuel mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature,  $MassFlow = f(T_{cmd}, N, Temp_{Eng})$ , where:

- MassFlow is engine fuel mass flow, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- N is engine speed, in rpm.

•  $Temp_{Eng}$  is engine temperature, in K.

## **Dependencies**

To enable this parameter, select **Input engine temperature**.


## Temperature

# Exhaust temperature map, f\_texh — 2D lookup table

M-by-N matrix

The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed,  $T_{exh} = f(T_{cmd}, N)$ , where:

- $T_{exh}$  is exhaust temperature, in K.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot exhaust temperature map — Plot table

button

Click to plot table.

# **Dependencies**

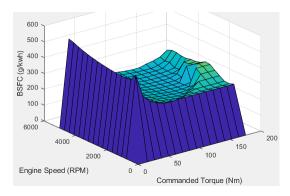
To enable this parameter, clear **Input engine temperature**.

# **Exhaust temperature map, f\_texh\_3d — 3D lookup table** array

The engine exhaust temperature lookup table is a function of commanded engine torque, engine speed, and engine temperature,  $T_{exh} = f(T_{cmd}, N, Temp_{Eng})$ , where:

- T<sub>exh</sub> is exhaust temperature, in K.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$  is engine temperature, in K.

To enable this parameter, select **Input engine temperature**.


## **Efficiency**

## BSFC map, f eff — 2D lookup table

M-by-N-by-L array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed,  $BSFC = f(T_{cmd}, N)$ , where:

- *BSFC* is BSFC, in g/kWh.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot BSFC map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

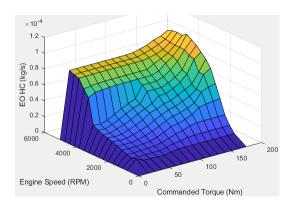
# BSFC map, f\_eff\_3d — 3D lookup table

M-by-N-by-L array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque, engine speed, and engine temperature,  $BSFC = f(T_{cmd}, N, Temp_{Eng})$ , where:

- BSFC is BSFC, in g/kWh.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Enq}$  is engine temperature, in K.

## **Dependencies**


#### HC

# EO HC map, f\_hc — 2D lookup table

M-by-N matrix

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed,  $EO\ HC = f(T_{cmd}, N)$ , where:

- *EO HC* is engine-out hydrocarbon emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# Plot E0 HC map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

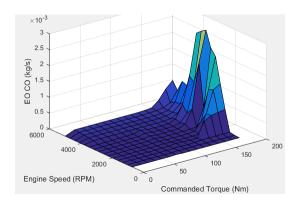
## EO HC map, f\_hc\_3d — 3D lookup table

M-by-N-by-L array

The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature,  $EO\ HC = f(T_{cmd},\ N,\ Temp_{Eng})$ , where:

- *EO HC* is engine-out hydrocarbon emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$  is engine temperature, in K.

## **Dependencies**


CO

# EO CO map, f\_co — 2D lookup table

M-by-N matrix

The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed,  $EO\ CO = f(T_{cmd},\ N)$ , where:

- *EO CO* is engine-out carbon monoxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot E0 C0 map — Plot table

button

Click to plot table.

# **Dependencies**

To enable this parameter, clear **Input engine temperature**.

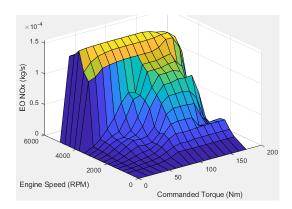
# EO HC map, f\_hc\_3d — 3D lookup table

M-by-N-by-L array

The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature,  $EO\ HC = f(T_{cmd},\ N,\ Temp_{Eng})$ , where:

- EO HC is engine-out hydrocarbon emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$  is engine temperature, in K.

## **Dependencies**


#### **NO**x

# E0 N0x map, f\_nox — 2D lookup table

M-by-N matrix

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed,  $EO\ NOx = f(T_{cmd}, N)$ , where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot E0 N0x map — Plot table

button

Click to plot table.

#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

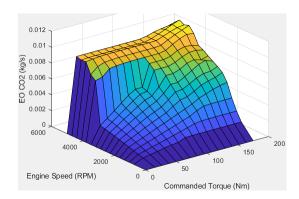
# EO NOx map, f\_nox\_3d — 3D lookup table

M-by-N-by-L array

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature,  $EO\ NOx = f(T_{cmd},\ N,\ Temp_{Eng})$ , where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$  is engine temperature, in K.

## **Dependencies**


## **CO2**

# E0 C02 map, f\_co2 — 2D lookup table

M-by-N matrix

The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed,  $EO\ CO2 = f(T_{cmd},\ N)$ , where:

- EO CO2 is engine-out carbon dioxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



#### **Dependencies**

To enable this parameter, clear **Input engine temperature**.

## Plot CO2 map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear Input engine temperature.

# E0 C02 map, f\_co2\_3d — 3D lookup table

M-by-N-by-L array

The engine-out carbon dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature,  $EO\ CO2 = f(T_{cmd}, N, Temp_{Eng})$ , where:

- *EO CO2* is engine-out carbon dioxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Eng}$  is engine temperature, in K.

## **Dependencies**

#### PM

# EO PM map, f\_pm — 2D lookup table

M-by-N matrix

The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:

- *EO PM* is engine-out PM emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

## **Dependencies**

To enable this parameter, clear **Input engine temperature**.

# Plot EO PM map — Plot table

button

Click to plot table.

## **Dependencies**

To enable this parameter, clear Input engine temperature.

## EO PM map, f pm 3d — 3D lookup table

M-by-N-by-L array

The engine-out particulate matter emissions are a function of commanded engine torque, engine speed, and engine temperature, where:

- *EO PM* is engine-out PM emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.
- $Temp_{Enq}$  is engine temperature, in K.

# **Dependencies**

To enable this parameter, select **Input engine temperature**.

# **Extended Capabilities**

## **C/C++ Code Generation**

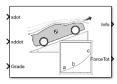
Generate C and C++ code using Simulink® Coder™.

# See Also

Mapped CI Engine | Mapped Motor

## **Topics**

- "Engine Calibration Maps"
- "Model-Based Calibration Toolbox"


# Introduced in R2017a

# **Vehicle Dynamics Blocks**

# **Vehicle Body Total Road Load**

Vehicle motion using coast-down testing coefficients **Library:** Powertrain Blockset / Vehicle Dynamics

Vehicle Dynamics Blockset / Vehicle Body



# **Description**

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for system-level performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

## **Dynamics**

To calculate the total road load acting on the vehicle, the block implements this equation.

$$F_{road} = a + b\dot{x} + c\dot{x}^2 + mg\sin(\theta)$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink® Design Optimization $^{\text{m}}$  to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

$$F_{total} = m\ddot{x} + F_{road}$$

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$P_{total} = F_{total}\dot{x}$$
$$P_{road} = F_{road}\dot{x}$$

## **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Sig     | ınal                                                                                                                                                                      |                       | Description                                               | Variable         | Equations                                   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------|------------------|---------------------------------------------|
| PwrIn<br>fo | <ul> <li>PwrTrnsfrd — Power transferred between blocks</li> <li>Positive signals indicate flow into block</li> <li>Negative signals indicate flow out of block</li> </ul> | PwrFxE<br>xt          | Externally<br>applied force<br>power                      | $P_{F	imes Ext}$ | $P_{FxExt} = F_{total}\dot{x}$              |
|             | PwrNotTrnsfrd — Power crossing the block boundary, but not transferred  • Positive signals indicate an input  • Negative signals indicate a loss                          | PwrFxD<br>rag         | Drag force<br>power                                       | $P_D$            | $P_d = -(a + b\dot{x} + c\dot{x}^2)\dot{x}$ |
|             | PwrStored — Stored energy rate of change  • Positive signals indicate an increase                                                                                         | wrStor<br>edGrvt<br>y | Rate change<br>in<br>gravitational<br>potential<br>energy | $P_g$            | $P_g = -mg\dot{Z}$                          |
|             | Negative signals indicate a decrease                                                                                                                                      | PwrSto<br>redxdo<br>t |                                                           | $P_{xdot}$       | $P_{\dot{X}} = m\ddot{x}\dot{x}$            |

The equations use these variables.

| а                | Steady-state rolling resistance coefficient                                          |
|------------------|--------------------------------------------------------------------------------------|
| b                | Viscous driveline and rolling resistance coefficient                                 |
| $\boldsymbol{c}$ | Aerodynamic drag coefficient                                                         |
| g                | Gravitational acceleration                                                           |
| X                | Vehicle longitudinal displacement with respect to ground, in the vehicle-fixed frame |
| $\dot{\chi}$     | Vehicle longitudinal velocity with respect to ground, in the vehicle-fixed frame     |
| $\ddot{x}$       | Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame        |
| m                | Vehicle body mass                                                                    |
| $\Theta$         | Road grade angle                                                                     |
| $F_{total}$      | Total force acting on vehicle                                                        |
| $F_{road}$       | Resistive road load due to losses and gravitational load                             |
| $P_{total}$      | Total tractive input power                                                           |
| $P_{road}$       | Total power due to losses and gravitational load                                     |
| $\dot{Z}$        | Vehicle vertical velocity along the vehicle-fixed z-axis                             |

# **Ports**

## Input

# xdot — Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity,  $\dot{x}$ , in m/s.

## **Dependencies**

To enable this port, for the **Input Mode** parameter, select **Kinematic**.

# xddot — Vehicle longitudinal acceleration

scalar

Vehicle total longitudinal acceleration,  $\ddot{x}$ , in m/s<sup>2</sup>.

## **Dependencies**

To enable this port, for the **Input Mode** parameter, select **Kinematic**.

## PwrTot — Tractive input power

scalar

Tractive input power,  $P_{total}$ , in W.

## **Dependencies**

To enable this port, for the **Input Mode** parameter, select Power.

# ForceTot — Tractive input force

scalar

Tractive input force,  $F_{total}$ , in N.

## **Dependencies**

To enable this port, for the **Input Mode** parameter, select Force.

# **Grade** — Road grade angle

scalar

Road grade angle,  $\Theta$ , in deg.

## **Output**

## Info - Bus signal

bus

Bus signal containing these block calculations.

| Signal      | Signal Description |  | Value                                                | Units    |   |
|-------------|--------------------|--|------------------------------------------------------|----------|---|
| In Cg<br>er | Disp               |  | Vehicle CG displacement along earth-<br>fixed X-axis | Computed | m |

| Sig      | nal        |        |       | Description                                                          | Value    | Units |
|----------|------------|--------|-------|----------------------------------------------------------------------|----------|-------|
| tF<br>rm |            |        | Y     | Vehicle CG displacement along earth-fixed Y-axis                     | Θ        | m     |
|          |            |        | Z     | Vehicle CG displacement along earth-fixed Z-axis                     | Computed | m     |
|          |            | Vel    | Xdot  | Vehicle CG velocity along earth-fixed X-axis                         | Computed | m/s   |
|          |            |        | Ydot  | Vehicle CG velocity along earth-fixed<br>Y-axis                      | Θ        | m/s   |
|          |            |        | Zdot  | Vehicle CG velocity along earth-fixed Z-axis                         | Computed | m/s   |
|          |            | Ang    | phi   | Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)  | Θ        | rad   |
|          |            |        | theta | Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch) | Computed | rad   |
|          |            |        | psi   | Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)   | Θ        | rad   |
| Bd<br>yF | Cg         | Disp   | х     | Vehicle CG displacement along the vehicle-fixed x-axis               | Computed | m     |
| rm       |            |        | У     | Vehicle CG displacement along the vehicle-fixed y-axis               | Θ        | m     |
|          |            |        | Z     | Vehicle CG displacement along the vehicle-fixed z-axis               | Θ        | m     |
|          |            | Vel    | xdot  | Vehicle CG velocity along the vehicle-fixed x-axis                   | Computed | m/s   |
|          |            |        | ydot  | Vehicle CG velocity along the vehicle-fixed y-axis                   | Θ        | m/s   |
|          |            |        | zdot  | Vehicle CG velocity along the vehicle-fixed z-axis                   | Θ        | m/s   |
|          |            | Acc    | ax    | Vehicle CG acceleration along the vehicle-fixed x-axis               | Computed | gn    |
|          |            |        | ay    | Vehicle CG acceleration along the vehicle-fixed y-axis               | Θ        | gn    |
|          |            |        | az    | Vehicle CG acceleration along the vehicle-fixed z-axis               | Θ        | gn    |
|          | Forc<br>es | c Body | Fx    | Net force on vehicle CG along the vehicle-fixed x-axis               | Computed | N     |
|          |            |        | Fy    | Net force on vehicle CG along the vehicle-fixed y-axis               | 0        | N     |
|          |            |        | Fz    | Net force on vehicle CG along the vehicle-fixed z-axis               | 0        | N     |
|          |            | Ext    | Fx    | External force on vehicle CG along the vehicle-fixed x-axis          | Computed | N     |

| Sig            | nal                       |            |        | Description                                                 | Value                     | Units |
|----------------|---------------------------|------------|--------|-------------------------------------------------------------|---------------------------|-------|
|                | F                         |            | Fy     | External force on vehicle CG along the vehicle-fixed y-axis | Θ                         | N     |
|                |                           |            | Fz     | External force on vehicle CG along the vehicle-fixed z-axis | Θ                         | N     |
|                |                           | Drag       | Fx     | Drag force on vehicle CG along the vehicle-fixed x-axis     | Computed                  | N     |
|                |                           |            | Fy     | Drag force on vehicle CG along the vehicle-fixed y-axis     | Θ                         | N     |
|                |                           |            | Fz     | Drag force on vehicle CG along the vehicle-fixed z-axis     | Θ                         | N     |
|                |                           | Grvty      | Fx     | Gravity force on vehicle CG along the vehicle-fixed x-axis  | Computed                  | N     |
|                |                           |            | Fy     | Gravity force on vehicle CG along the vehicle-fixed y-axis  | Θ                         | N     |
|                |                           |            | Fz     | Gravity force on vehicle CG along the vehicle-fixed z-axis  | Computed                  | N     |
|                | Pwr                       | PwrExt     |        | Applied external power                                      | Computed                  | W     |
|                |                           | Drag       |        | Power loss due to drag                                      | Computed                  | W     |
| Pw<br>rI<br>nf | PwrT<br>rnsf<br>rd        | PwrFxE     | xt     | Externally applied force power                              | $P_{F \times E \times t}$ | W     |
| 0              | PwrN<br>otTr<br>nsfr<br>d | PwrFxDrag  |        | Drag force power                                            | $P_D$                     | W     |
|                | tore                      | 1          | redGrv | Rate change in gravitational potential energy               | $P_g$                     | W     |
|                | d                         | ı <u> </u> |        | Rate in change of longitudinal kinetic energy               | $P_{xdot}$                | W     |

# xdot — Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity,  $\dot{x}$ , in m/s.

# **Dependencies**

To enable this port, for the **Input Mode** parameter, select Power or Force.

# ForceTot — Tractive input force

scalar

Tractive input force,  $F_{total}$ , in N.

# **Dependencies**

To enable this port, for the **Input Mode** parameter, select **Kinematic**.

## **Parameters**

# Input Mode — Specify input mode

Kinematic (default) | Force | Power

Specify the input type.

- **Kinematic** Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
- Power Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

## **Dependencies**

This table summarizes the port and input mode configurations.

| Input Mode | Creates Ports |
|------------|---------------|
| Kinematic  | xdot          |
|            | xddot         |
| Force      | Force         |
| Power      | Power         |

# Mass — Vehicle body mass

1200 (default) | scalar

Vehicle body mass, m, in kg.

# Rolling resistance coefficient, a — Rolling

196 (default) | scalar

Steady-state rolling resistance coefficient, *a*, in N.

# **Rolling and driveline resistance coefficient, b — Rolling and driveline** 2.232 (default) | scalar

Viscous driveline and rolling resistance coefficient, b, in N\*s/m.

# Aerodynamic drag coefficient, c — Drag

0.389 (default) | scalar

Aerodynamic drag coefficient, c, in N·s<sup>2</sup>/m.

## **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, g, in m/s $^2$ .

# Initial position, x\_o — Position

0 (default) | scalar

Vehicle longitudinal initial position, in m.

## Initial velocity, xdot o — Velocity

0 (default) | scalar

Vehicle longitudinal initial velocity with respect to ground, in m/s.

# References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
- [2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263\_201003. SAE International, March 2010.

# **Extended Capabilities**

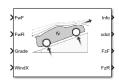
## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

## See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal

## **Topics**


"Coordinate Systems in Vehicle Dynamics Blockset"

## Introduced in R2017a

# **Vehicle Body 1DOF Longitudinal**

Two-axle vehicle in forward and reverse motion

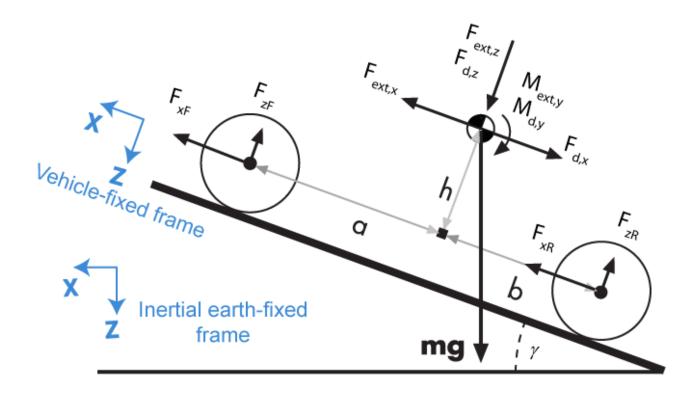
**Library:** Powertrain Blockset / Vehicle Dynamics Vehicle Dynamics Blockset / Vehicle Body



# **Description**

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.


You can select block options to create input ports for external forces, moments, air temperature, and wind speed.

| Block Option<br>Setting | External Input<br>Ports | Description                                                                                                                                                                                   |
|-------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>External forces</b>  | FExt                    | External force applied to vehicle CG in the vehicle-fixed frame.                                                                                                                              |
| External moments        | MExt                    | External moment about vehicle CG in the vehicle-fixed frame.                                                                                                                                  |
| Air<br>temperature      | AirTemp                 | Ambient air temperature. Consider this option if you want to vary the temperature during run-time.                                                                                            |
| Wind X,Y,Z              | WindXYZ                 | Wind speed along earth-fixed $X$ -, $Y$ -, and $Z$ -axes.  If you do not select this option, the block implements input port WindX — Longitudinal wind speed along the earth-fixed $X$ -axis. |

## **Vehicle Body Model**

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CG.



The Vehicle Body 1DOF Longitudinal block implements these equations.

$$F_b = m\ddot{x}$$
 
$$F_b = F_{xF} + F_{xR} - F_{d,x} + F_{ext,x} - mg\sin\gamma$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear axles.

$$F_{zF} = \frac{-M_{ext, y} - M_{d, y} + b(F_{d, z} + F_{ext, z} + mg\cos\gamma) - h(-F_{ext, x} + F_{d, x} + mg\sin\gamma + m\ddot{x})}{N_{F}(a + b)}$$
 
$$F_{zR} = \frac{M_{ext, y} + M_{d, y} + a(F_{d, z} + F_{ext, z} + mg\cos\gamma) + h(-F_{ext, x} + F_{d, x} + mg\sin\gamma + m\ddot{x})}{N_{R}(a + b)}$$

The wheel normal forces satisfy this equation.

$$N_F F_{zF} + N_R F_{zR} - F_{ext,z} = mg \cos \gamma$$

## Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed.

$$\begin{split} F_{d,x} &= \frac{1}{2TR} C_d A_f P_{abs}(^{\dot{x}}) \\ F_{d,z} &= \frac{1}{2TR} C_l A_f P_{abs}(^{\dot{x}}) \\ M_{d,y} &= \frac{1}{2TR} C_{pm} A_f P_{abs}(^{\dot{x}}(a+b)) \end{split}$$

By default, to calculate the wind speed along the vehicle-fixed x-axis, the block uses the longitudinal wind speed along the earth-fixed X-axis. If you select **WindX,Y,Z**, the block uses the wind speed along the earth-fixed X-, Y-, Z-axes.

# **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Sign                                                  | nal                                                                             |               | Description                                             | Equations                                                                |
|-----------------------------------------------------------|---------------------------------------------------------------------------------|---------------|---------------------------------------------------------|--------------------------------------------------------------------------|
| PwrInf<br>o                                               | PwrTrnsfrd —<br>Power transferred                                               | PwrFxExt      | Externally applied force power                          | $P_{F \times E \times t} = F_{\times E \times t} \dot{x}$                |
|                                                           | <ul><li>Positive signals indicate flow</li></ul>                                | PwrFwFx       | Longitudinal force power applied at the front axle      | $P_{FwFx} = F_{wF}\dot{x}$                                               |
| into block  • Negative signals indicate flow out of block |                                                                                 | PwrFwRx       | Longitudinal force<br>power applied at the<br>rear axle | $P_{FwRx} = F_{wR}\dot{x}$                                               |
|                                                           | PwrNotTrnsfrd —<br>Power crossing the<br>block boundary, but<br>not transferred | PwrFxDrag     | Drag force power                                        | $P_d = -\frac{0.5C_d A_f P_{abs} (\dot{x}^2 - w_X)^2}{287.058T} \dot{x}$ |
|                                                           | Positive signals indicate an input                                              |               |                                                         |                                                                          |
|                                                           | Negative signals indicate a loss                                                |               |                                                         |                                                                          |
|                                                           | PwrStored —<br>Stored energy rate<br>of change                                  | wrStoredGrvty | Rate change in gravitational potential energy           | $P_g = -mg\dot{Z}$                                                       |
|                                                           | Positive signals indicate an increase                                           | PwrStoredxdot | Rate in change of<br>longitudinal kinetic<br>energy     | $P_{\dot{x}} = m\ddot{x}\dot{x}$                                         |
|                                                           | Negative signals<br>indicate a<br>decrease                                      |               |                                                         |                                                                          |

The equations use these variables.

 $F_{xf}$ ,  $F_{xr}$  Longitudinal forces on each wheel at the front and rear ground contact points, respectively

| $F_{zf}$ , $F_{zr}$           | Normal load forces on each wheel at the front and rear ground contact points, respectively                                |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $F_{wF}$ , $F_{wR}$           | Longitudinal force on front and rear axles along vehicle-fixed <i>x</i> -axis                                             |
| $F_{xExt}$ , $F_{wR}$         | External force along the vehicle-fixed <i>x</i> -axis                                                                     |
| $F_{d,x}$ , $F_{d,z}$         | Longitudinal and normal drag force on vehicle CG                                                                          |
| $M_{d,y}$                     | Torque due to drag on vehicle about the vehicle-fixed y-axis                                                              |
| $F_d$                         | Aerodynamic drag force                                                                                                    |
| $V_{\scriptscriptstyle \chi}$ | Velocity of the vehicle. When $V_x > 0$ , the vehicle moves forward. When $V_x < 0$ , the vehicle moves backward.         |
| $N_f$ , $N_r$                 | Number of wheels on front and rear axle, respectively                                                                     |
| γ                             | Angle of road grade                                                                                                       |
| m                             | Vehicle body mass                                                                                                         |
| a,b                           | Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane |
| h                             | Height of vehicle CG above the axle plane                                                                                 |
| $C_d$                         | Frontal air drag coefficient                                                                                              |
| $A_f$                         | Frontal area                                                                                                              |
| $P_{abs}$                     | Absolute pressure                                                                                                         |
| ρ                             | Mass density of air                                                                                                       |
| x, x, x                       | Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed $x$ -axis                               |

# Limitations

 $W_{\chi}$ 

Ż

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

Wind speed along the vehicle-fixed *x*-axis

Vehicle vertical velocity along the vehicle-fixed *z*-axis

# **Ports**

## Input

## FExt — External force on vehicle CG

array

External forces applied to vehicle CG,  $F_{xext}$ ,  $F_{yext}$ ,  $F_{zext}$ , in vehicle-fixed frame, in N. Signal vector dimensions are [1x3] or [3x1].

# **Dependencies**

To enable this port, select **External forces**.

## MExt — External moment about vehicle CG

array

External moment about vehicle CG,  $M_x$ ,  $M_y$ ,  $M_z$ , in the vehicle-fixed frame, in N·m. Signal vector dimensions are [1x3] or [3x1].

## **Dependencies**

To enable this port, select **External moments**.

## **FwF** — **Total longitudinal force on front axle**

scalar

Longitudinal force on the front axle,  $F_{xf}$ , along vehicle-fixed x-axis, in N.

## FwR — Total longitudinal force on rear axle

scalar

Longitudinal force on the rear axle,  $Fw_R$ , along vehicle-fixed x-axis, in N.

## **Grade** — Road grade angle

scalar

Road grade angle,  $\gamma$ , in deg.

## WindX — Longitudinal wind speed

scalar

Longitudinal wind speed,  $W_w$ , along earth-fixed X-axis, in m/s.

## **Dependencies**

To enable this port, clear **Wind X,Y,Z components**.

## WindXYZ — Wind speed

array

Wind speed,  $W_w$ ,  $W_{wY}$ ,  $W_{wZ}$  along inertial X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

## **Dependencies**

To enable this port, select **Wind X,Y,Z components**.

# AirTemp — Ambient air temperature

scalar

Ambient air temperature,  $T_{air}$ , in K. Considering this option if you want to vary the temperature during run-time.

## **Dependencies**

To enable this port, select **Air temperature**.

# Output

## Info — Bus signal

bus

Bus signal containing these block values.

| Signal   |         |                  |       | Description                                                          | Value                                   | Units |
|----------|---------|------------------|-------|----------------------------------------------------------------------|-----------------------------------------|-------|
| InertFrm | Cg      | Disp             | X     | Vehicle CG displacement along earth-fixed X-axis                     | Computed                                | m     |
|          |         |                  | Y     | Vehicle CG displacement along earth-fixed Y-axis                     | 0                                       | m     |
|          |         |                  | Z     | Vehicle CG displacement along earth-fixed Z-axis                     | Computed                                | m     |
|          |         | Vel              | Xdot  | Vehicle CG velocity along earth-fixed X-axis                         | Computed                                | m/s   |
|          |         |                  | Ydot  | Vehicle CG velocity along earth-fixed Y-axis                         | 0                                       | m/s   |
|          |         |                  | Zdot  | Vehicle CG velocity along earth-fixed Z-axis                         | Computed                                | m/s   |
|          |         | Ang              | phi   | Rotation of vehicle-fixed frame about the earth-fixed X-axis (roll)  | 0                                       | rad   |
|          |         |                  | theta | Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch) | Computed<br>(input -<br>grade<br>angle) | rad   |
|          |         |                  | psi   | Rotation of vehicle-fixed frame about the earth-fixed Z-axis (yaw)   | 0                                       | rad   |
|          | FrntAxl | rntAxl Disp  Vel | X     | Front axle displacement along the earth-fixed X-axis                 | Computed                                | m     |
|          |         |                  | Υ     | Front axle displacement along the earth-fixed Y-axis                 | 0                                       | m     |
|          |         |                  | Z     | Front axle displacement along the earth-fixed Z-axis                 | Computed                                | m     |
|          |         |                  | Xdot  | Front axle velocity along the earth-fixed X-axis                     | Computed                                | m/s   |
|          |         |                  | Ydot  | Front axle velocity along the earth-fixed Y-axis                     | 0                                       | m/s   |
|          |         |                  | Zdot  | Front axle velocity along the earth-fixed Z-axis                     | Computed                                | m/s   |
|          | RearAxl | arAxl Disp       | X     | Rear axle displacement along the earth-fixed X-axis                  | Computed                                | m     |
|          |         |                  | Υ     | Rear axle displacement along the earth-fixed Y-axis                  | 0                                       | m     |
|          |         |                  | Z     | Rear axle displacement along the earth-fixed Z-axis                  | Computed                                | m     |

| Signal |        |        |      | Description                                                                 | Value    | Units |
|--------|--------|--------|------|-----------------------------------------------------------------------------|----------|-------|
|        |        | Vel    | Xdot | Rear axle velocity along the earth-fixed X-axis                             | Computed | m/s   |
|        |        |        | Ydot | Rear axle velocity along the earth-fixed Y-axis                             | 0        | m/s   |
|        |        |        | Zdot | Rear axle velocity along the earth-fixed Z-axis                             | Computed | m/s   |
| BdyFrm | Cg     | Disp   | X    | Vehicle CG displacement<br>along the vehicle-fixed x-<br>axis               | Computed | m     |
|        |        |        | У    | Vehicle CG displacement along the vehicle-fixed yaxis                       | Θ        | m     |
|        |        |        | Z    | Vehicle CG displacement along the vehicle-fixed z-axis                      | Θ        | m     |
|        |        | AngVel | xdot | Vehicle CG velocity along the vehicle-fixed x-axis                          | Computed | m/s   |
|        |        |        | ydot | Vehicle CG velocity along the vehicle-fixed y-axis                          | 0        | m/s   |
|        |        |        | zdot | Vehicle CG velocity along the vehicle-fixed z-axis                          | 0        | m/s   |
|        |        |        | p    | Vehicle angular velocity<br>about the vehicle-fixed x-<br>axis (roll rate)  | Θ        | rad/s |
|        |        |        | q    | Vehicle angular velocity<br>about the vehicle-fixed y-<br>axis (pitch rate) | Θ        | rad/s |
|        |        |        | r    | Vehicle angular velocity<br>about the vehicle-fixed z-<br>axis (yaw rate)   | 0        | rad/s |
|        |        |        | ax   | Vehicle CG acceleration along the vehicle-fixed x-axis                      | Computed | gn    |
|        |        |        | ay   | Vehicle CG acceleration along the vehicle-fixed y-axis                      | 0        | gn    |
|        |        |        | az   | Vehicle CG acceleration<br>along the vehicle-fixed z-<br>axis               | Θ        | gn    |
|        | Forces | Body   | Fx   | Net force on vehicle CG along the vehicle-fixed x-axis                      | Θ        | N     |

| Signal |         |              |        | Description                                                       | Value    | Units |
|--------|---------|--------------|--------|-------------------------------------------------------------------|----------|-------|
|        |         | Fy           |        | Net force on vehicle CG along the vehicle-fixed y-axis            | 0        | N     |
|        |         | Fz           |        | Net force on vehicle CG along the vehicle-fixed z-axis            | 0        | N     |
|        | Ext     | Fx           |        | External force on vehicle<br>CG along the vehicle-fixed<br>x-axis | Computed | N     |
|        |         | Fy           |        | External force on vehicle<br>CG along the vehicle-fixed<br>y-axis | Computed | N     |
|        |         | Fz           |        | External force on vehicle<br>CG along the vehicle-fixed<br>z-axis | Computed | N     |
|        | FrntAxl | Fx           |        | Longitudinal force on front axle, along the vehicle-fixed x-axis  | 0        | N     |
|        |         | Fy           |        | Lateral force on front axle, along the vehicle-fixed y-axis       | 0        | N     |
|        |         | Fz           |        | Normal force on front axle, along the vehicle-fixed z-axis        | Computed | N     |
|        | RearAxl | Fx           |        | Longitudinal force on rear axle, along the vehicle-fixed x-axis   | 0        | N     |
|        |         | Fy           |        | Lateral force on rear axle, along the vehicle-fixed y-axis        | 0        | N     |
|        |         | Fz           |        | Normal force on rear axle, along the vehicle-fixed z-axis         | Computed | N     |
|        |         | FrntTir<br>e | F<br>x | Front tire force, along the vehicle-fixed x-axis                  | 0        | N     |
|        |         |              | F<br>y | Front tire force, along the vehicle-fixed y-axis                  | Θ        | N     |
|        |         |              | F      | Front tire force, along the vehicle-fixed z-axis                  | Computed | N     |
|        |         | RearTir<br>e | F<br>x | Rear tire force, along the vehicle-fixed x-axis                   | Θ        | N     |
|        |         |              | F<br>y | Rear tire force, along the vehicle-fixed y-axis                   | 0        | N     |

| Signal |         |       |    |        | Description                                                    | Value    | Units |
|--------|---------|-------|----|--------|----------------------------------------------------------------|----------|-------|
|        |         |       |    | F<br>z | Rear tire force, along the vehicle-fixed z-axis                | Computed | N     |
|        |         | Drag  | Fx |        | Drag force on vehicle CG along the vehicle-fixed x-axis        | Computed | N     |
|        |         |       | Fy |        | Drag force on vehicle CG along the vehicle-fixed y-axis        | Computed | N     |
|        |         |       | Fz |        | Drag force on vehicle CG<br>along the vehicle-fixed z-<br>axis | Computed | N     |
|        |         | Grvty | Fx |        | Gravity force on vehicle CG along the vehicle-fixed x-axis     | Computed | N     |
|        |         |       | Fy |        | Gravity force on vehicle CG along the vehicle-fixed y-axis     | 0        | N     |
|        |         |       | Fz |        | Gravity force on vehicle CG along the vehicle-fixed z-axis     | Computed | N     |
|        | Moments | Body  | Mx |        | Net moment on vehicle CG about the vehicle-fixed x-axis        | 0        | N·m   |
|        |         |       | Му |        | Net moment on vehicle CG about the vehicle-fixed y-axis        | Θ        | N·m   |
|        |         |       | Mz |        | Net moment on vehicle CG about the vehicle-fixed z-axis        | Θ        | N·m   |
|        | Drag    | Drag  | Mx |        | Drag moment on vehicle<br>CG about the vehicle-fixed<br>x-axis | Computed | N·m   |
|        |         |       | Му |        | Drag moment on vehicle<br>CG about the vehicle-fixed<br>y-axis | Computed | N·m   |
|        |         |       | Mz |        | Drag moment on vehicle<br>CG about the vehicle-fixed<br>z-axis | Computed | N·m   |
|        |         | Ext   | Fx |        | External moment on vehicle CG about the vehicle-fixed x-axis   | Computed | N·m   |
|        |         |       | Fy |        | External moment on vehicle CG about the vehicle-fixed y-axis   | Computed | N·m   |

| Signal  |        |          | Description                                                  | Value    | Units |
|---------|--------|----------|--------------------------------------------------------------|----------|-------|
|         |        | Fz       | External moment on vehicle CG about the vehicle-fixed z-axis | Computed | N·m   |
| FrntAxl | Disp   | X        | Front axle displacement along the vehicle-fixed x-axis       | Computed | m     |
|         |        | У        | Front axle displacement along the vehicle-fixed yaxis        | Θ        | m     |
|         |        | Z        | Front axle displacement along the vehicle-fixed zaxis        | Computed | m     |
|         | Vel    | xdot     | Front axle velocity along the vehicle-fixed x-axis           | Computed | m/s   |
|         |        | ydot     | Front axle velocity along the vehicle-fixed y-axis           | 0        | m/s   |
|         |        | zdot     | Front axle velocity along the vehicle-fixed z-axis           | Computed | m/s   |
|         | Steer  | WhlAngFL | Front left wheel steering angle                              | Computed | rad   |
|         |        | WhlAngFR | Front right wheel steering angle                             | Computed | rad   |
| RearAxl | Disp   | X        | Rear axle displacement along the vehicle-fixed x-axis        | Computed | m     |
|         |        | У        | Rear axle displacement along the vehicle-fixed yaxis         | Θ        | m     |
|         |        | Z        | Rear axle displacement along the vehicle-fixed zaxis         | Computed | m     |
|         | Vel    | xdot     | Rear axle velocity along the vehicle-fixed x-axis            | Computed | m/s   |
|         |        | ydot     | Rear axle velocity along the vehicle-fixed y-axis            | 0        | m/s   |
|         |        | zdot     | Rear axle velocity along the vehicle-fixed z-axis            | Computed | m/s   |
|         |        | WhlAngRL | Rear left wheel steering angle                               | Computed | rad   |
|         |        | WhlAngRR | Rear right wheel steering angle                              | Computed | rad   |
| Pwr     | PwrExt |          | Applied external power                                       | Computed | W     |
|         | Drag   |          | Power loss due to drag                                       | Computed | W     |

| Signal  |                   |               | Description                                        | Value    | Units |
|---------|-------------------|---------------|----------------------------------------------------|----------|-------|
| PwrInfo | PwrTrns<br>frd    | PwrFxExt      | Externally applied force power                     | Computed | W     |
|         |                   | PwrFwFx       | Longitudinal force power applied at the front axle | Computed | W     |
|         |                   | PwrFwRx       | Longitudinal force power applied at the rear axle  | Computed | W     |
|         | PwrNotT<br>rnsfrd | PwrFxDrag     | Drag force power                                   | Computed | W     |
|         | PwrStor<br>ed     | wrStoredGrvty | Rate change in gravitational potential energy      | Computed | W     |
|         |                   | PwrStoredxdot | Rate in change of longitudinal kinetic energy      | Computed | W     |

# xdot — Vehicle body longitudinal velocity

scalar

Vehicle body longitudinal velocity along the earth-fixed reference frame X-axis, in m/s.

## FzF — Front axle normal force

scalar

Normal load force on the front axle,  $F_{zf}$ , along vehicle-fixed z-axis, in N.

#### FzR — Rear axle normal force

scalar

Normal force on rear axle,  $F_{zr}$ , along the vehicle-fixed z-axis, in N.

## **Parameters**

## **Options**

# External forces — FExt input port

off (default) | on

Specify to create input port FExt.

## External moments — MExt input port

off (default) | on

Specify to create input port MExt.

# Air temperature — AirTemp input port

off (default) | on

Specify to create input port AirTemp.

# Wind X,Y,Z components — WindXYZ input port

off (default) | on

Specify to create input port WindXYZ.

## Longitudinal

# Number of wheels on front axle, NF — Front wheel count 2 (default) | scalar

Number of wheels on front axle,  $N_F$ . The value is dimensionless.

# Number of wheels on rear axle, NR — Rear wheel count $2 (default) \mid scalar$

Number of wheels on rear axle,  $N_R$ . The value is dimensionless.

## Mass, m — Vehicle mass

1500 (default) | scalar

Vehicle mass, M, in kg.

# Horizontal distance from CG to front axle, a - Front axle distance

1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

# Horizontal distance from CG to rear axle, $\mathbf{b}-\mathbf{Rear}$ axle distance

1.8 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

## CG height above axles, h — Height

.35 (default) | scalar

Height of vehicle CG above the ground, *h*, in m.

## Drag coefficient, Cd — Drag

.3 (default) | scalar

Air drag coefficient,  $C_d$ . The value is dimensionless.

## Lift coefficient, Cl - Lift

0 (default) | scalar

Air lift coefficient,  $C_l$ . The value is dimensionless.

## Pitch drag moment coefficient, Cpm — Pitch drag

0 (default) | scalar

Pitch drag moment coefficient,  $C_{pm}$ . The value is dimensionless.

## Frontal area, Af — Area

4 (default) | scalar

Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in  $m^2$ .

## Initial position, $x \circ - Position$

0 (default) | scalar

Vehicle body longitudinal initial position along the vehicle-fixed x-axis,  $x_o$ , in m.

## Initial velocity, xdot\_o — Velocity

0 (default) | scalar

Vehicle body longitudinal initial velocity along the vehicle-fixed x-axis,  $\dot{x}_0$ , in m/s.

#### **Environment**

#### Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental air absolute pressure,  $P_{abs}$ , in Pa.

## Air temperature, T — Ambient air temperature

273 (default) | scalar

Ambient air temperature,  $T_{air}$ , in K.

#### **Dependencies**

To enable this parameter, clear **Air temperature**.

## **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, g, in m/s<sup>2</sup>.

## **Extended Capabilities**

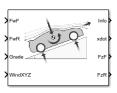
#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

## **See Also**

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

## **Topics**


"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2017a

# Vehicle Body 3DOF Longitudinal

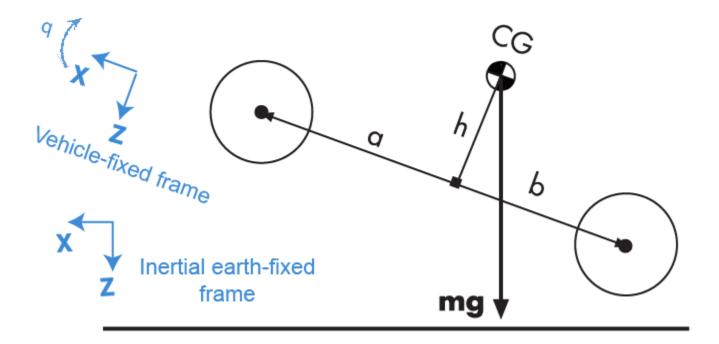
3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion **Library:** Powertrain Blockset / Vehicle Dynamics

Vehicle Dynamics Blockset / Vehicle Body



## **Description**

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.


You can specify the type of axle attachment to the vehicle:

- Grade angle Vertical axle displacement from road surface to axles remains constant. The block
  uses tabular stiffness and damping parameters to model the suspension forces acting between the
  vehicle body and axles.
- Axle displacement Axles have input-provided vertical displacement and velocity with respect to
  the road grade. The block uses tabular stiffness and damping parameters to model the suspension
  forces acting between the vehicle body and axle.
- External suspension Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$\begin{split} F_{x} &= F_{wF} + F_{wR} - F_{d,x} - F_{sx,F} - F_{sx,R} + F_{g,x} \\ F_{z} &= F_{d,z} - F_{sz,F} - F_{sz,R} + F_{g,z} \\ M_{y} &= aF_{sz,F} - bF_{sz,R} + h(F_{wF} + F_{wR} + F_{sx,F} + F_{sx,R}) - M_{d,y} \end{split}$$



#### **Rigid-Body Vehicle Motion**

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$\ddot{x} = \frac{F_X}{m} - qz$$

$$\ddot{z} = \frac{F_Z}{m} - qx$$

$$\dot{q} = \frac{M_y}{I_{yy}}$$

$$\dot{\theta} = q$$

## **Suspension System Forces**

If you configure the block with the **Ground interaction type** parameter **Grade angle** or **Axle displacement**, **velocity**, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$Fs_F = N_F[Fk_F + Fb_F]$$

$$Fs_R = N_R[Fk_R + Fb_R]$$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

$$Fk_F = f(dZ_F)$$

$$Fk_R = f(dZ_R)$$

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$Fb_F = f(d\dot{Z}_F)$$

$$Fb_R = f(d\dot{Z}_R)$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$dZ_F = Z_F - \bar{Z}_F$$

$$dZ_R = Z_R - \bar{Z}_R$$

$$d\dot{Z}_F = \dot{Z}_F - \dot{\bar{Z}}_F$$

$$d\dot{Z}_R = \dot{Z}_R - \dot{\bar{Z}}_R$$

When the **Ground interaction type** parameter is Grade angle, the axle vertical positions  $(\bar{Z}_F, \bar{Z}_R)$  and velocities  $(\dot{\bar{Z}}_F, \dot{\bar{Z}}_R)$  are set to 0.

## **Wind and Drag Forces**

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$F_{d,x} = \frac{1}{2TR} C_d A_f P_{abs}(\dot{x})$$

$$F_{d,z} = \frac{1}{2TR}C_l A_f P_{abs}(^{\dot{x}}$$

$$M_{d,y} = \frac{1}{2TR} C_{pm} A_f P_{abs}(\dot{x}(a+b))$$

#### **Power Accounting**

For the power accounting, the block implements these equations.

| Bus Sig     | nal                                                                                              |                | Description                                                                                     | Equations                                                                          |
|-------------|--------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| PwrInf<br>o | PwrTrnsfrd —<br>Power transferred<br>between blocks                                              | PwrFxExt       | Externally applied longitudinal force power                                                     | $P_{F \times E \times t} = F_{\times E \times t} \dot{x}$                          |
|             | Positive signals indicate flow into block                                                        | PwrFzExt       | Externally applied longitudinal force power                                                     | $P_{FzExt} = F_{zExt}\dot{z}$                                                      |
|             | Negative<br>signals indicate<br>flow out of                                                      | PwrMyExt       | Externally applied pitch moment power                                                           | $P_{MzExt} = M_{zExt}\dot{\theta}$                                                 |
|             | block                                                                                            | PwrFwFx        | Longitudinal force applied at the front axle                                                    | $P_{FwFx} = F_{wF}\dot{x}$                                                         |
|             |                                                                                                  | PwrFwRx        | Longitudinal force applied at the rear axle                                                     | $P_{FwRx} = F_{wR}\dot{x}$                                                         |
|             | PwrNotTrnsfrd — Power crossing the block boundary, but not transferred                           | PwrFsF         | Internal power<br>transferred<br>between<br>suspension and<br>vehicle body at<br>the front axle | $P_{Fs,F} = -P_{FwFx} + P_{FsbF} + P_{Fsk,F} + F_{xF}\dot{x}_F + F_{zF}\dot{z}_F$  |
|             | <ul> <li>Positive signals indicate an input</li> <li>Negative signals indicate a loss</li> </ul> | PwrFsR         | Internal power<br>transferred<br>between<br>suspension and<br>vehicle body at<br>the rear axle  | $P_{Fs,R} = -P_{FwRx} + P_{Fsb,R} + P_{Fsk,R} + F_{xF}\dot{x}_F + F_{zF}\dot{z}_F$ |
|             |                                                                                                  | PwrFxDrag      | Longitudinal drag force power                                                                   | $P_{d,x} = F_{d,x}\dot{x}$                                                         |
|             |                                                                                                  | PwrFzDrag      | Vertical drag<br>force power                                                                    | $P_{d,z} = F_{d,z}\dot{z}$                                                         |
|             |                                                                                                  | PwrMyDrag      | Drag pitch<br>moment power                                                                      | $P_{d,My} = M_{d,y}\dot{\theta}$                                                   |
|             |                                                                                                  | PwrFsb         | Total suspension damping power                                                                  | $P_{Fsb} = \sum_{i = F, R} F_{sb, i} \dot{z}_i$                                    |
|             | PwrStored —<br>Stored energy rate<br>of change                                                   | PwrStoredGrvty | Rate change in<br>gravitational<br>potential energy                                             | $P_g = -mg\dot{Z}$                                                                 |
|             | Positive signals indicate an increase                                                            | PwrStoredxdot  | Rate of change of<br>longitudinal<br>kinetic energy                                             | $P_{\dot{x}} = m\ddot{x}\dot{x}$                                                   |
|             | Negative<br>signals indicate<br>a decrease                                                       | PwrStoredzdot  | Rate of change of<br>longitudinal<br>kinetic energy                                             | $P_{\dot{z}} = m\ddot{z}\dot{z}$                                                   |

| <b>Bus Signal</b> | l                    | Description                                             | Equations                                         |
|-------------------|----------------------|---------------------------------------------------------|---------------------------------------------------|
|                   | PwrStoredq           | Rate of change of<br>rotational pitch<br>kinetic energy | $P_{\dot{	heta}} = I_{yy}\ddot{	heta}\dot{	heta}$ |
|                   | PwrStoredFsFz<br>rng | Sp Stored spring<br>energy from front<br>suspension     | $P_{FskF} = F_{sk,F} \dot{z}_F$                   |
|                   | PwrStoredFsRz<br>rng | Sp Stored spring<br>energy from rear<br>suspension      | $P_{FskF} = F_{sk, R} \dot{z}_R$                  |

The equations use these variables.

| $F_{x}$                       | Longitudinal force on vehicle                                                                                             |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $F_z$                         | Normal force on vehicle                                                                                                   |
| $M_{y}$                       | Torque on vehicle about the vehicle-fixed y-axis                                                                          |
| $F_{wF}$ , $F_{wR}$           | Longitudinal force on front and rear axles along vehicle-fixed $x$ -axis                                                  |
| $F_{d,x}$ , $F_{d,z}$         | Longitudinal and normal drag force on vehicle CG                                                                          |
| $F_{sx,F}$ , $F_{sx,R}$       | Longitudinal suspension force on front and rear axles                                                                     |
| $F_{sz,F}$ , $F_{sz,R}$       | Normal suspension force on front and rear axles                                                                           |
| $F_{g,x}$ , $F_{g,z}$         | Longitudinal and normal gravitational force on vehicle along the vehicle-fixed frame                                      |
| $M_{d,y}$                     | Torque due to drag on vehicle about the vehicle-fixed y-axis                                                              |
| a,b                           | Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane |
| h                             | Height of vehicle CG above the axle plane along vehicle-fixed $z$ -axis                                                   |
| $Fs_F$ , $Fs_R$               | Front and rear axle suspension force along vehicle-fixed $z$ -axis                                                        |
| $Z_{wF}$ , $Z_{wR}$           | Front and rear vehicle normal position along earth-fixed $z$ -axis                                                        |
| $\Theta$                      | Vehicle pitch angle about the vehicle-fixed y-axis                                                                        |
| m                             | Vehicle body mass                                                                                                         |
| $N_F$ , $N_R$                 | Number of front and rear wheels                                                                                           |
| $I_{yy}$                      | Vehicle body moment of inertia about the vehicle-fixed y-axis                                                             |
| $x, \dot{x}, \ddot{x}$        | Vehicle longitudinal position, velocity, and acceleration along the vehicle-fixed $x$ -axis                               |
| $z, \dot{z}, \ddot{z}$        | Vehicle normal position, velocity, and acceleration along the vehicle-fixed $z$ -axis                                     |
| $Fk_F$ , $Fk_R$               | Front and rear wheel suspension stiffness force along vehicle-fixed $z$ -axis                                             |
| $Fb_F$ , $Fb_R$               | Front and rear wheel suspension damping force along vehicle-fixed $z$ -axis                                               |
| $Z_F$ , $Z_R$                 | Front and rear vehicle vertical position along earth-fixed Z-axis                                                         |
| $\dot{Z}_F,\dot{Z}_R$         | Front and rear vehicle vertical velocity along vehicle-fixed $z$ -axis                                                    |
| $ar{Z}_F,ar{Z}_R$             | Front and rear wheel axle vertical position along vehicle-fixed $z$ -axis                                                 |
| $\dot{ar{Z}}_F,\dot{ar{Z}}_R$ | Front and rear wheel axle vertical velocity along earth-fixed $z$ -axis                                                   |

| $dZ_F$ , $dZ_R$          | Front and rear axle suspension deflection along vehicle-fixed $z$ -axis      |
|--------------------------|------------------------------------------------------------------------------|
| $d\dot{Z}_F, d\dot{Z}_R$ | Front and rear axle suspension deflection rate along vehicle-fixed $z$ -axis |
| $C_d$                    | Frontal air drag coefficient acting along the vehicle-fixed $x$ -axis        |

 $C_l$  Lateral air drag coefficient acting along the vehicle-fixed z-axis  $C_{pm}$  Air drag pitch moment acting about the vehicle-fixed y-axis

 $A_f$  Frontal area

 $P_{abs}$  Environmental absolute pressure R Atmospheric specific gas constant T Environmental air temperature

 $w_x$  Wind speed along the vehicle-fixed x-axis

#### **Ports**

## Input

#### FExt — External force on vehicle CG

array

External forces applied to vehicle CG,  $F_{xext}$ ,  $F_{yext}$ ,  $F_{zext}$ , in vehicle-fixed frame, in N. Signal vector dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, select **External forces**.

#### MExt — External moment about vehicle CG

array

External moment about vehicle CG,  $M_x$ ,  $M_y$ ,  $M_z$ , in the vehicle-fixed frame, in N·m. Signal vector dimensions are [1x3] or [3x1].

### **Dependencies**

To enable this port, select **External moments**.

#### FwF — Total longitudinal force on the front axle

scalar

Longitudinal force on the front axle,  $Fw_F$ , along vehicle-fixed x-axis, in N.

#### FwR — Total longitudinal force on the rear axle

scalar

Longitudinal force on the rear axle,  $Fw_R$ , along vehicle-fixed x-axis, in N.

#### **Grade** — Road grade angle

scalar

Road grade angle,  $\gamma$ , in deg.

## FsF — Suspension force on front axle per wheel

vector

Suspension force on front axle,  $Fs_F$ , along the vehicle-fixed z-axis, in N.

## **Dependencies**

To enable this port, for the **Ground interaction type** parameter, select External suspension.

#### FsR — Suspension force on rear axle per wheel

vector

Suspension force on rear axle,  $Fs_R$ , along the vehicle-fixed z-axis, in N.

#### **Dependencies**

To enable this port, for the **Ground interaction type** parameter, select External suspension.

#### WindXYZ — Wind speed

array

Wind speed,  $W_X$ ,  $W_Y$ ,  $W_Z$  along earth-fixed X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

### AirTemp — Ambient air temperature

scalar

Ambient air temperature,  $T_{air}$ , in K. Considering this option if you want to vary the temperature during run-time.

#### **Dependencies**

To enable this port, select **Air temperature**.

#### zF,R — Forward and rear axle positions

vector

Forward and rear axle positions along the vehicle-fixed z-axis,  $\bar{Z}_F$ ,  $\bar{Z}_R$ , in m.

#### **Dependencies**

To enable this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

#### zdotF, R — Forward and rear axle velocities

vector

Forward and rear axle velocities along the vehicle-fixed z-axis,  $\dot{\bar{Z}}_F$ ,  $\dot{\bar{Z}}_R$ , in m/s.

#### **Dependencies**

To enable this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

#### Output

#### Info — Bus signal

bus

Bus signal containing these block values.

| Signal   |         |            |                                                                      | Description                                                                 | Value    | Units |
|----------|---------|------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|-------|
| InertFrm | Cg      | Disp       | X                                                                    | Vehicle CG displacement along earth-fixed X-axis                            | Computed | m     |
|          |         |            | Υ                                                                    | Vehicle CG displacement along earth-fixed <i>Y</i> -axis                    | Θ        | m     |
|          |         | Z          | Vehicle CG displacement along earth-fixed Z-axis                     | Computed                                                                    | m        |       |
|          | Vel     | Xdot       | Vehicle CG velocity along earth-fixed <i>X</i> -axis                 | Computed                                                                    | m/s      |       |
|          |         |            | Ydot                                                                 | Vehicle CG velocity along earth-fixed Y-axis                                | 0        | m/s   |
|          |         |            | Zdot                                                                 | Vehicle CG velocity along earth-fixed Z-axis                                | Computed | m/s   |
|          |         | Ang        | phi                                                                  | Rotation of vehicle-fixed frame about the earth-fixed <i>X</i> -axis (roll) | Θ        | rad   |
| FrntAxl  |         | theta      | Rotation of vehicle-fixed frame about the earth-fixed Y-axis (pitch) | Computed                                                                    | rad      |       |
|          |         |            | psi                                                                  | Rotation of vehicle-fixed frame about the earth-fixed <i>Z</i> -axis (yaw)  | 0        | rad   |
|          | FrntAxl | ntAxl Disp | X                                                                    | Front axle displacement along the earth-fixed <i>X</i> -axis                | Computed | m     |
|          |         |            | Υ                                                                    | Front axle displacement along the earth-fixed <i>Y</i> -axis                | 0        | m     |
|          |         |            | Z                                                                    | Front axle displacement along the earth-fixed $Z$ -axis                     | Computed | m     |
|          |         | Vel        | Xdot                                                                 | Front axle velocity along the earth-fixed <i>X</i> -axis                    | Computed | m/s   |
|          |         |            | Ydot                                                                 | Front axle velocity along the earth-fixed <i>Y</i> -axis                    | Θ        | m/s   |
|          |         |            | Zdot                                                                 | Front axle velocity along the earth-fixed Z-axis                            | Computed | m/s   |
|          | RearAxl | Disp       | X                                                                    | Rear axle displacement along the earth-fixed <i>X</i> -axis                 | Computed | m     |
|          |         |            | Υ                                                                    | Rear axle displacement along the earth-fixed <i>Y</i> -axis                 | 0        | m     |
|          |         |            | Z                                                                    | Rear axle displacement along the earth-fixed $Z$ -axis                      | Computed | m     |
|          |         | Vel        | Xdot                                                                 | Rear axle velocity along the earth-fixed <i>X</i> -axis                     | Computed | m/s   |
|          |         |            | Ydot                                                                 | Rear axle velocity along the earth-fixed <i>Y</i> -axis                     | 0        | m/s   |

| Signal    |        |           |      | Description                                                                 | Value    | Units |
|-----------|--------|-----------|------|-----------------------------------------------------------------------------|----------|-------|
|           |        |           | Zdot | Rear axle velocity along the earth-fixed Z-axis                             | Computed | m/s   |
| BdyFrm Cg | Cg     | Disp      | x    | Vehicle CG displacement along the vehicle-fixed <i>x</i> -axis              | Computed | m     |
|           |        |           | У    | Vehicle CG displacement along the vehicle-fixed <i>y</i> -axis              | 0        | m     |
|           |        |           | Z    | Vehicle CG displacement along the vehicle-fixed $z$ -axis                   | Computed | m     |
|           |        | Vel       | xdot | Vehicle CG velocity along the vehicle-fixed x-axis                          | Computed | m/s   |
|           |        |           | ydot | Vehicle CG velocity along the vehicle-fixed <i>y</i> -axis                  | 0        | m/s   |
|           |        |           | zdot | Vehicle CG velocity along the vehicle-fixed z-axis                          | Computed | m/s   |
|           |        | Accel     | p    | Vehicle angular velocity about the vehicle-fixed <i>x</i> -axis (roll rate) | 0        | rad/s |
|           |        |           | q    | Vehicle angular velocity<br>about the vehicle-fixed y-<br>axis (pitch rate) | Computed | rad/s |
|           |        |           | r    | Vehicle angular velocity about the vehicle-fixed <i>z</i> -axis (yaw rate)  | 0        | rad/s |
|           |        |           | ax   | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis              | Computed | gn    |
|           |        |           | ay   | Vehicle CG acceleration along the vehicle-fixed <i>y</i> -axis              | 0        | gn    |
| Fo        |        |           | az   | Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis              | Computed | gn    |
|           | Forces | rces Body | Fx   | Net force on vehicle CG along the vehicle-fixed <i>x</i> -axis              | Computed | N     |
|           |        |           | Fy   | Net force on vehicle CG along the vehicle-fixed <i>y</i> -axis              | 0        | N     |
|           |        |           | Fz   | Net force on vehicle CG along the vehicle-fixed <i>z</i> -axis              | Computed | N     |

| Signal | Signal  |              |        | Description                                                         | Value    | Units |
|--------|---------|--------------|--------|---------------------------------------------------------------------|----------|-------|
|        | Ext     | Fx           |        | External force on vehicle CG along the vehicle-fixed x-axis         | Computed | N     |
|        |         | Fy           |        | External force on vehicle CG along the vehicle-fixed y-axis         | Computed | N     |
|        |         | Fz           |        | External force on vehicle CG along the vehicle-fixed z-axis         | Computed | N     |
|        | FrntAxl | Fx           |        | Longitudinal force on front axle, along the vehicle-fixed x-axis    | Computed | N     |
|        |         | Fy           |        | Lateral force on front axle, along the vehicle-fixed <i>y</i> -axis | 0        | N     |
|        |         | Fz           |        | Normal force on front axle, along the vehicle-fixed $z$ -axis       | Computed | N     |
|        | RearAxl | Fx           |        | Longitudinal force on rear axle, along the vehicle-fixed x-axis     | Computed | N     |
|        |         | Fy           |        | Lateral force on rear axle, along the vehicle-fixed y-axis          | 0        | N     |
|        |         | Fz           |        | Normal force on rear axle, along the vehicle-fixed <i>z</i> -axis   | Computed | N     |
|        | Tires   | FrntTir<br>e | F<br>x | Front tire force, along the vehicle-fixed x-axis                    | 0        | N     |
|        |         |              | F<br>y | Front tire force, along the vehicle-fixed <i>y</i> -axis            | 0        | N     |
|        |         |              | F<br>z | Front tire force, along the vehicle-fixed z-axis                    | Computed | N     |
|        |         | RearTir<br>e | F<br>x | Rear tire force, along the vehicle-fixed x-axis                     | Θ        | N     |
|        |         |              | F<br>y | Rear tire force, along the vehicle-fixed <i>y</i> -axis             | Θ        | N     |
|        |         |              | F<br>z | Rear tire force, along the vehicle-fixed z-axis                     | Computed | N     |
|        | Drag    | Fx           |        | Drag force on vehicle CG along the vehicle-fixed <i>x</i> -axis     | Computed | N     |

| Signal |         |           |    | Description                                                        | Value    | Units |
|--------|---------|-----------|----|--------------------------------------------------------------------|----------|-------|
|        |         |           | Fy | Drag force on vehicle CG along the vehicle-fixed y-axis            | Computed | N     |
|        |         |           | Fz | Drag force on vehicle CG along the vehicle-fixed $z$ -axis         | Computed | N     |
|        |         | Grvty     | Fx | Gravity force on vehicle CG along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |         |           | Fy | Gravity force on vehicle CG along the vehicle-fixed <i>y</i> -axis | 0        | N     |
|        |         |           | Fz | Gravity force on vehicle CG along the vehicle-fixed <i>z</i> -axis | Computed | N     |
|        | Moments | ents Body | Mx | Body moment on vehicle CG about the vehicle-fixed x-axis           | 0        | N·m   |
|        |         |           | Му | Body moment on vehicle CG about the vehicle-fixed y-axis           | Computed | N·m   |
|        |         |           | Mz | Body moment on vehicle CG about the vehicle-fixed z-axis           | 0        | N·m   |
|        |         | Drag      | Mx | Drag moment on vehicle CG about the vehicle-fixed x-axis           | Θ        | N·m   |
|        |         |           | Му | Drag moment on vehicle CG about the vehicle-fixed y-axis           | Computed | N·m   |
|        |         |           | Mz | Drag moment on vehicle CG about the vehicle-fixed z-axis           | 0        | N·m   |
|        |         | Ext       | Fx | External moment on vehicle CG about the vehicle-fixed x-axis       | Computed | N·m   |
|        |         |           | Fy | External moment on vehicle CG about the vehicle-fixed y-axis       | Computed | N·m   |
|        |         |           | Fz | External moment on vehicle CG about the vehicle-fixed z-axis       | Computed | N·m   |
|        | FrntAxl | Disp      | x  | Front axle displacement along the vehicle-fixed <i>x</i> -axis     | Computed | m     |

| Signal  |                |          |                                                               | Description                                                    | Value    | Units |
|---------|----------------|----------|---------------------------------------------------------------|----------------------------------------------------------------|----------|-------|
|         |                |          | У                                                             | Front axle displacement along the vehicle-fixed <i>y</i> -axis | 0        | m     |
|         |                |          | Z                                                             | Front axle displacement along the vehicle-fixed $z$ -axis      | Computed | m     |
|         |                | Vel      | xdot                                                          | Front axle velocity along the vehicle-fixed <i>x</i> -axis     | Computed | m/s   |
|         |                |          | ydot                                                          | Front axle velocity along the vehicle-fixed <i>y</i> -axis     | Θ        | m/s   |
|         |                |          | zdot                                                          | Front axle velocity along the vehicle-fixed $z$ -axis          | Computed | m/s   |
|         |                | Steer    | WhlAngFL                                                      | Front left wheel steering angle                                | Computed | rad   |
|         |                |          | WhlAngFR                                                      | Front right wheel steering angle                               | Computed | rad   |
|         | RearAxl Disp   | x        | Rear axle displacement along the vehicle-fixed <i>x</i> -axis | Computed                                                       | m        |       |
|         |                |          | У                                                             | Rear axle displacement along the vehicle-fixed <i>y</i> -axis  | 0        | m     |
|         |                |          | Z                                                             | Rear axle displacement along the vehicle-fixed $z$ -axis       | Computed | m     |
|         |                | Vel      | xdot                                                          | Rear axle velocity along the vehicle-fixed <i>x</i> -axis      | Computed | m/s   |
|         |                |          | ydot                                                          | Rear axle velocity along the vehicle-fixed <i>y</i> -axis      | 0        | m/s   |
|         |                |          | zdot                                                          | Rear axle velocity along the vehicle-fixed <i>z</i> -axis      | Computed | m/s   |
|         |                | Steer    | WhlAngRL                                                      | Rear left wheel steering angle                                 | Computed | rad   |
|         |                |          | WhlAngRR                                                      | Rear right wheel steering angle                                | Computed | rad   |
|         | Pwr            | PwrExt   |                                                               | Applied external power                                         | Computed | W     |
|         |                | Drag     |                                                               | Power loss due to drag                                         | Computed | W     |
| PwrInfo | PwrTrns<br>frd | PwrFxExt | t                                                             | Externally applied longitudinal force power                    | Computed | W     |
|         |                | PwrFzExt | t                                                             | Externally applied longitudinal force power                    | Computed | W     |
|         |                | PwrMyExt | t                                                             | Externally applied pitch moment power                          | Computed | W     |

| Signal |                   |                           | Description                                                                               | Value    | Units |
|--------|-------------------|---------------------------|-------------------------------------------------------------------------------------------|----------|-------|
|        |                   | PwrFwFx                   | Longitudinal force applied at the front axle                                              | Computed | W     |
|        |                   | PwrFwRx                   | Longitudinal force applied at the rear axle                                               | Computed | W     |
|        | PwrNotT<br>rnsfrd | PwrFsF                    | Internal power transferred<br>between suspension and<br>vehicle body at the front<br>axle | Computed | W     |
|        |                   | PwrFsR                    | Internal power transferred<br>between suspension and<br>vehicle body at the rear<br>axle  | Computed | W     |
|        |                   | PwrFxDrag                 | Longitudinal drag force power                                                             | Computed | W     |
|        | PwrFzDrag         | Vertical drag force power | Computed                                                                                  | W        |       |
|        | PwrStor<br>ed     | PwrMyDrag                 | Drag pitch moment power                                                                   | Computed | W     |
|        |                   | PwrFsb                    | Total suspension damping power                                                            | Computed | W     |
|        |                   | PwrStoredGrvty            | Rate change in gravitational potential energy                                             | Computed | W     |
|        |                   | PwrStoredxdot             | Rate of change of longitudinal kinetic energy                                             | Computed | W     |
|        |                   | PwrStoredzdot             | Rate of change of longitudinal kinetic energy                                             | Computed | W     |
|        |                   | PwrStoredq                | Rate of change of rotational pitch kinetic energy                                         | Computed | W     |
|        |                   | PwrStoredFsFzSprng        | Stored spring energy from front suspension                                                | Computed | W     |
|        |                   | PwrStoredFsRzSprng        | Stored spring energy from rear suspension                                                 | Computed | W     |

## xdot — Vehicle longitudinal velocity

scalar

Vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

## FzF — Front axle normal force

scalar

Normal force on front axle,  $Fz_F$ , along the vehicle-fixed z-axis, in N.

## FzR — Rear axle normal force

scalar

Normal force on rear axle,  $Fz_R$ , along the vehicle-fixed z-axis, in N.

### **Parameters**

#### **Options**

### External forces — FExt input port

off (default) | on

Specify to create input port FExt.

## External moments — MExt input port

off (default) | on

Specify to create input port MExt.

### Air temperature — AirTemp input port

off (default) | on

Specify to create input port AirTemp.

#### Longitudinal

## Number of wheels on front axle, NF — Front wheel count

2 (default) | scalar

Number of wheels on front axle,  $N_F$ . The value is dimensionless.

## Number of wheels on rear axle, NR — Rear wheel count

2 (default) | scalar

Number of wheels on rear axle,  $N_R$ . The value is dimensionless.

## Mass, m — Vehicle mass

1200 (default) | scalar

Vehicle mass, m, in kg.

#### Horizontal distance from CG to front axle, a — Front axle distance

1.4 (default) | scalar

Horizontal distance *a* from the vehicle CG to the front wheel axle, in m.

## Horizontal distance from CG to rear axle, b — Rear axle distance

1.8 (default) | scalar

Horizontal distance *b* from the vehicle CG to the rear wheel axle, in m.

## CG height above axles, h — Height

0.35 (default) | scalar

Height of vehicle CG above the axles, *h*, in m.

#### Drag coefficient, Cd — Drag

.3 (default) | scalar

Air drag coefficient,  $C_d$ . The value is dimensionless.

## Frontal area, Af — Area

2 (default) | scalar

Effective vehicle cross-sectional area,  $A_f$  to calculate the aerodynamic drag force on the vehicle, in m<sup>2</sup>.

## Initial position, x\_o — Position

0 (default) | scalar

Vehicle body longitudinal initial position along earth-fixed x-axis,  $x_0$ , in m.

## Initial velocity, xdot\_o — Velocity

0 (default) | scalar

Vehicle body longitudinal initial velocity along earth-fixed *x*-axis,  $\dot{x}_0$ , in m/s.

#### Vertical

#### Lift coefficient, Cl — Lift

.1 (default) | scalar

Lift coefficient,  $C_l$ . The value is dimensionless.

### Initial vertical position, z\_o — Position

-.35 (default) | scalar

Initial vertical CG position,  $z_o$ , along the vehicle-fixed z-axis, in m.

#### Initial vertical velocity, zdot\_o — Velocity

0 (default) | scalar

Initial vertical CG velocity, *zdot<sub>o</sub>*, along the vehicle-fixed *z*-axis, in m.

#### **Pitch**

### Inertia, Iyy — About body y-axis

3500 (default) | scalar

Vehicle body moment of inertia about body *z*-axis.

## Pitch drag moment coefficient, Cpm — Drag coefficient

.1 (default) | scalar

Pitch drag moment coefficient. The value is dimensionless.

#### Initial pitch angle, theta\_o — Pitch

0 (default) | scalar

Initial pitch angle about body *z*-axis, in rad.

#### Initial angular velocity, q o — Pitch velocity

0 (default) | scalar

Initial vehicle body angular velocity about body *z*-axis, in rad/s.

#### Suspension

## Front axle stiffness force data, FskF — Force

[-50, -1, 0, 2, 3, 52].\*1.5e4 (default) | vector

Front axle stiffness force data,  $Fk_F$ , in N.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade angle** or **Axle** displacement, velocity.

## Front axle displacement data, dzsF — Displacement

```
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default) | vector
```

Front axle displacement data, in m.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

## Front axle damping force data, FsbF — Damping force

[-10000 -100 -10 0 10 100 10000] (default) | vector

Front axle damping force, in N.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

#### Front axle velocity data, dzdotsF — Velocity

```
[-10 -1 -.1 0 .1 1 10] (default) | vector
```

Front axle velocity data, in m/s.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade angle** or **Axle displacement**, velocity.

#### Rear axle stiffness force data, FskR — Force

```
[-50, -1, 0, 2, 3, 52].*1e4 (default) | vector
```

Rear axle stiffness force data, in N.

### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

## Rear axle displacement data, dzsR — Displacement

```
[-5e-3, -1e-4, 0, .2, .2001, .2051] (default) | vector
```

Rear axle displacement data, in m.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

## Rear axle damping force data, FsbR — Damping force

```
[-10000 -100 -10 0 10 100 10000] (default) | vector
```

Rear axle damping force, in N.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade angle** or **Axle displacement**, velocity.

## Rear axle velocity data, dzdotsR — Velocity

```
[-10 -1 -.1 0 .1 1 10] (default) | vector
```

Rear axle velocity data, in m/s.

#### **Dependencies**

To enable this parameter, for the **Ground interaction type** parameter, select **Grade** angle or Axle displacement, velocity.

#### **Environment**

## Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental air absolute pressure,  $P_{abs}$ , in Pa.

## Air temperature, Tair — Ambient air temperature

273 (default) | scalar

Ambient air temperature,  $T_{air}$ , in K.

#### **Dependencies**

To enable this parameter, clear **Air temperature**.

## **Gravitational acceleration, g — Gravity**

9.81 (default)

Gravitational acceleration, g, in m/s<sup>2</sup>.

## References

- [1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

# **Extended Capabilities**

## **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder  $^{\scriptscriptstyle\mathsf{TM}}.$ 

## **See Also**

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load


## **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

## Introduced in R2017a

# **Vehicle Body 3DOF**

3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion **Library:** Vehicle Dynamics Blockset / Vehicle Body



# **Description**

The Vehicle Body 3DOF block implements a rigid two-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for body mass and aerodynamic drag between the axles due to acceleration and steering.

Use this block in vehicle dynamics and automated driving studies to model nonholonomic vehicle motion when vehicle pitch, roll, and vertical motion are not significant.

In the Vehicle Dynamics Blockset $^{\text{m}}$  library, there are two types of Vehicle Body 3DOF blocks that model longitudinal, lateral, and yaw motion.

| Block                                                                 | Vehicle Track<br>Setting | Implementation                                                                                                       |
|-----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Vehicle Body 3DOF Single Track  WhlAngF  wdot  ydot  psi  r  FzF  FzR | Single<br>(bicycle)      | <ul> <li>Forces act along the center line at the front and rear axles.</li> <li>No lateral load transfer.</li> </ul> |
| Vehicle Body 3DOF Dual Track    Info                                  | Dual                     | Forces act at the four vehicle corners or hard points.                                                               |

Use the **Axle forces** parameter to specify the type of force.

| Axle Forces Setting            | Implementation                                                                                                                                  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| External longitudinal velocity | • The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. |
|                                | Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness.              |
|                                | Consider this setting when you want to:                                                                                                         |
|                                | Generate virtual sensor signal data.                                                                                                            |
|                                | <ul> <li>Conduct high-level software studies that are not impacted by<br/>driveline or nonlinear tire responses.</li> </ul>                     |
| External longitudinal forces   | The block uses the external longitudinal force to accelerate or brake the vehicle.                                                              |
|                                | <ul> <li>The block calculates lateral forces using the tire slip angles and<br/>linear cornering stiffness.</li> </ul>                          |
|                                | Consider this setting when you want to:                                                                                                         |
|                                | <ul> <li>Account for changes in the longitudinal velocity on the lateral<br/>and yaw motion.</li> </ul>                                         |
|                                | <ul> <li>Specify the external longitudinal motion through a force instead<br/>of an external longitudinal velocity.</li> </ul>                  |
|                                | <ul> <li>Connect the block to tractive actuators, wheels, brakes, and<br/>hitches.</li> </ul>                                                   |
| External forces                | • The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle.                                       |
|                                | The block does not use the steering input to calculate vehicle motion.                                                                          |
|                                | Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.                            |

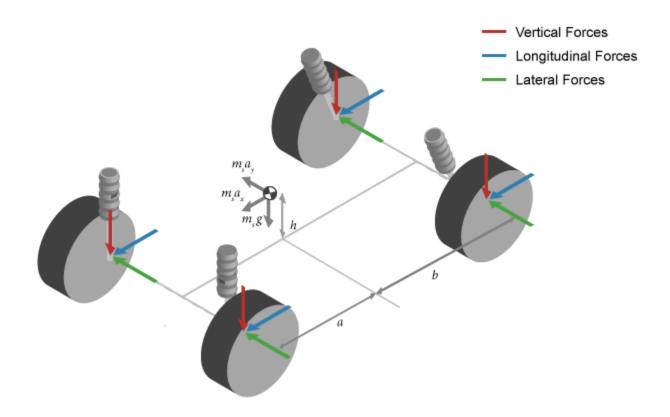
You can use these block parameters to create additional input ports. This table summarizes the settings.

| Input Signals Pane Parameter  | Input Port | Description                                                                                          |
|-------------------------------|------------|------------------------------------------------------------------------------------------------------|
| Front wheel steering          | WhlAngF    | Front wheel angle, $\delta_F$                                                                        |
| External wind                 | WindXYZ    | Wind speed, $W_X$ , $W_Y$ , $W_Z$ , in the inertial reference frame                                  |
| External forces               | FExt       | External force on vehicle center of gravity (CG), $F_x$ , $F_y$ , $F_z$ , in the vehicle-fixed frame |
| Rear wheel steering           | WhlAngR    | Rear wheel angle, $\delta_{\scriptscriptstyle R}$                                                    |
| External friction             | Mu         | Friction coefficient                                                                                 |
| External moments              | MExt       | External moment about vehicle CG, $M_x$ , $M_y$ , $M_z$ , in vehicle-fixed frame                     |
| Initial longitudinal position | X_o        | Initial vehicle CG displacement along the earth-fixed $X$ -axis, in m                                |

| Input Signals Pane Parameter  | Input Port | Description                                                                                           |
|-------------------------------|------------|-------------------------------------------------------------------------------------------------------|
| Initial lateral position      | Y_0        | Initial vehicle CG displacement along the earth-fixed Y-axis, in m                                    |
| Initial longitudinal velocity | xdot_o     | Initial vehicle CG velocity along the vehicle-fixed x-axis, in m/s                                    |
| Initial lateral velocity      | ydot_o     | Initial vehicle CG velocity along the vehicle-fixed y-axis, in m/s                                    |
| Initial yaw angle             | psi_o      | Initial rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad                |
| Initial yaw rate              | r_o        | Initial vehicle angular velocity about the vehicle-fixed $z$ -axis (yaw rate), in rad/s               |
| Air temperature               | AirTemp    | Ambient air temperature. Considering this option if you want to vary the temperature during run-time. |

## Theory

The Vehicle Body 3DOF block implements a rigid two-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and weight distribution between the axles due to acceleration and steering. To determine the vehicle motion, the block implements these equations for the single track, dual track, and drag calculations.


## **Single Track**

| Calculation | Description                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamics    | The block uses these equations to calculate the rigid body planar dynamics.                                                                              |
|             | $\ddot{y} = -\dot{x}r + \frac{F_{yf} + F_{yr} + F_{yext}}{m}$ $\dot{r} = \frac{aF_{yf} - bF_{yr} + M_{zext}}{I_{zz}}$                                    |
|             | $\dot{r} = \frac{aF_{yf} - bF_{yr} + M_{zext}}{I_{zz}}$                                                                                                  |
|             | $r = \dot{\psi}$                                                                                                                                         |
|             | If you set <b>Axle forces</b> to either External longitudinal forces or External forces, the block uses this equation for the longitudinal acceleration. |
|             | $\ddot{x} = \dot{y}r + \frac{F_{xf} + F_{xr} + F_{xext}}{m}$                                                                                             |
|             | If you set <b>Axle forces</b> to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration.               |
|             | $\ddot{x} = 0$                                                                                                                                           |

| Calculation     | Description                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External forces | External forces include both drag and external force inputs. The forces act on the vehicle CG. $F_{x, y, z \text{ ext}} = F_{d x, y, z} + F_{x, y, z \text{ input}}$ $M_{x, y, z \text{ ext}} = M_{d x, y, z} + M_{x, y, z \text{ input}}$ |
|                 | If you set <b>Axle forces</b> to External longitudinal forces, the block uses these equations.                                                                                                                                             |
|                 | $F_{xft} = F_{xfinput}$ $F_{yft} = -C_{yf}\alpha_f \mu_f \frac{F_{zf}}{F_{znom}}$                                                                                                                                                          |
|                 | $F_{xrt} = F_{xrinput}$ $F_{yrt} = -C_{yr}\alpha_r \mu_r \frac{F_{zr}}{F_{znom}}$                                                                                                                                                          |
|                 | If you set <b>Axle forces</b> to External longitudinal velocity, the block uses these equations.                                                                                                                                           |
|                 | $F_{xft} = 0$ $F_{yft} = -C_{yf}\alpha_f \mu_f \frac{F_{zf}}{F_{znom}}$                                                                                                                                                                    |
|                 | $F_{xft} = 0$ $F_{yrt} = -C_{yr}\alpha_r \mu_r \frac{F_{zr}}{F_{znom}}$                                                                                                                                                                    |
|                 | The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block uses these equations to maintain pitch and roll equilibrium.                           |
|                 | $F_{zf} = \frac{bmg - (\ddot{x} - \dot{y}r)mh + hF_{xext} + bF_{zext} - M_{yext}}{a + b}$                                                                                                                                                  |
|                 | $F_{zr} = \frac{amg + (\ddot{x} - \dot{y}r)mh - hF_{xext} + aF_{zext} + M_{yext}}{a + b}$                                                                                                                                                  |

| Calculation | Description                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------|
| Tire forces | The block uses the ratio of the local and longitudinal and lateral velocities to determine the slip angles.         |
|             | $\alpha_f = atan\left(\frac{\dot{y} + ar}{\dot{x}}\right) - \delta_f$                                               |
|             | $\alpha_r = a tan \left( \frac{\dot{y} - br}{\dot{x}} \right) - \delta_r$                                           |
|             | To determine the tire forces, the block uses the slip angles.                                                       |
|             | $F_{xf} = F_{xft}\cos(\delta_f) - F_{yft}\sin(\delta_f)$                                                            |
|             | $F_{yf} = -F_{xft}\sin(\delta_f) + F_{yft}\cos(\delta_f)$                                                           |
|             | $F_{xr} = F_{xrt}\cos(\delta_r) - F_{yrt}\sin(\delta_r)$                                                            |
|             | $F_{yr} = -F_{xrt}\sin(\delta_r) + F_{yft}\cos(\delta_r)$                                                           |
|             | If you set <b>Axle forces</b> to External forces, the block sets the tire forces equal to the external input force. |
|             | $F_{xf} = F_{xft} = F_{xfinput}$                                                                                    |
|             | $F_{yf} = F_{yft} = F_{yfinput}$                                                                                    |
|             | $F_{xr} = F_{xrt} = F_{xrinput}$                                                                                    |
|             | $F_{yr} = F_{yrt} = F_{yrinput}$                                                                                    |

## **Dual Track**



| Calculation | Description                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dynamics    | The block uses these equations to calculate the rigid body planar dynamics.                                                                             |
|             | $\ddot{x} = \dot{y}r + \frac{F_{xfl} + F_{xfr} + F_{xrl} + F_{xrr} + F_{xext}}{m}$ $F_{yfl} + F_{yfr} + F_{yrr} + F_{yext}$                             |
|             | $\ddot{y} = -\dot{x}r + \frac{F_{yfl} + F_{yfr} + F_{yrl} + F_{yrr} + F_{yext}}{m}$                                                                     |
|             | $\dot{r} = \frac{a(F_{yfl} + F_{yfr}) - b(F_{yrl} + F_{yrr}) + \frac{w_f(F_{xfl} - F_{xfr})}{2} + \frac{w_r(F_{xrl} - F_{xrr})}{2} + M_{zext}}{I_{zz}}$ |
|             | $r = \dot{\psi}$                                                                                                                                        |
|             | If you set <b>Axle forces</b> to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration.              |
|             | $\ddot{x} = 0$                                                                                                                                          |

| Calculation     | Description                                                                                                                                                                                                      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External forces | External forces include both drag and external force inputs. The forces act on the vehicle CG.                                                                                                                   |
|                 | $F_{x, y, z ext} = F_{d x, y, z} + F_{x, y, z input}$                                                                                                                                                            |
|                 | $M_{x, y, z ext} = M_{d x, y, z} + M_{x, y, z input}$                                                                                                                                                            |
|                 | If you set <b>Axle forces</b> to External longitudinal forces, the block uses these equations.                                                                                                                   |
|                 | $F_{xflt} = F_{xflinput}$                                                                                                                                                                                        |
|                 | $F_{yflt} = -C_{yfl}\alpha_{fl}\mu_{fl}\frac{F_{zfl}}{2F_{znom}}$                                                                                                                                                |
|                 | $F_{xfrt} = F_{xlrinput}$                                                                                                                                                                                        |
|                 | $F_{yfrt} = -C_{yfr}\alpha_{fr}\mu_{fr}\frac{F_{zfr}}{2F_{znom}}$                                                                                                                                                |
|                 | $F_{xrlt} = F_{xrlinput}$                                                                                                                                                                                        |
|                 | $F_{yrlt} = -C_{yrl}\alpha_{rl}\mu_{rl}\frac{F_{zrl}}{2F_{znom}}$                                                                                                                                                |
|                 | $F_{xrrt} = F_{xrrinput}$                                                                                                                                                                                        |
|                 | $F_{yrrt} = -C_{yrr}\alpha_{rr}\mu_{rr}\frac{F_{zrr}}{2F_{znom}}$                                                                                                                                                |
|                 | If you set <b>Axle forces</b> to External longitudinal velocity, the block uses these equations.                                                                                                                 |
|                 | $F_{xflt} = 0$                                                                                                                                                                                                   |
|                 | $F_{yflt} = -C_{yfl}\alpha_{fl}\mu_{fl}\frac{F_{zfl}}{2F_{znom}}$                                                                                                                                                |
|                 | $F_{xfrt} = 0$                                                                                                                                                                                                   |
|                 | $F_{yfrt} = -C_{yfr}\alpha_{fr}\mu_{fr}\frac{F_{zfr}}{2F_{znom}}$                                                                                                                                                |
|                 | $F_{xrlt} = 0$                                                                                                                                                                                                   |
|                 | $F_{yrlt} = -C_{yrl}\alpha_{rl}\mu_{rl}\frac{F_{zrl}}{2F_{znom}}$                                                                                                                                                |
|                 | $F_{xrrt} = 0$                                                                                                                                                                                                   |
|                 | $F_{yrrt} = -C_{yrr}\alpha_{rr}\mu_{rr}\frac{F_{zrr}}{2F_{znom}}$                                                                                                                                                |
|                 | The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block uses these equations to maintain pitch and roll equilibrium. |

| Calculation | Description                                                                                                                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | $F_{zf} = \frac{bmg - (\ddot{x} - \dot{y}r)mh + hF_{xext} + bF_{zext} - M_{yext}}{a + b}$                                                                                                           |
|             |                                                                                                                                                                                                     |
|             | $F_{zr} = \frac{amg + (\ddot{x} - \dot{y}r)mh - hF_{xext} + aF_{zext} + M_{yext}}{(a+b)}$                                                                                                           |
|             | $F_{zfl} = F_{zf} + (mh(\ddot{y} + \dot{x}r) - hF_{yext} - M_{xext})\frac{2}{w_f}$                                                                                                                  |
|             | $F_{zfr} = F_{zf} + (-mh(\ddot{y} + \dot{x}r) + hF_{yext} + M_{xext})\frac{2}{w_f}$                                                                                                                 |
|             | $F_{zrl} = F_{zr} + (mh(\ddot{y} + \dot{x}r) - hF_{yext} - M_{xext})\frac{2}{w_r}$                                                                                                                  |
|             | $F_{zrr} = F_{zr} + (-mh(\ddot{y} + \dot{x}r) + hF_{yext} + M_{xext})\frac{2}{w_r}$                                                                                                                 |
| Tire forces | The block uses the ratio of the local and longitudinal and lateral velocities to determine the slip angles.                                                                                         |
|             | $\alpha_{fl} = atan \left( \frac{\dot{y} + ar}{\dot{x} + r \frac{w_f}{2}} \right) - \delta_{fl}$                                                                                                    |
|             | $\alpha_{fr} = atan \left( \frac{\dot{y} + ar}{\dot{x} - r \frac{w_f}{2}} \right) - \delta_{fr}$                                                                                                    |
|             | $\alpha_{rl} = atan \left( \frac{\dot{y} - ar}{\dot{x} + r \frac{w_r}{2}} \right) - \delta_{rl}$                                                                                                    |
|             | $\alpha_{rr} = atan \left( \frac{\dot{y} - ar}{\dot{x} - r \frac{w_r}{2}} \right) - \delta_{rr}$                                                                                                    |
|             | The block uses the steering angles to transform the tire forces to the vehicle-fixed frame.                                                                                                         |
|             | $F_{xf} = F_{xft}\cos(\delta_f) - F_{vft}\sin(\delta_f)$                                                                                                                                            |
|             | $F_{Vf} = -F_{xft}\sin(\delta_f) + F_{Vft}\cos(\delta_f)$                                                                                                                                           |
|             | $F_{xr} = F_{xrt}\cos(\delta_r) - F_{vrt}\sin(\delta_r)$                                                                                                                                            |
|             | $F_{yr} = -F_{xrt}\sin(\delta_r) + F_{yft}\cos(\delta_r)$                                                                                                                                           |
|             | If you set <b>Axle forces</b> to External forces, the block uses these equations. The blocks assumes that the externally provided forces are in the vehicle-fixed frame at the axle-wheel location. |
|             | $F_{xf} = F_{xft} = F_{xfinput}$                                                                                                                                                                    |
|             | $F_{yf} = F_{yft} = F_{yfinput}$                                                                                                                                                                    |
|             | $F_{xr} = F_{xrt} = F_{xrinput}$                                                                                                                                                                    |
|             | $F_{yr} = F_{yrt} = F_{yrinput}$                                                                                                                                                                    |

Drag

| Calculation                  | Description                                                                                                                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coordinate<br>transformation | The block transforms the wind speeds from the inertial frame to the vehicle-fixed frame.                                                                              |
|                              | $w_{\chi} = W_{\chi} \cos(\psi) + W_{y} \sin(\psi)$                                                                                                                   |
|                              | $w_{y} = W_{y} \cos(\psi) - W_{x} \sin(\psi)$                                                                                                                         |
|                              | $w_z = W_z$                                                                                                                                                           |
| Drag forces                  | To determine a relative airspeed, the block subtracts the wind speed from the CG vehicle velocity. Using the relative airspeed, the block determines the drag forces. |
|                              | $\overline{w} = \sqrt{(\dot{x}_b - w_x)^2 + (\dot{x}_y - w_x)^2 + (w_z)^2}$                                                                                           |
|                              | $F_{dx} = -\frac{1}{2TR}C_dA_fP_{abs}(^{\overline{w}}$                                                                                                                |
|                              | $F_{dy} = -\frac{1}{2TR}C_s A_f P_{abs}(^{\overline{w}}$                                                                                                              |
|                              | $F_{dz} = -\frac{1}{2TR}C_l A_f P_{abs}(\overline{w})$                                                                                                                |
| Drag moments                 | Using the relative airspeed, the block determines the drag moments.                                                                                                   |
|                              | $M_{dr} = -\frac{1}{2TR}C_{rm}A_f P_{abs}(\overline{w}(a+b))$                                                                                                         |
|                              | $M_{dp} = -\frac{1}{2TR}C_{pm}A_f P_{abs}(^{\overline{w}}(a+b))$                                                                                                      |
|                              | $M_{dy} = -\frac{1}{2TR}C_{ym}A_f P_{abs}(\overline{w}(a+b))$                                                                                                         |

# **Lateral Corner Stiffness and Relaxation Dynamics**

| Description                                                           | Implementation                                                                                                                                                  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constant values.                                                      | The block uses constant stiffness values for $Cy_f$ and $Cy_r$ .                                                                                                |
| Lookup tables as a function of corner stiffness data and slip angles. | The block uses lookup tables that are functions of the corner stiffness data and slip angles. $Cy_f = f(\alpha_f, Cy_{fdata})$ $Cy_r = f(\alpha_r, Cy_{rdata})$ |

| Description                                                           | Implementation                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lookup tables as a function of corner stiffness data and slip angles. | The block uses lookup tables that are functions of the corner stiffness data and slip angles. The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel. |
| Slip angles include the relaxation length dynamic settings.           | $Cy_f = f(\alpha_{f\sigma}, Cy_{fdata})$ $Cy_r = f(\alpha_{r\sigma}, Cy_{rdata})$ $\alpha_{f\sigma} = \frac{1}{s} \left[ \frac{(\alpha_f - \alpha_{f\sigma})v_{wf}}{\alpha_f} \right]$                                                                                   |
|                                                                       | $\alpha_{r\sigma} = \frac{1}{s} \left[ \frac{(\alpha_r - \alpha_{r\sigma})\nu_{wr}}{\alpha_r} \right]$                                                                                                                                                                   |

The equations use these variables.

| $X, \dot{X}, \ddot{X}$                     | Vehicle CG displacement, velocity, and acceleration, along the vehicle-fixed $x$ -axis             |
|--------------------------------------------|----------------------------------------------------------------------------------------------------|
| y, ÿ, ÿ                                    | Vehicle CG displacement, velocity, and acceleration, along the vehicle-fixed <i>y</i> -axis        |
| Ψ                                          | Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw)                             |
| $r,\dot{\Psi}$                             | Vehicle angular velocity, about the vehicle-fixed $z$ -axis (yaw rate)                             |
| $F_{xf}$ , $F_{xr}$                        | Longitudinal forces applied to front and rear wheels, along the vehicle-fixed $x$ -axis            |
| $F_{yf}$ , $F_{yr}$                        | Lateral forces applied to front and rear wheels, along vehicle-fixed y-axis                        |
| $F_{xext}$ , $F_{yext}$ , $F_{zext}$       | External forces applied to vehicle CG, along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes         |
| $F_{dx}$ , $F_{dy}$ , $F_{dz}$             | Drag forces applied to vehicle CG, along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes             |
| $F_{xinput}$ , $F_{yinput}$ , $F_{zinput}$ | Input forces applied to vehicle CG, along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes            |
| $M_{xext}$ , $M_{yext}$ , $M_{zext}$       | External moment about vehicle CG, about the vehicle-fixed $x$ -, $y$ -, and $z$ -axes              |
| $M_{dx}$ , $M_{dy}$ , $M_{dz}$             | Drag moment about vehicle CG, about the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                  |
| $M_{xinput}$ , $M_{yinput}$ , $M_{zinput}$ | Input moment about vehicle CG, about the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                 |
| $I_{zz}$                                   | Vehicle body moment of inertia about the vehicle-fixed $z$ -axis                                   |
| $F_{xft}$ , $F_{xrt}$                      | Longitudinal tire force applied to front and rear wheels, along the vehicle-fixed x-axis           |
| $F_{y\!f\!t}$ , $F_{y\!f\!t}$              | Lateral tire force applied to front and rear wheels, along vehicle-fixed <i>y</i> -axis            |
| $F_{xfl}$ , $F_{xfr}$                      | Longitudinal force applied to front left and front right wheels, along the vehicle-fixed $x$ -axis |
| $F_{yfl}$ , $F_{yfr}$                      | Lateral force applied to front left and front right wheels, along the vehicle-fixed y-axis         |
| $F_{xrl}$ , $F_{xrr}$                      | Longitudinal force applied to rear left and rear right wheels, along the vehicle-fixed $x$ -axis   |

 $F_{\rm vrl}$ ,  $F_{\rm vrr}$ Lateral force applied to rear left and rear right wheels, along the vehiclefixed y-axis  $F_{xflt}$ ,  $F_{xfrt}$ Longitudinal tire force applied to front left and front right wheels, along the vehicle-fixed *x*-axis  $F_{vflt}$ ,  $F_{vfrt}$ Lateral force tire applied to front left and front right wheels, along the vehicle-fixed v-axis  $F_{xrlt}$ ,  $F_{xrrt}$ Longitudinal tire force applied to rear left and rear right wheels, along the vehicle-fixed x-axis  $F_{vrlt}$ ,  $F_{vrrt}$ Lateral force applied to rear left and rear right wheels, along the vehiclefixed y-axis  $F_{zf}$ ,  $F_{zr}$ Normal force applied to front and rear wheels, along vehicle-fixed *z*-axis Nominal normal force applied to axles, along the vehicle-fixed *z*-axis  $F_{znom}$ Normal force applied to front left and right wheels, along vehicle-fixed z- $F_{zfl}$ ,  $F_{zfr}$  $F_{zrl}, F_{zrr}$ Normal force applied to rear left and right wheels, along vehicle-fixed *z*axis m Vehicle body mass a, b Distance of front and rear wheels, respectively, from the normal projection point of vehicle CG onto the common axle plane h Height of vehicle CG above the axle plane Front and rear wheel slip angles  $\alpha_f$ ,  $\alpha_r$ Front left and right wheel slip angles  $\alpha_{fl}$ ,  $\alpha_{fr}$ Rear left and right wheel slip angles  $\alpha_{rl}$ ,  $\alpha_{rr}$  $\delta_f$ ,  $\delta_r$ Front and rear wheel steering angles  $\delta_{rl}$ ,  $\delta_{rr}$ Rear left and right wheel steering angles  $\delta_{\it fl}$ ,  $\delta_{\it fr}$ Front left and right wheel steering angles  $W_f$ ,  $W_r$ Front and rear track widths  $Cy_f$ ,  $Cy_r$ Front and rear wheel cornering stiffness Front and rear wheel cornering stiffness data  $Cy_{fdata}$ ,  $Cy_{rdata}$ Front and rear wheel relaxation length  $\sigma_f$ ,  $\sigma_r$ Front and rear wheel slip angles that include relaxation length  $\alpha_{f\sigma}$ ,  $\alpha_{r\sigma}$ Magnitude of front and rear wheel hardpoint velocity  $v_{wf}$ ,  $v_{wr}$ Front and rear wheel friction coefficient  $\mu_f$ ,  $\mu_r$ Front left and right wheel friction coefficient  $\mu_{fl}$ ,  $\mu_{fr}$ Rear left and right wheel friction coefficient  $\mu_{rl}, \mu_{rr}$ Air drag coefficient acting along vehicle-fixed *x*-axis  $C_d$  $C_{s}$ Air drag coefficient acting along vehicle-fixed y-axis  $C_1$ Air drag coefficient acting along vehicle-fixed *z*-axis Air drag roll moment acting about the vehicle-fixed *x*-axis  $C_{rm}$ Air drag pitch moment acting about the vehicle-fixed y-axis  $C_{pm}$ Air drag yaw moment acting about the vehicle-fixed *z*-axis  $C_{vm}$ 

 $A_f$  Frontal area

 $w_x$ ,  $w_y$ ,  $w_z$  Wind speed, along the vehicle-fixed x-, y-, and z-axes

 $W_x$ ,  $W_y$ ,  $W_z$  Wind speed, along inertial X-, Y-, and Z-axes

### **Ports**

#### Input

### WhlAngF — Front wheel steering angles

scalar | array

Front wheel steering angles,  $\delta_F$ , in rad.

| Vehicle Track Setting | Variable                                                                                                        | Signal Dimension       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| Single (bicycle)      | $\delta_F$                                                                                                      | Scalar - 1             |
| Dual                  | $\delta_F = [\delta_{fl} \ \delta_{fr}] \ \text{or} \ \begin{bmatrix} \delta_{fl} \\ \delta_{fr} \end{bmatrix}$ | Array - [1x2] or [2x1] |

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Front wheel steering**.

## WhlAngR — Rear wheel steering angles

scalar|array

Rear wheel steering angles,  $\delta_R$ , in rad.

| Vehicle Track Setting | Variable                                                                                                        | Signal Dimension       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| Single (bicycle)      | $\delta_R$                                                                                                      | Scalar - 1             |
| Dual                  | $\delta_R = [\delta_{rl} \ \delta_{rr}] \ \text{or} \ \begin{bmatrix} \delta_{rl} \\ \delta_{rr} \end{bmatrix}$ | Array - [1x2] or [2x1] |

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Rear wheel steering**.

## xdotin — Longitudinal velocity

scalar

Vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

#### **Dependencies**

To enable this port, set **Axle forces** to External longitudinal velocity.

## FwF — Total force on the front wheels

scalar | array

Force on the front wheels,  $Fw_F$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting             | Description                                         | Variable                                                                                 | Signal<br>Dimension    |
|-----------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
| Single<br>(bicycle)         | External longitudinal forces       | Longitudinal force on the front wheel               | $FwF = Fx_f$                                                                             | Scalar - 1             |
|                             | External forces                    | Longitudinal and lateral forces on the front wheel  | $FwF = [Fx_f \ Fy_f] \ \text{or} \begin{bmatrix} Fx_f \\ Fy_f \end{bmatrix}$             |                        |
| Dual                        | External<br>longitudinal<br>forces | Longitudinal force on the front wheels              | $FwF = [F_{xfl} \ F_{xfr}] \text{ or } \begin{bmatrix} F_{xfl} \\ F_{xfr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
|                             | External forces                    | Longitudinal and lateral forces on the front wheels | $FwF = \begin{bmatrix} F_{xfl} & F_{xfr} \\ F_{yfl} & F_{yfr} \end{bmatrix}$             | Array - [2x2]          |

## **Dependencies**

To enable this port, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

## FwR — Total force on the rear wheels

scalar|array

Force on the rear wheels,  $Fw_R$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting             | Description                                        | Variable                                                                                 | Signal<br>Dimension    |
|-----------------------------|------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
| Single<br>(bicycle)         | External longitudinal forces       | Longitudinal force on the rear wheel               | $FwR = Fx_r$                                                                             | Scalar - 1             |
|                             | External forces                    | Longitudinal and lateral forces on the rear wheel  | $FwR = [Fx_r \ Fy_r] \ \text{or} \begin{bmatrix} Fx_r \\ Fy_r \end{bmatrix}$             |                        |
| Dual                        | External<br>longitudinal<br>forces | Longitudinal<br>force on the rear<br>wheels        | $FwR = [F_{xrl} \ F_{xrr}] \text{ or } \begin{bmatrix} F_{xrl} \\ F_{xrr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
|                             | External<br>forces                 | Longitudinal and lateral forces on the rear wheels | $FwR = \begin{bmatrix} F_{xrl} & F_{xrr} \\ F_{yrl} & F_{yrr} \end{bmatrix}$             | Array - [2x2]          |

#### **Dependencies**

To enable this port, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

#### FExt — External force on vehicle CG

array

External forces applied to vehicle CG,  $F_{xext}$ ,  $F_{yext}$ ,  $F_{zext}$ , in vehicle-fixed frame, in N. Signal vector dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **External forces**.

#### MExt — External moment about vehicle CG

array

External moment about vehicle CG,  $M_x$ ,  $M_y$ ,  $M_z$ , in the vehicle-fixed frame, in N·m. Signal vector dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **External moments**.

#### WindXYZ — Wind speed

array

Wind speed,  $W_x$ ,  $W_y$ ,  $W_z$  along inertial X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

## **Dependencies**

To enable this port, on the **Input signals** pane, select **External wind**.

#### Mu — Tire friction coefficient

scalar

Tire friction coefficient,  $\mu$ . The value is dimensionless.

| Vehicle Track Setting | Description                            | Variable                                                                                   | Signal Dimension       |
|-----------------------|----------------------------------------|--------------------------------------------------------------------------------------------|------------------------|
|                       | Longitudinal force on the front wheel  | $Mu = \left[\mu_f \ \mu_r\right] \text{ or } \begin{bmatrix} \mu_f \\ \mu_r \end{bmatrix}$ | Array - [1x2] or [2x1] |
| Dual                  | Longitudinal force on the front wheels | $Mu = \begin{bmatrix} \mu_{fl} & \mu_{fr} \\ \mu_{rl} & \mu_{rr} \end{bmatrix}$            | Array - [2x2]          |

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **External friction**.

## AirTemp — Ambient air temperature

scalar

Ambient air temperature, in K.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Air temperature**.

#### X o — Initial longitudinal position

scalar

Initial vehicle CG displacement along the earth-fixed *X*-axis, in m.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial longitudinal position**.

#### Y\_o — Initial lateral position

scalar

Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial lateral position**.

#### xdot o — Initial longitudinal position

scalar

Initial vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

### **Dependencies**

To enable this port:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal forces
  - External forces
- 2 On the **Input signals** pane, select **Initial longitudinal velocity**

### ydot\_o — Initial lateral position

scalar

Initial vehicle CG velocity along the vehicle-fixed y-axis, in m/s.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial lateral velocity**.

#### psi\_o — Initial yaw angle

scalar

Rotation of the vehicle-fixed frame about the earth-fixed *Z*-axis (yaw), in rad.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial yaw angle**.

## r\_o — Initial yaw rate

scalar

Vehicle angular velocity about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

## **Dependencies**

To enable this port, on the Input signals pane, select Initial yaw rate.

## **Output**

## Info — Bus signal

bus

Bus signal containing these block values.

| Signal   |           |             | Description | Value | Units                                                                                   |          |     |
|----------|-----------|-------------|-------------|-------|-----------------------------------------------------------------------------------------|----------|-----|
| InertFrm | Cg        | Disp        | X           |       | Vehicle CG displacement along the earth-fixed $X$ -axis                                 | Computed | m   |
|          |           |             |             |       | Vehicle CG displacement along the earth-fixed <i>Y</i> -axis                            | Computed | m   |
|          |           |             | Z           |       | Vehicle CG displacement along the earth-fixed $Z$ -axis                                 | 0        | m   |
|          |           | Vel         | Xdot        |       | Vehicle CG velocity along the earth-fixed <i>X</i> -axis                                | Computed | m/s |
| F        |           |             | Ydot        |       | Vehicle CG velocity along the earth-fixed <i>Y</i> -axis                                | Computed | m/s |
|          |           |             | Zdot        |       | Vehicle CG velocity along the earth-fixed Z-axis                                        | 0        | m/s |
|          |           | Ang         | phi         |       | Rotation of the vehicle-<br>fixed frame about the<br>earth-fixed <i>X</i> -axis (roll)  | 0        | rad |
|          |           |             | theta       |       | Rotation of the vehicle-<br>fixed frame about the<br>earth-fixed <i>Y</i> -axis (pitch) | 0        | rad |
|          |           |             | psi         |       | Rotation of the vehicle-<br>fixed frame about the<br>earth-fixed Z-axis (yaw)           | Computed | rad |
|          | FrntAxl L | ntAxl Lft I | Disp        | X     | Front left wheel displacement along the earth-fixed X-axis                              | Computed | m   |
|          |           |             |             | Υ     | Front left wheel displacement along the earth-fixed Y-axis                              | Computed | m   |

| Signal |         |      |      |          | Description                                                         | Value    | Units |
|--------|---------|------|------|----------|---------------------------------------------------------------------|----------|-------|
|        |         |      |      | Z        | Front left wheel displacement along the earth-fixed Z-axis          | Θ        | m     |
|        |         |      | Vel  | Xdo<br>t | Front left wheel velocity along the earth-fixed $X$ -axis           | Computed | m/s   |
|        |         |      |      | Ydo<br>t | Front left wheel velocity along the earth-fixed <i>Y</i> -axis      | Computed | m/s   |
|        |         |      |      | Zdo<br>t | Front left wheel velocity along the earth-fixed $Z$ -axis           | 0        | m/s   |
|        |         | Rght | Disp | Х        | Front right wheel displacement along the earth-fixed <i>X</i> -axis | Computed | m     |
|        |         |      |      | Υ        | Front right wheel displacement along the earth-fixed <i>Y</i> -axis | Computed | m     |
| R      |         |      |      | Z        | Front right wheel displacement along the earth-fixed Z-axis         | 0        | m     |
|        |         |      | Vel  | Xdo<br>t | Front right wheel velocity along the earth-fixed $X$ -axis          | Computed | m/s   |
|        |         |      |      | Ydo<br>t | Front right wheel velocity along the earth-fixed <i>Y</i> -axis     | Computed | m/s   |
|        |         |      |      | Zdo<br>t | Front right wheel velocity along the earth-fixed $Z$ -axis          | 0        | m/s   |
|        | RearAxl | Lft  |      | Х        | Rear left wheel displacement along the earth-fixed X-axis           | Computed | m     |
|        |         |      |      | Υ        | Rear left wheel<br>displacement along the<br>earth-fixed Y-axis     | Computed | m     |
|        |         |      |      | Z        | Rear left wheel displacement along the earth-fixed Z-axis           | 0        | m     |
|        |         |      |      | Xdo<br>t | Rear left wheel velocity along the earth-fixed <i>X</i> -axis       | Computed | m/s   |
|        |         |      |      | Ydo<br>t | Rear left wheel velocity along the earth-fixed <i>Y</i> -axis       | Computed | m/s   |

| Signal |      |      |          |                                                                      | Description                                                                         | Value    | Units |
|--------|------|------|----------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|-------|
|        |      |      |          | Zdo                                                                  | Rear left wheel velocity along the earth-fixed $Z$ -axis                            | Θ        | m/s   |
|        |      | Rght | Disp     | Х                                                                    | Rear right wheel displacement along the earth-fixed X-axis                          | Computed | m     |
|        |      |      |          | Y                                                                    | Rear right wheel<br>displacement along the<br>earth-fixed Y-axis                    | Computed | m     |
|        |      |      |          | Z                                                                    | Rear right wheel displacement along the earth-fixed Z-axis                          | Θ        | m     |
|        |      |      | Vel      | Xdo<br>t                                                             | Rear right wheel velocity along the earth-fixed $X$ -axis                           | Computed | m/s   |
|        |      |      | Ydo<br>t | Rear right wheel velocity along the earth-fixed <i>Y</i> -axis       | Computed                                                                            | m/s      |       |
|        |      |      | Zdo<br>t | Rear right wheel velocity along the earth-fixed $Z$ -axis            | 0                                                                                   | m/s      |       |
|        | Geom | Disp | Х        | 1                                                                    | Vehicle chassis offset from axle plane along the earth-fixed <i>X</i> -axis         | Computed | m     |
|        |      |      | Υ        |                                                                      | Vehicle chassis offset from<br>center plane along the<br>earth-fixed <i>Y</i> -axis | Computed | m     |
|        |      |      | Z        |                                                                      | Vehicle chassis offset from axle plane along the earth-fixed Z-axis                 | Computed | m     |
|        |      | Vel  | Xdot     |                                                                      | Vehicle chassis offset velocity along the earth-fixed <i>X</i> -axis                | Computed | m/s   |
|        |      | Ydot |          | Vehicle chassis offset velocity along the earth-fixed <i>Y</i> -axis | Computed                                                                            | m/s      |       |
|        |      |      | Zdot     |                                                                      | Vehicle chassis offset velocity along the earth-fixed Z-axis                        | Computed | m/s   |
| BdyFrm | Cg   | Vel  | xdot     |                                                                      | Vehicle CG velocity along the vehicle-fixed x-axis                                  | Computed | m/s   |
|        | ydot |      | ydot     |                                                                      | Vehicle CG velocity along the vehicle-fixed <i>y</i> -axis                          | Computed | m/s   |

| Signal |        |        |                                                                     | Description                                                                         | Value    | Units |
|--------|--------|--------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|-------|
|        |        |        | zdot                                                                | Vehicle CG velocity along the vehicle-fixed z-axis                                  | 0        | m/s   |
|        |        | Ang    | Beta                                                                | Body slip angle, $\beta$ $\beta = \frac{V_y}{V_x}$                                  | Computed | rad   |
|        |        | AngVel | р                                                                   | Vehicle angular velocity about the vehicle-fixed <i>x</i> -axis (roll rate)         | 0        | rad/s |
|        |        |        | q                                                                   | Vehicle angular velocity<br>about the vehicle-fixed <i>y</i> -<br>axis (pitch rate) | 0        | rad/s |
|        |        |        | r                                                                   | Vehicle angular velocity about the vehicle-fixed <i>z</i> -axis (yaw rate)          | Computed | rad/s |
|        |        | Acc    | ax                                                                  | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis                      | Computed | gn    |
|        |        |        | ay                                                                  | Vehicle CG acceleration along the vehicle-fixed <i>y</i> -axis                      | Computed | gn    |
|        |        |        | az                                                                  | Vehicle CG acceleration along the vehicle-fixed $z$ -axis                           | 0        | gn    |
|        |        |        | xddot                                                               | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis                      | Computed | m/s^2 |
|        |        |        | yddot                                                               | Vehicle CG acceleration along the vehicle-fixed <i>y</i> -axis                      | Computed | m/s^2 |
|        |        |        | zddot                                                               | Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis                      | Θ        | m/s^2 |
|        |        | AngAcc | pdot                                                                | Vehicle angular acceleration about the vehicle-fixed <i>x</i> -axis                 | 0        | rad/s |
|        |        | qdot   | Vehicle angular acceleration about the vehicle-fixed <i>y</i> -axis | Θ                                                                                   | rad/s    |       |
|        |        |        | rdot                                                                | Vehicle angular acceleration about the vehicle-fixed z-axis                         | Computed | rad/s |
|        | Forces | Body   | Fx                                                                  | Net force on vehicle CG along the vehicle-fixed <i>x</i> -axis                      | Computed | N     |

| Signal |         |      |    | Description                                                                     | Value    | Units |
|--------|---------|------|----|---------------------------------------------------------------------------------|----------|-------|
|        |         | Fy   |    | Net force on vehicle CG along the vehicle-fixed <i>y</i> -axis                  | Computed | N     |
|        |         | Fz   |    | Net force on vehicle CG along the vehicle-fixed <i>z</i> -axis                  | 0        | N     |
|        | Ext     | Fx   |    | External force on vehicle CG along the vehicle-fixed <i>x</i> -axis             | Computed | N     |
|        |         | Fy   |    | External force on vehicle CG along the vehicle-fixed y-axis                     | Computed | N     |
|        |         | Fz   |    | External force on vehicle CG along the vehicle-fixed z-axis                     | 0        | N     |
|        | FrntAxl | Lft  | Fx | Longitudinal force on left front wheel, along the vehicle-fixed x-axis          | Computed | N     |
|        |         |      | Fy | Lateral force on left front wheel along the vehicle-fixed <i>y</i> -axis        | Computed | N     |
|        |         |      | Fz | Normal force on left front wheel, along the vehicle-fixed <i>z</i> -axis        | Computed | N     |
|        |         | Rght | Fx | Longitudinal force on right front wheel, along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |         |      | Fy | Lateral force on right front wheel along the vehicle-fixed y-axis               | Computed | N     |
|        |         |      | Fz | Normal force on right front wheel, along the vehicle-fixed $z$ -axis            | Computed | N     |
|        | RearAxl | Lft  | Fx | Longitudinal force on left<br>rear wheel, along the<br>vehicle-fixed x-axis     | Computed | N     |
|        |         | F    | Fy | Lateral force on left rear wheel along the vehicle-fixed y-axis                 | Computed | N     |
|        |         |      | Fz | Normal force on left rear wheel, along the vehicle-fixed z-axis                 | Computed | N     |
|        |         | Rght | Fx | Longitudinal force on right rear wheel, along the vehicle-fixed x-axis          | Computed | N     |

| Signal |       |               |        |                                                               | Description                                                              | Value                                                         | Units    |   |   |        |                                                                |          |   |
|--------|-------|---------------|--------|---------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|----------|---|---|--------|----------------------------------------------------------------|----------|---|
|        |       |               | Fy     | /                                                             | Lateral force on right rear wheel along the vehicle-fixed <i>y</i> -axis | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       |               | Fz     | 2                                                             | Normal force on right rear wheel, along the vehicle-fixed z-axis         | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        | Tires | FrntTir<br>es | L<br>f | F<br>x                                                        | Front left tire force, along the vehicle-fixed x-axis                    | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       |               | t      |                                                               | Front left tire force, along the vehicle-fixed <i>y</i> -axis            | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       |               |        | F<br>z                                                        | Front left tire force, along the vehicle-fixed <i>z</i> -axis            | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       |               |        |                                                               | Front right tire force, along the vehicle-fixed <i>x</i> -axis           | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       | t             |        |                                                               | 1                                                                        | t                                                             |          |   | t |        | Front right tire force, along the vehicle-fixed <i>y</i> -axis | Computed | N |
|        |       |               |        |                                                               |                                                                          |                                                               |          |   |   | F<br>z | Front right tire force, along the vehicle-fixed $z$ -axis      | Computed | N |
|        |       |               | es     | L<br>f                                                        |                                                                          | Rear left tire force, along the vehicle-fixed x-axis          | Computed | N |   |        |                                                                |          |   |
|        |       |               |        | t                                                             |                                                                          | Rear left tire force, along the vehicle-fixed <i>y</i> -axis  | Computed | N |   |        |                                                                |          |   |
|        |       |               |        | F<br>z                                                        | Rear left tire force, along the vehicle-fixed <i>z</i> -axis             | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       |               |        | R<br>g<br>h                                                   |                                                                          | Rear right tire force, along the vehicle-fixed <i>x</i> -axis | Computed | N |   |        |                                                                |          |   |
|        |       |               |        |                                                               | Rear right tire force,<br>along the vehicle-fixed <i>y</i> -<br>axis     | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       |               |        | Rear right tire force, along the vehicle-fixed <i>z</i> -axis | Computed                                                                 |                                                               |          |   |   |        |                                                                |          |   |
|        | Drag  | Fx            |        |                                                               | Drag force on vehicle CG along the vehicle-fixed <i>x</i> -axis          | Computed                                                      | N        |   |   |        |                                                                |          |   |
|        |       | Fy            |        |                                                               | Drag force on vehicle CG along the vehicle-fixed yaxis                   | Computed                                                      | N        |   |   |        |                                                                |          |   |

| Signal |         |       |      |                                                                      | Description                                                          | Value    | Units |
|--------|---------|-------|------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------|-------|
|        |         |       | Fz   |                                                                      | Drag force on vehicle CG along the vehicle-fixed <i>z</i> -axis      | Computed | N     |
|        |         | Grvty | Fx   |                                                                      | Gravity force on vehicle CG along the vehicle-fixed x-axis           | Computed | N     |
|        |         |       | Fy   |                                                                      | Gravity force on vehicle CG along the vehicle-fixed <i>y</i> -axis   | Computed | N     |
|        |         |       | Fz   |                                                                      | Gravity force on vehicle CG along the vehicle-fixed <i>z</i> -axis   | Computed | N     |
|        | Moments | Body  | Mx   |                                                                      | Body moment on vehicle CG about the vehicle-fixed <i>x</i> -axis     | 0        | N·m   |
|        | Drag    |       | Му   |                                                                      | Body moment on vehicle CG about the vehicle-fixed y-axis             | Computed | N·m   |
|        |         |       | Mz   |                                                                      | Body moment on vehicle CG about the vehicle-fixed <i>z</i> -axis     | 0        | N·m   |
|        |         | Mx    |      | Drag moment on vehicle CG about the vehicle-fixed <i>x</i> -axis     | 0                                                                    | N·m      |       |
|        |         |       | Му   |                                                                      | Drag moment on vehicle CG about the vehicle-fixed y-axis             | Computed | N·m   |
|        |         |       | Mz   |                                                                      | Drag moment on vehicle CG about the vehicle-fixed z-axis             | 0        | N·m   |
|        | FrntAxl | Lft   | Disp | х                                                                    | Front left wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed | m     |
|        |         |       | у    | Front left wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed                                                             | m        |       |
|        |         | Vel   |      | Z                                                                    | Front left wheel displacement along the vehicle-fixed $z$ -axis      | Computed | m     |
|        |         |       | Vel  | xdo<br>t                                                             | Front left wheel velocity along the vehicle-fixed <i>x</i> -axis     | Computed | m/s   |
|        |         |       |      | ydo<br>t                                                             | Front left wheel velocity along the vehicle-fixed <i>y</i> -axis     | Computed | m/s   |

| Signal |         |               |          |                                                                   | Description                                                           | Value    | Units |
|--------|---------|---------------|----------|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------|-------|
|        |         |               |          | zdo<br>t                                                          | Front left wheel velocity along the vehicle-fixed <i>z</i> -axis      | 0        | m/s   |
|        |         | Rght          | Disp     | х                                                                 | Front right wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed | m     |
|        |         |               |          | у                                                                 | Front right wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed | m     |
|        |         |               |          | Z                                                                 | Front right wheel displacement along the vehicle-fixed $z$ -axis      | Computed | m     |
|        |         |               | Vel      | xdo<br>t                                                          | Front right wheel velocity along the vehicle-fixed <i>x</i> -axis     | Computed | m/s   |
|        |         | Steer WhlAngF |          | ydo<br>t                                                          | Front right wheel velocity along the vehicle-fixed <i>y</i> -axis     | Computed | m/s   |
|        |         |               | zdo<br>t | Front right wheel velocity along the vehicle-fixed <i>z</i> -axis | 0                                                                     | m/s      |       |
|        |         |               | WhlAngFL | -                                                                 | Front left wheel steering angle                                       | Computed | rad   |
|        |         |               | WhlAngFF | }                                                                 | Front right wheel steering angle                                      | Computed | rad   |
|        | RearAxl | Lft           | Disp     | х                                                                 | Rear left wheel displacement along the vehicle-fixed <i>x</i> -axis   | Computed | m     |
|        |         |               |          | у                                                                 | Rear left wheel displacement along the vehicle-fixed y-axis           | Computed | m     |
|        |         | V             |          | Z                                                                 | Rear left wheel displacement along the vehicle-fixed $z$ -axis        | Computed | m     |
|        |         |               | Vel      | xdo<br>t                                                          | Rear left wheel velocity along the vehicle-fixed <i>x</i> -axis       | Computed | m/s   |
|        |         |               |          | ydo<br>t                                                          | Rear left wheel velocity along the vehicle-fixed <i>y</i> -axis       | Computed | m/s   |
|        |         |               |          | zdo<br>t                                                          | Rear left wheel velocity along the vehicle-fixed <i>z</i> -axis       | 0        | m/s   |

| Signal |      |        |                            |                                                                | Description                                                                     | Value    | Units |
|--------|------|--------|----------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|----------|-------|
|        |      | Rght   | ht Disp x                  | х                                                              | Rear right wheel displacement along the vehicle-fixed <i>x</i> -axis            | Computed | m     |
|        |      |        |                            | у                                                              | Rear right wheel displacement along the vehicle-fixed <i>y</i> -axis            | Computed | m     |
|        |      |        |                            | Z                                                              | Rear right wheel displacement along the vehicle-fixed $z$ -axis                 | Computed | m     |
|        |      |        | Vel                        | xdo<br>t                                                       | Rear right wheel velocity along the vehicle-fixed <i>x</i> -axis                | Computed | m/s   |
|        |      |        |                            | ydo<br>t                                                       | Rear right wheel velocity along the vehicle-fixed <i>y</i> -axis                | Computed | m/s   |
|        |      |        |                            | zdo<br>t                                                       | Rear right wheel velocity along the vehicle-fixed <i>z</i> -axis                | 0        | m/s   |
|        |      | Steer  | Steer WhlAngRL<br>WhlAngRR | -                                                              | Rear left wheel steering angle                                                  | Computed | rad   |
|        |      |        |                            | }                                                              | Rear right wheel steering angle                                                 | Computed | rad   |
|        | Pwr  | PwrExt |                            |                                                                | Applied external power                                                          | Computed | W     |
|        |      | Drag   |                            |                                                                | Power loss due to drag                                                          | Computed | W     |
|        | Geom | Disp   |                            | x                                                              | Vehicle chassis offset from axle plane along the vehicle-fixed $x$ -axis        | Input    | m     |
|        |      |        |                            | у                                                              | Vehicle chassis offset from center plane along the vehicle-fixed <i>y</i> -axis | Input    | m     |
|        | Vel  |        |                            | Z                                                              | Vehicle chassis offset from axle plane along the earth-fixed z-axis             | Input    | m     |
|        |      |        | xdo<br>t                   | Vehicle chassis offset velocity along the vehicle-fixed x-axis | Computed                                                                        | m/s      |       |
|        |      |        |                            | ydo<br>t                                                       | Vehicle chassis offset velocity along the vehicle-fixed <i>y</i> -axis          | Computed | m/s   |
|        |      |        |                            | zdo<br>t                                                       | Vehicle chassis offset velocity along the vehicle-fixed <i>z</i> -axis          | Θ        | m/s   |

| Signal |  |      | Description | Value                     | Units   |       |
|--------|--|------|-------------|---------------------------|---------|-------|
|        |  | Beta | Bet         | Body slip angle, $\beta$  | Compute | d rad |
|        |  |      | a           | $\beta = \frac{V_y}{V_x}$ |         |       |

#### xdot — Vehicle longitudinal velocity

scalar

Vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

#### ydot — Vehicle lateral velocity

scalar

Vehicle CG velocity along the vehicle-fixed *y*-axis, in m/s.

#### psi — Yaw

scalar

Rotation of the vehicle-fixed frame about the earth-fixed *Z*-axis (yaw), in rad.

#### r - Yaw rate

scalar

Vehicle angular velocity, r, about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

#### FzF — Normal force on front wheels

scalar | array

Normal force on front wheels,  $Fz_F$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                      | Variable                    | Signal Dimension |
|--------------------------|----------------------------------|-----------------------------|------------------|
| Single<br>(bicycle)      | Normal force on front axle       | $FzF = Fz_f$                | Scalar - 1       |
| Dual                     | Normal force on the front wheels | $FzF = [Fz_{fl} \ Fz_{fr}]$ | Array - [1x2]    |

#### FzR — Normal force on rear wheels

scalar | array

Normal force on rear wheels,  $Fz_R$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                     | Variable                    | Signal Dimension |
|--------------------------|---------------------------------|-----------------------------|------------------|
| Single (bicycle)         | Normal force on rear wheel      | $FzR = Fz_r$                | Scalar - 1       |
| Dual                     | Normal force on the rear wheels | $FzR = [Fz_{rl} \ Fz_{rr}]$ | Array - [1x2]    |

### **Parameters**

### **Options**

## **Vehicle track — Number of tracks**

Single (bicycle) | Dual

In the Vehicle Dynamics Blockset library, there are two types of Vehicle Body 3DOF blocks that model longitudinal, lateral, and yaw motion.

| Block                                                                                       | Vehicle Track<br>Setting | Implementation                                                                                                       |
|---------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Vehicle Body 3DOF Single Track  WhlAngF  wdot  psi r FzF FzR                                | Single<br>(bicycle)      | <ul> <li>Forces act along the center line at the front and rear axles.</li> <li>No lateral load transfer.</li> </ul> |
| Vehicle Body 3DOF Dual Track    Info   xdot   ydot   ydot   psi   r   FzF   FzR   FzR   FzR | Dual                     | Forces act at the four vehicle corners or hard points.                                                               |

#### Axle forces — Type of axle force

External longitudinal velocity | External longitudinal forces | External forces

Use the **Axle forces** parameter to specify the type of force.

| Axle Forces Setting            | Implementation                                                                                                                                |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| External longitudinal velocity | The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. |
|                                | Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness.            |
|                                | Consider this setting when you want to:                                                                                                       |
|                                | Generate virtual sensor signal data.                                                                                                          |
|                                | <ul> <li>Conduct high-level software studies that are not impacted by<br/>driveline or nonlinear tire responses.</li> </ul>                   |

| Axle Forces Setting          | Implementation                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| External longitudinal forces | The block uses the external longitudinal force to accelerate or brake the vehicle.                                                           |
|                              | <ul> <li>The block calculates lateral forces using the tire slip angles and<br/>linear cornering stiffness.</li> </ul>                       |
|                              | Consider this setting when you want to:                                                                                                      |
|                              | <ul> <li>Account for changes in the longitudinal velocity on the lateral<br/>and yaw motion.</li> </ul>                                      |
|                              | <ul> <li>Specify the external longitudinal motion through a force instead<br/>of an external longitudinal velocity.</li> </ul>               |
|                              | <ul> <li>Connect the block to tractive actuators, wheels, brakes, and<br/>hitches.</li> </ul>                                                |
| External forces              | • The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle.                                    |
|                              | <ul> <li>The block does not use the steering input to calculate vehicle<br/>motion.</li> </ul>                                               |
|                              | <ul> <li>Consider this setting when you need tire models with more<br/>accurate nonlinear combined lateral and longitudinal slip.</li> </ul> |

#### **Input Signals**

## Front wheel steering — WhlAngF input port

on (default) | off

Specify to create input port WhlAngF.

## External wind — WindXYZ input port

off (default) | on

Specify to create input port WindXYZ.

### External forces — FExt input port

off (default) | on

Specify to create input port FExt.

## External moments — MExt input port

off (default) | on

Specify to create input port MExt.

## Rear wheel steering — WhlAngR input port

off (default) | on

Specify to create input port WhlAngR.

#### External friction — Mu input port

off (default) | on

Specify to create input port Mu.

#### Initial longitudinal position — X\_o input port

off (default) | on

Specify to create input port X o.

#### Initial lateral position — Y\_o input port

off (default) | on

Specify to create input port Y o.

#### Initial longitudinal velocity — xdot\_o input port

off (default) | on

Specify to create input port xdot o.

#### Initial lateral velocity — ydot\_o input port

off (default) | on

Specify to create input port ydot\_o.

#### Initial yaw angle — psi\_o input port

off (default) | on

Specify to create input port psi\_o.

## Initial yaw rate — r\_o input port

off (default) | on

Specify to create input port  $r_o$ .

#### Air temperature — AirTemp input port

off (default) | on

Specify to create input port AirTemp.

#### Longitudinal

#### Number of wheels on front axle, NF — Front wheel count

2 (default) | scalar

Number of wheels on front axle,  $N_F$ . The value is dimensionless.

#### Number of wheels on rear axle, NR — Rear wheel count

2 (default) | scalar

Number of wheels on rear axle,  $N_R$ . The value is dimensionless.

#### **Vehicle mass, m — Vehicle mass**

2000 (default) | scalar

Vehicle mass, m, in kg.

## Longitudinal distance from center of mass to front axle, a — Front axle distance

1.4 (default) | scalar

Horizontal distance *a* from the vehicle CG to the front wheel axle, in m.

# Longitudinal distance from center of mass to rear axle, b — Rear axle distance 1.6 $(default) \mid scalar$

Horizontal distance *b* from the vehicle CG to the rear wheel axle, in m.

## Vertical distance from center of mass to axle plane, h — Height 0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.

## Initial inertial frame longitudinal position, $X_o - Position \theta$ (default) | scalar

Initial vehicle CG displacement along earth-fixed *X*-axis, in m.

## Initial longitudinal velocity, xdot\_o — Velocity 0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed *x*-axis, in m/s.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

#### Lateral

## Front tire corner stiffness, Cy\_f — Stiffness 12e3 (default) | scalar

Front tire corner stiffness,  $Cy_t$ , in N/rad.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

## Rear tire corner stiffness, Cy\_r — Stiffness

11e3 (default) | scalar

Rear tire corner stiffness,  $Cy_r$ , in N/rad.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear **Mapped corner stiffness**.

## Initial inertial frame lateral displacement, Y\_o — Position 0 (default) | scalar

Initial vehicle CG displacement along earth-fixed Y-axis, in m.

## Initial lateral velocity, ydot\_o — Velocity 0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed y-axis, in m/s.

## Mapped corner stiffness — Selection off (default) | on

Enables mapped corner stiffness calculation.

#### **Dependencies**

To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

# Include relaxation length dynamics — Enable relaxation length dynamics on (default) | off

Enables relaxation length dynamics.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

# Lateral distance from geometric centerline to center of mass, d — Distance $\theta$ (default) | scalar

Lateral distance from geometric centerline to center of mass, d, in m, along the vehicle-fixed y. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.

#### Track width - Width

```
[1.4,1.4] (default) | 1-by-2 vector
```

Track width, w, in m.

#### **Dependencies**

To enable this parameter, set **Vehicle track** to Dual.

## Front tire(s) relaxation length, sigma\_f — Relaxation length .1 (default) | scalar

Front tire relaxation length,  $\sigma_f$ , in m.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- **2** Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

## Rear tire(s) relaxation length, $sigma_r - Relaxation length$

```
.1 (default) | scalar
```

Rear tire relaxation length,  $\sigma_r$ , in m.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- **2** Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

## Front axle slip angle breakpoints, alpha\_f\_brk — Breakpoints

```
[-.1 .1] (default) | vector
```

Front axle slip angle breakpoints,  $\alpha_{fbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

### Front axle corner data, Cy\_f\_data — Breakpoints

[-9e3 9e3] (default) | vector

Front axle corner data,  $Cy_{fdata}$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

#### Rear axle slip angle breakpoints, alpha\_r\_brk — Breakpoints

[-.1 .1] (default) | vector

Rear axle slip angle breakpoints,  $\alpha_{rbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

#### Rear axle corner data, Cy\_r\_data — Data

[-9e3 9e3] (default) | vector

Rear axle corner data,  $Cy_{rdata}$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

#### Yaw

#### Yaw polar inertia, Izz — Inertia

4000 (default) | scalar

Yaw polar inertia, in kg\*m^2.

#### Initial yaw angle, psi\_o — Psi rotation

0 (default) | scalar

Rotation of the vehicle-fixed frame about earth-fixed *Z*-axis (yaw), in rad.

#### Initial yaw rate, r\_o — Yaw rate

0 (default) | scalar

Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate), in rad/s.

#### Aerodynamic

#### Longitudinal drag area, Af — Effective vehicle cross-sectional area

2 (default) | scalar

Effective vehicle cross-sectional area,  $A_f$ , to calculate the aerodynamic drag force on the vehicle, in  $m^2$ .

#### Longitudinal drag coefficient, Cd — Air drag coefficient

.3 (default) | scalar

Air drag coefficient,  $C_d$ . The value is dimensionless.

#### Longitudinal lift coefficient, Cl — Air lift coefficient

.1 (default) | scalar

Air lift coefficient,  $C_l$ . The value is dimensionless.

#### Longitudinal drag pitch moment, Cpm — Pitch drag

.1 (default) | scalar

Longitudinal drag pitch moment coefficient,  $C_{pm}$ . The value is dimensionless.

#### Relative wind angle vector, beta\_w — Wind angle

[0:0.01:0.3] (default) | vector

Relative wind angle vector,  $\beta_w$ , in rad.

#### Side force coefficient vector, Cs - Side force coefficient

[0:0.03:0.9] (default) | vector

Side force coefficient vector coefficient,  $C_s$ . The value is dimensionless.

#### Yaw moment coefficient vector, Cym — Yaw moment drag

[0:0.01:0.3] (default) | vector

Yaw moment coefficient vector coefficient,  $C_{vm}$ . The value is dimensionless.

#### **Environment**

#### Absolute air pressure, Pabs — Pressure

101325 (default) | scalar | scalar

Environmental absolute pressure,  $P_{abs}$ , in Pa.

#### Air temperature, Tair — Temperature

273 (default) | scalar

Environmental absolute temperature, *T*, in K.

#### **Dependencies**

To enable this parameter, clear **Air temperature**.

#### **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, g, in m/s $^2$ .

#### Nominal friction scaling factor, mu — Friction scale factor

1 (default) | scalar

Nominal friction scale factor,  $\mu$ . The value is dimensionless.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear External Friction.

#### Simulation

## Longitudinal velocity tolerance, xdot\_tol — Tolerance

.01 (default) | scalar

Longitudinal velocity tolerance, in m/s.

#### Nominal normal force, Fznom — Normal force

5000 (default) | scalar

Nominal normal force, in N.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

# **Geometric longitudinal offset from axle plane, longOff — Longitudinal offset** 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

# **Geometric lateral offset from center plane, latOff — Lateral offset** 0 (default) | scalar

Vehicle chassis offset from center plane along body-fixed *y*-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

# Geometric vertical offset from axle plane, vert0ff — Vertical offset $\theta$ (default) | scalar

Vehicle chassis offset from axle plane along body-fixed z-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

## Wrap Euler angles, wrapAng — Selection

off (default) | on

Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

#### References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

## **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

#### See Also

Vector Concatenate, Matrix Concatenate | Vehicle Body 6DOF | Vehicle Body 3DOF Longitudinal

#### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2018a

## **Vehicle Body 6DOF**

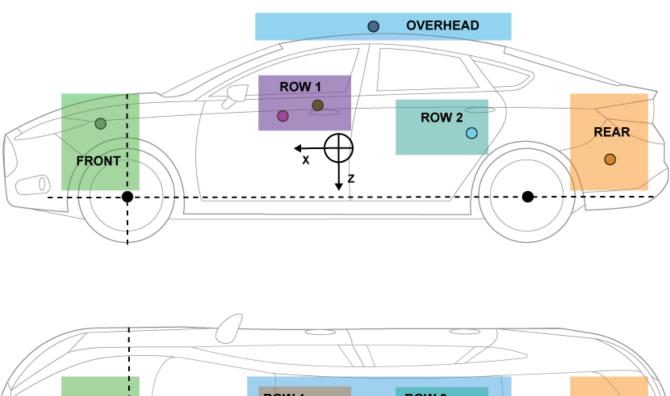
6DOF rigid vehicle body to calculate translational and rotational motion **Library:** Vehicle Dynamics Blockset / Vehicle Body

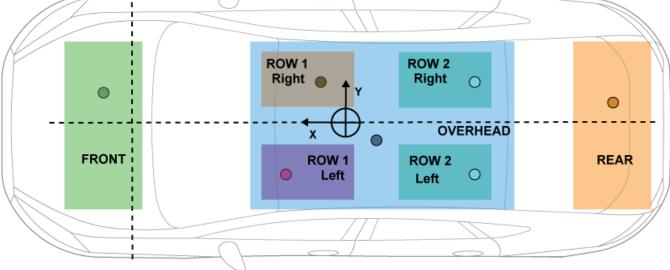


## **Description**

The Vehicle Body 6DOF block implements a six degrees-of-freedom (DOF) rigid two-axle vehicle body model to calculate longitudinal, lateral, vertical, pitch, roll, and yaw motion. The block accounts for body mass, inertia, aerodynamic drag, road incline, and weight distribution between the axles due to suspension and external forces and moments. Use the **Inertial Loads** parameters to analyze the vehicle dynamics under different loading conditions.

You can connect the block to virtual sensors, suspension system, or external systems like body control actuators. Use the Vehicle Body 6DOF block in ride and handling studies to model the effects of drag forces, passenger loading, and suspension hardpoint locations.


#### **Inertial Loads**


To analyze the vehicle dynamics under different loading conditions, use the **Inertial Loads** parameters. Specifically, you can specify these loads:

- Front powertrain
- Front and rear row passengers
- Overhead cargo
- Rear cargo

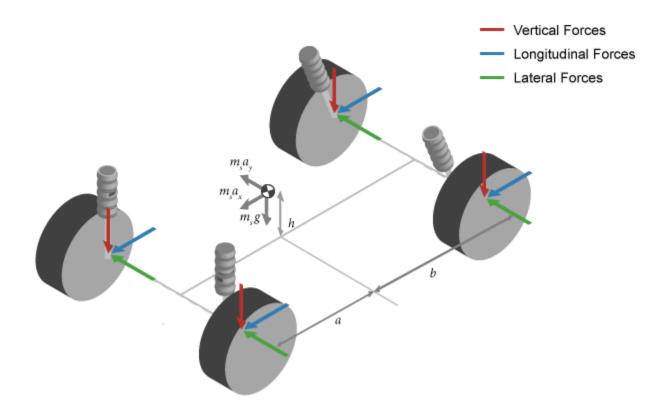
For each of the loads, you can specify the mass, location, and inertia.

The dots in this illustration indicate example load locations. The table provides the corresponding location parameter sign settings.





This table summarizes the parameter settings that specify the load locations indicated by the dots. For the location, the block uses this distance vector:


- Front suspension hardpoint to load, along the vehicle-fixed x-axis
- Vehicle centerline to load, along the vehicle-fixed y-axis
- Front suspension hardpoint to load, along the vehicle-fixed *z*-axis

| Load         | Parameter                            | Example Location                                                              |       |  |  |
|--------------|--------------------------------------|-------------------------------------------------------------------------------|-------|--|--|
| Front        | Distance vector from front           | • $z1R(1,1)<0$ — Forward of the front axle                                    |       |  |  |
|              | axle, z1R                            | • $z1R(1,2)>0$ — Right of the vehicle centerly                                | ine   |  |  |
|              |                                      | <ul> <li>z1R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |
| Overhead     | Distance vector from front           | • z2R(1,1)>0 — Rear of the front axle                                         |       |  |  |
|              | axle, z2R                            | • $z2R(1,2)<0$ — Left of the vehicle centerline                               | ne    |  |  |
|              |                                      | <ul> <li>z2R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |
| Row 1, left  | Distance vector from front           | • z3R(1,1)>0 — Rear of the front axle                                         |       |  |  |
| side         | axle, z3R                            | • $z3R(1,2)<0$ — Left of the vehicle centerline                               | ne    |  |  |
|              |                                      | <ul> <li>z3R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |
| Row 1, right | Distance vector from front axle, z4R | • $z4R(1,1)>0$ — Rear of the front axle                                       |       |  |  |
| side         |                                      | • z4R(1,2)>0 — Right of the vehicle centerl                                   | ine   |  |  |
|              |                                      | <ul> <li>z4R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |
| Row 2, left  | Distance vector from front           | • z5R(1,1)>0 — Rear of the front axle                                         |       |  |  |
| side         | axle, z5R                            | • $z5R(1,2)<0$ — Left of the vehicle centerline                               | ne    |  |  |
|              |                                      | <ul> <li>z5R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |
| Row 2, right | Distance vector from front           | • z6R(1,1)>0 — Rear of the front axle                                         |       |  |  |
| side         | axle, z6R                            | • z6R(1,2)>0 — Right of the vehicle centerl                                   | ine   |  |  |
|              |                                      | <ul> <li>z6R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |
| Rear         | Distance vector from front           | • $z7R(1,1)>0$ — Rear of the front axle                                       |       |  |  |
|              | axle, z7R                            | • $z7R(1,2)>0$ — Right of the vehicle centerly                                | ine   |  |  |
|              |                                      | <ul> <li>z7R(1,3)&gt;0 — Above the front axle susper<br/>hardpoint</li> </ul> | nsion |  |  |

### **Equations of Motion**

To determine the vehicle motion, the block implements calculations for the rigid body vehicle dynamics, wind drag, inertial loads, and coordinate transformations. The body-fixed and the vehicle-fixed are the same coordinate systems.

The Vehicle Body 6DOF block considers the rotation of a body-fixed coordinate frame about a flat earth-fixed inertial reference frame. The origin of the body-fixed coordinate frame is the vehicle center of gravity of the body.



The block uses this equation to calculate the translational motion of the body-fixed coordinate frame, where the applied forces  $[F_x F_y F_z]^T$  are in the body-fixed frame, and the mass of the body, m, is assumed constant.

$$\bar{F}_b = \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = m \left( \dot{\overline{V}}_b + \overline{\omega} \times \overline{V}_b \right)$$

$$\overline{M}_b = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = I \dot{\overline{\omega}} + \overline{\omega} \times (I \overline{\omega})$$

$$I = \begin{bmatrix} I_{XX} & -I_{XY} & -I_{XZ} \\ -I_{yX} & I_{yy} & -I_{yZ} \\ -I_{zX} & -I_{zy} & I_{zZ} \end{bmatrix}$$

To determine the relationship between the body-fixed angular velocity vector,  $[p\ q\ r]^T$ , and the rate of change of the Euler angles,  $[\dot{\phi}\ \dot{\psi}\ \dot{\psi}]^T$ , the block resolves the Euler rates into the body-fixed frame.

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix} \equiv J^{-1} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$

Inverting J gives the required relationship to determine the Euler rate vector.

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = J \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & (\sin\phi \tan\theta) & (\cos\phi \tan\theta) \\ 0 & \cos\phi & -\sin\phi \\ 0 & \frac{\sin\phi}{\cos\theta} & \frac{\cos\phi}{\cos\theta} \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

The applied forces and moments are the sum of the drag, gravitational, external, and suspension forces.

$$\begin{split} \overline{F}_b &= \begin{bmatrix} F_\chi \\ F_y \\ F_z \end{bmatrix} = \begin{bmatrix} F_{d_\chi} \\ F_{d_y} \\ F_{d_z} \end{bmatrix} + \begin{bmatrix} F_{g_\chi} \\ F_{g_y} \\ F_{g_z} \end{bmatrix} + \begin{bmatrix} F_{ext_\chi} \\ F_{ext_y} \\ F_{ext_z} \end{bmatrix} + \begin{bmatrix} F_{FL_\chi} \\ F_{FL_y} \\ F_{FL_z} \end{bmatrix} + \begin{bmatrix} F_{FR_\chi} \\ F_{FR_y} \\ F_{FR_z} \end{bmatrix} + \begin{bmatrix} F_{RL_\chi} \\ F_{RL_y} \\ F_{RL_z} \end{bmatrix} + \begin{bmatrix} F_{RR_\chi} \\ F_{RR_y} \\ F_{RR_z} \end{bmatrix} \\ \overline{M}_b &= \begin{bmatrix} M_\chi \\ M_y \\ M_z \end{bmatrix} = \begin{bmatrix} M_{d_\chi} \\ M_{d_y} \\ M_{d_z} \end{bmatrix} + \begin{bmatrix} M_{ext_\chi} \\ M_{ext_y} \\ M_{ext_z} \end{bmatrix} + \begin{bmatrix} M_{FL_\chi} \\ M_{FL_y} \\ M_{FL_z} \end{bmatrix} + \begin{bmatrix} M_{RL_\chi} \\ M_{FR_y} \\ M_{RL_y} \end{bmatrix} + \begin{bmatrix} M_{RR_\chi} \\ M_{RR_y} \\ M_{RR_z} \end{bmatrix} + \overline{M}_F \end{split}$$

| Calculation                                       | Implementation                                                                                                                                                                         |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Load masses and inertias                          | Block uses parallel axis theorem to resolve the individual load masses and inertias with the vehicle mass and inertia.                                                                 |
|                                                   | $J_{ij} = I_{ij} + m( R ^2 \delta_{ij} - R_i R_j)$                                                                                                                                     |
| Gravitational forces, $F_g$                       | Block uses direction cosine matrix (DCM) to transform the gravitational vector in the inertial-fixed frame to the body-fixed frame.                                                    |
| Drag forces, $F_d$ , and moments, $M_d$           | To determine a relative airspeed, the block subtracts the wind speed from the vehicle center of mass (CM) velocity. Using the relative airspeed, the block determines the drag forces. |
|                                                   | $\overline{w} = \sqrt{(\dot{x}_b - w_x)^2 + (\dot{x}_y - w_x)^2 + (w_z)^2}$                                                                                                            |
|                                                   | $F_{dx} = -\frac{1}{2TR}C_dA_fP_{abs}(^{\overline{w}}$                                                                                                                                 |
|                                                   | $F_{dy} = -\frac{1}{2TR}C_s A_f P_{abs}(^{\overline{w}}$                                                                                                                               |
|                                                   | $F_{dz} = -\frac{1}{2TR}C_l A_f P_{abs}(\overline{W})$                                                                                                                                 |
|                                                   | Using the relative airspeed, the block determines the drag moments.                                                                                                                    |
|                                                   | $M_{dr} = -\frac{1}{2TR} C_{rm} A_f P_{abs}(\overline{w}(a+b))$                                                                                                                        |
|                                                   | $M_{dp} = -\frac{1}{2TR}C_{pm}A_f P_{abs}(^{\overline{w}}(a+b))$                                                                                                                       |
|                                                   | $M_{dy} = -\frac{1}{2TR}C_{ym}A_f P_{abs}(^{\overline{w}}(a+b))$                                                                                                                       |
| External forces, $F_{in}$ , and moments, $M_{in}$ | External forces and moments are input via ports FExt and MExt.                                                                                                                         |

| Calculation                   | Implementation                                                                         |
|-------------------------------|----------------------------------------------------------------------------------------|
| Suspension forces and moments | Block assumes that the suspension forces and moments act on these hardpoint locations: |
|                               | • $F_{FL}$ , $M_{FL}$ — Front left                                                     |
|                               | • $F_{FR}$ , $M_{FR}$ — Front right                                                    |
|                               | • $F_{RL}$ , $M_{RL}$ — Rear left                                                      |
|                               | • $F_{RR}$ , $M_{RR}$ — Rear right                                                     |

The equations use these variables.

| $X, \dot{X}, \ddot{X}$               | Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed $x$ -axis                                      |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| у, ў, ÿ                              | Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed y-axis                                         |
| $z,\dot{z},\ddot{z}$                 | Vehicle CM displacement, velocity, and acceleration along the vehicle-fixed z-axis                                         |
| $\varphi$                            | Rotation of the vehicle-fixed frame about the earth-fixed <i>X</i> -axis (roll)                                            |
| heta                                 | Rotation of the vehicle-fixed frame about the earth-fixed <i>Y</i> -axis (pitch)                                           |
| Ψ                                    | Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw)                                                     |
| $F_{FLx}$ , $F_{FLy}$ , $F_{FLz}$    | Suspension forces applied to front left hardpoint along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                      |
| $F_{FRx}$ , $F_{FRy}$ , $F_{FRz}$    | Suspension forces applied to front right hardpoint along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                     |
| $F_{RLx}$ , $F_{RLy}$ , $F_{RLz}$    | Suspension forces applied to rear left hardpoint along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                       |
| $F_{RRx}$ , $F_{RRy}$ , $F_{RRz}$    | Suspension forces applied to rear right hardpoint along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                      |
| $M_{Fx}$ , $F_{Fy}$ , $F_{Fz}$       | Suspension moments applied to vehicle CM about the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                               |
| $F_{extx}$ , $F_{exty}$ , $F_{extz}$ | External forces applied to vehicle CM along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                                  |
| $F_{dx}$ , $F_{dy}$ , $F_{dz}$       | Drag forces applied to vehicle CM along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                                      |
| $M_{extx}$ , $M_{exty}$ , $M_{extz}$ | External moment about vehicle CM about the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                                       |
| $M_{dx}$ , $M_{dy}$ , $M_{dz}$       | Drag moment about vehicle CM about the vehicle-fixed $x$ -, $y$ -, and $z$ -axes                                           |
| I                                    | Vehicle body moments of inertia                                                                                            |
| a, b                                 | Distance of front and rear wheels, respectively, from the normal projection point of vehicle CM onto the common axle plane |
| h                                    | Height of vehicle CM above the axle plane                                                                                  |
| $W_F$ , $W_R$                        | Front and rear track widths                                                                                                |
| γ                                    | Road grade angle                                                                                                           |
| $C_d$                                | Air drag coefficient acting along vehicle-fixed x-axis                                                                     |
| $C_s$                                | Air drag coefficient acting along vehicle-fixed y-axis                                                                     |
|                                      |                                                                                                                            |

| $C_l$                 | Air drag coefficient acting along vehicle-fixed $z$ -axis      |
|-----------------------|----------------------------------------------------------------|
| $C_{rm}$              | Air drag roll moment acting about vehicle-fixed x-axis         |
| $C_{pm}$              | Air drag pitch moment acting about the vehicle-fixed y-axis    |
| $C_{ym}$              | Air drag yaw moment acting about vehicle-fixed z-axis          |
| $A_f$                 | Frontal area                                                   |
| R                     | Atmospheric specific gas constant                              |
| T                     | Environmental air temperature                                  |
| $P_{abs}$             | Environmental absolute pressure                                |
| $W_x$ , $W_y$ , $W_z$ | Wind speed along the vehicle-fixed $x$ -, $y$ -, and $z$ -axes |
| $W_x$ , $W_y$ , $W_z$ | Wind speed along inertial $X$ -, $Y$ -, and $Z$ -axes          |

#### **Ports**

### Input

### FSusp — Suspension forces on vehicle

array

Suspension longitudinal, lateral, and vertical suspension forces applied to the vehicle at the hardpoint location, in N. Signal dimensions are [3x4].

$$FSusp = \begin{bmatrix} F_{x_{FL}} & F_{x_{FR}} & F_{x_{RL}} & F_{x_{RR}} \\ F_{y_{FL}} & F_{y_{FR}} & F_{y_{RL}} & F_{y_{RR}} \\ F_{z_{FL}} & F_{z_{FR}} & F_{z_{RL}} & F_{z_{RR}} \end{bmatrix}$$

| Array Element | Axle  | Track | Force Axis                          |
|---------------|-------|-------|-------------------------------------|
| FSusp(1,1)    | Front | Left  | Vehicle-fixed x-axis (longitudinal) |
| FSusp(1,2)    | Front | Right |                                     |
| FSusp(1,3)    | Rear  | Left  |                                     |
| FSusp(1,4)    | Rear  | Right |                                     |
| FSusp(2,1)    | Front | Left  | Vehicle-fixed y-axis (lateral)      |
| FSusp(2,2)    | Front | Right |                                     |
| FSusp(2,3)    | Rear  | Left  |                                     |
| FSusp(2,4)    | Rear  | Right |                                     |
| FSusp(3,1)    | Front | Left  | Vehicle-fixed z-axis (vertical)     |
| FSusp(3,2)    | Front | Right |                                     |
| FSusp(3,3)    | Rear  | Left  |                                     |
| FSusp(3,4)    | Rear  | Right |                                     |

#### MSusp — Suspension moment on vehicle

array

Suspension longitudinal, lateral, and vertical suspension moments applied about the vehicle at the hardpoint location, in N. Signal dimensions are [3x4].

$$MSusp = \begin{bmatrix} M_{x_{FL}} & M_{x_{FR}} & M_{x_{RL}} & M_{x_{RR}} \\ M_{y_{FL}} & M_{y_{FR}} & M_{y_{RL}} & M_{y_{RR}} \\ M_{z_{FL}} & M_{z_{FR}} & M_{z_{RL}} & M_{z_{RR}} \end{bmatrix}$$

| Array Element | Axle  | Track | Moment Axis                         |
|---------------|-------|-------|-------------------------------------|
| MSusp(1,1)    | Front | Left  | Vehicle-fixed x-axis (longitudinal) |
| MSusp(1,2)    | Front | Right |                                     |
| MSusp(1,3)    | Rear  | Left  |                                     |
| MSusp(1,4)    | Rear  | Right |                                     |
| MSusp(2,1)    | Front | Left  | Vehicle-fixed y-axis (lateral)      |
| MSusp(2,2)    | Front | Right |                                     |
| MSusp(2,3)    | Rear  | Left  |                                     |
| MSusp(2,4)    | Rear  | Right |                                     |
| MSusp(3,1)    | Front | Left  | Vehicle-fixed z-axis (vertical)     |
| MSusp(3,2)    | Front | Right |                                     |
| MSusp(3,3)    | Rear  | Left  |                                     |
| MSusp(3,4)    | Rear  | Right |                                     |

### FExt — External forces acting on vehicle

vector

External forces on vehicle, in N. Signal vector dimensions are [1x3] or [3x1].

$$\text{FExt} = F_{ext} = \begin{bmatrix} F_{ext_x} & F_{ext_y} & F_{ext_z} \end{bmatrix} \text{or} \begin{bmatrix} F_{ext_x} \\ F_{ext_y} \\ F_{ext_z} \end{bmatrix}$$

| Array Element             | Force Axis                          |
|---------------------------|-------------------------------------|
| FExt(1,1)                 | Vehicle-fixed x-axis (longitudinal) |
| FExt(1,2) or<br>FExt(2,1) | Vehicle-fixed y-axis (lateral)      |
| FExt(1,3) or<br>FExt(3,1) | Vehicle-fixed $z$ -axis (vertical)  |

#### MExt — External moments acting on vehicle

vector

External moments acting on vehicle, in N·m. Signal vector dimensions are [1x3] or [3x1].

$$\text{MExt} = M_{ext} = \begin{bmatrix} M_{ext_X} \ M_{ext_y} \ M_{ext_z} \end{bmatrix} or \begin{bmatrix} M_{ext_X} \\ M_{ext_y} \\ M_{ext_z} \end{bmatrix}$$

| Array Element             | Force Axis                          |
|---------------------------|-------------------------------------|
| MExt(1,1)                 | Vehicle-fixed x-axis (longitudinal) |
| MExt(1,2) or<br>MExt(2,1) | Vehicle-fixed y-axis (lateral)      |
| MExt(1,3) or<br>MExt(3,1) | Vehicle-fixed $z$ -axis (vertical)  |

### WindXYZ — Wind speed

array

Wind speed,  $W_x$ ,  $W_y$ ,  $W_z$  along inertial X-, Y-, and Z-axes, in m/s. Signal vector dimensions are [1x3] or [3x1].

### AirTemp — Ambient air temperature

scalar

Ambient air temperature,  $T_{air}$ , in K.

#### **Dependencies**

To enable this port, on the **Environment** pane, select **Air temperature**.

## **Output Arguments**

### Info — Bus signal

bus

Bus signal containing these block values.

| Signal   |    |      |      | Description                                                                     | Value    | Units |
|----------|----|------|------|---------------------------------------------------------------------------------|----------|-------|
| InertFrm | Cg | Disp | X    | Vehicle CM displacement along the earth-fixed $X$ -axis                         | Computed | m     |
|          |    |      | Υ    | Vehicle CM displacement along the earth-fixed <i>Y</i> -axis                    | Computed | m     |
|          |    |      | Z    | Vehicle CM displacement along the earth-fixed $Z$ -axis                         | Computed | m     |
|          |    | Vel  | Xdot | Vehicle CM velocity along the earth-fixed $X$ -axis                             | Computed | m/s   |
|          |    |      | Ydot | Vehicle CM velocity along the earth-fixed <i>Y</i> -axis                        | Computed | m/s   |
|          |    |      | Zdot | Vehicle CM velocity along the earth-fixed Z-axis                                | Computed | m/s   |
|          |    | Ang  | phi  | Rotation of the vehicle-fixed frame about the earth-fixed <i>X</i> -axis (roll) | Computed | rad   |

| Signal |         |      |          |                                                           | Description                                                                      | Value    | Units |
|--------|---------|------|----------|-----------------------------------------------------------|----------------------------------------------------------------------------------|----------|-------|
|        |         |      |          |                                                           | Rotation of the vehicle-fixed frame about the earth-fixed <i>Y</i> -axis (pitch) | Computed | rad   |
|        |         |      | psi      |                                                           | Rotation of the vehicle-fixed frame about the earth-fixed $Z$ -axis (yaw)        | Computed | rad   |
|        | FrntAxl | Lft  | Disp     | Х                                                         | Front left axle displacement along the earth-fixed $X$ -axis                     | Computed | m     |
|        |         |      |          | Y                                                         | Front left axle displacement along the earth-fixed <i>Y</i> -axis                | Computed | m     |
|        |         |      |          | Z                                                         | Front left axle displacement along the earth-fixed $Z$ -axis                     | Computed | m     |
|        | Rght    |      | Vel      | Xdo<br>t                                                  | Front left axle velocity along the earth-fixed $X$ -axis                         | Computed | m/s   |
|        |         |      |          | Ydo<br>t                                                  | Front left axle velocity along the earth-fixed <i>Y</i> -axis                    | Computed | m/s   |
|        |         |      |          | Zdo<br>t                                                  | Front left axle velocity along the earth-fixed $Z$ -axis                         | Computed | m/s   |
|        |         | Rght | Disp     | Х                                                         | Front right axle displacement along the earth-fixed $X$ -axis                    | Computed | m     |
|        |         |      |          | Y                                                         | Front right axle displacement along the earth-fixed <i>Y</i> -axis               | Computed | m     |
|        |         |      |          | Z                                                         | Front right axle displacement along the earth-fixed $Z$ -axis                    | Computed | m     |
|        |         | Vel  | Xdo<br>t | Front right axle velocity along the earth-fixed $X$ -axis | Computed                                                                         | m/s      |       |
|        |         |      |          | Ydo<br>t                                                  | Front right axle velocity along the earth-fixed <i>Y</i> -axis                   | Computed | m/s   |
|        |         |      |          | Zdo<br>t                                                  | Front right axle velocity along the earth-fixed $Z$ -axis                        | Computed | m/s   |
|        | RearAxl | Lft  | Disp     | Х                                                         | Rear left axle displacement along the earth-fixed X-axis                         | Computed | m     |

| Signal |  |      |      |          | Description                                                                   | Value    | Units |
|--------|--|------|------|----------|-------------------------------------------------------------------------------|----------|-------|
|        |  |      |      | Υ        | Rear left axle displacement along the earth-fixed <i>Y</i> -axis              | Computed | m     |
|        |  |      |      | Z        | Rear left axle displacement along the earth-fixed <i>Z</i> -axis              | Computed | m     |
|        |  |      | Vel  | Xdo<br>t | Rear left axle velocity along the earth-fixed <i>X</i> -axis                  | Computed | m/s   |
|        |  |      |      | Ydo<br>t | Rear left axle velocity along the earth-fixed <i>Y</i> -axis                  | Computed | m/s   |
|        |  |      |      | Zdo<br>t | Rear left axle velocity along the earth-fixed $Z$ -axis                       | Computed | m/s   |
|        |  | Rght | Disp | Х        | Rear right axle displacement along the earth-fixed X-axis                     | Computed | m     |
|        |  |      |      | Υ        | Rear right axle displacement along the earth-fixed <i>Y</i> -axis             | Computed | m     |
|        |  |      |      | Z        | Rear right axle displacement along the earth-fixed Z-axis                     | Computed | m     |
|        |  |      | Vel  | Xdo<br>t | Rear right axle velocity along the earth-fixed $X$ -axis                      | Computed | m/s   |
|        |  |      |      | Ydo<br>t | Rear right axle velocity along the earth-fixed <i>Y</i> -axis                 | Computed | m/s   |
|        |  |      |      | Zdo<br>t | Rear right axle velocity along the earth-fixed $Z$ -axis                      | Computed | m/s   |
|        |  | Disp | Х    | 1        | Vehicle chassis offset from axle plane along the earth-fixed <i>X</i> -axis   | Computed | m     |
|        |  |      | Υ    |          | Vehicle chassis offset from center plane along the earth-fixed <i>Y</i> -axis | Computed | m     |
|        |  |      | Z    |          | Vehicle chassis offset from axle plane along the earth-fixed Z-axis           | Computed | m     |
|        |  | Vel  | Xdot |          | Vehicle chassis offset velocity along the earthfixed X-axis                   | Computed | m/s   |

| Signal |        |        |                 | Description                                                                  | Value    | Units |
|--------|--------|--------|-----------------|------------------------------------------------------------------------------|----------|-------|
|        |        |        | Ydot            | Vehicle chassis offset velocity along the earth-fixed <i>Y</i> -axis         | Computed | m/s   |
|        |        |        | Zdot            | Vehicle chassis offset velocity along the earth-fixed Z-axis                 | Computed | m/s   |
| BdyFrm | Cg     | Vel    | xdot            | Vehicle CM velocity along the vehicle-fixed <i>x</i> -axis                   | Computed | m/s   |
|        |        |        | ydot            | Vehicle CM velocity along the vehicle-fixed <i>y</i> -axis                   | Computed | m/s   |
|        |        |        | zdot            | Vehicle CM velocity along the vehicle-fixed $z$ -axis                        | Computed | m/s   |
|        |        | AngVel | р               | Vehicle angular velocity about the vehicle-fixed <i>x</i> -axis (roll rate)  | Computed | rad/s |
|        |        |        | q               | Vehicle angular velocity about the vehicle-fixed <i>y</i> -axis (pitch rate) | Computed | rad/s |
|        |        |        | r               | Vehicle angular velocity about the vehicle-fixed <i>z</i> -axis (yaw rate)   | Computed | rad/s |
|        |        | Acc    | ax              | Vehicle CM acceleration along the vehicle-fixed <i>x</i> -axis               | Computed | gn    |
|        |        |        | ay              | Vehicle CM acceleration along the vehicle-fixed <i>y</i> -axis               | Computed | gn    |
|        |        |        | az              | Vehicle CM acceleration along the vehicle-fixed <i>z</i> -axis               | Computed | gn    |
|        |        |        | xddot           | Vehicle CM acceleration along the vehicle-fixed <i>x</i> -axis               | Computed | m/s^2 |
|        |        |        | yddot           | Vehicle CM acceleration along the vehicle-fixed <i>y</i> -axis               | Computed | m/s^2 |
|        |        |        | zddot           | Vehicle CM acceleration along the vehicle-fixed <i>z</i> -axis               | Computed | m/s^2 |
|        |        | DCM    | Direction cosin | e matrix                                                                     | Computed | rad   |
|        | Forces | Body   | Fx              | Net force on vehicle CM along the vehicle-fixed <i>x</i> -axis               | Computed | N     |

| Signal |         |               |                 | Description                                                                   | Value    | Units |
|--------|---------|---------------|-----------------|-------------------------------------------------------------------------------|----------|-------|
|        |         | Fy            |                 | Net force on vehicle CM along the vehicle-fixed <i>y</i> -axis                | Computed | N     |
|        |         | Fz            |                 | Net force on vehicle CM along the vehicle-fixed <i>z</i> -axis                | Computed | N     |
|        | FrntAxl | Lft           | Fx              | Longitudinal force on front left axle along the vehicle-fixed <i>x</i> -axis  | Computed | N     |
|        |         |               | Fy              | Lateral force on front axle left along the vehicle-fixed y-axis               | Computed | N     |
|        |         |               | Fz              | Normal force on front axle left along the vehicle-fixed <i>z</i> -axis        | Computed | N     |
|        |         | Rght          | Fx              | Longitudinal force on front right axle along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |         |               | Fy              | Lateral force on front axle right along the vehicle-fixed <i>y</i> -axis      | Computed | N     |
|        |         |               | Fz              | Normal force on front axle right along the vehicle-fixed <i>z</i> -axis       | Computed | N     |
|        | RearAxl | Lft           | Fx              | Longitudinal force on rear left axle along the vehicle-fixed x-axis           | Computed | N     |
|        |         |               | Fy              | Lateral force on rear left axle along the vehicle-fixed y-axis                | Computed | N     |
|        |         |               | Fz              | Normal force on rear left axle along the vehicle-fixed <i>z</i> -axis         | Computed | N     |
|        |         | Rght          | Fx              | Longitudinal force on rear right axle along the vehicle-fixed <i>x</i> -axis  | Computed | N     |
|        |         |               | Fy              | Lateral force on rear right axle along the vehicle-fixed <i>y</i> -axis       | Computed | N     |
|        |         |               | Fz              | Normal force on rear right axle along the vehicle-fixed z-axis                | Computed | N     |
|        | Tires   | FrntTir<br>es | L F<br>f x<br>t | l                                                                             | Computed | N     |

| Signal |         |       |    |                                                             |                                                                 | Description                                                        | Value                                                              | Units    |   |
|--------|---------|-------|----|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|---|
|        |         |       |    |                                                             | F<br>y                                                          | Front left tire force along the vehicle-fixed <i>y</i> -axis       | Computed                                                           | N        |   |
|        |         |       |    |                                                             | F<br>z                                                          | Front left tire force along the vehicle-fixed z-axis               | Computed                                                           | N        |   |
|        |         |       |    | g<br>h<br>t                                                 |                                                                 | Front right tire force along the vehicle-fixed <i>x</i> -axis      | Computed                                                           | N        |   |
|        |         |       |    |                                                             |                                                                 | Front right tire force along the vehicle-fixed <i>y</i> -axis      | Computed                                                           | N        |   |
|        |         |       |    |                                                             | F<br>z                                                          | Front right tire force along the vehicle-fixed <i>z</i> -axis      | Computed                                                           | N        |   |
|        | RearTir | L     |    | Rear left tire force along the vehicle-fixed <i>x</i> -axis | Computed                                                        | N                                                                  |                                                                    |          |   |
|        |         |       | t  | F<br>y                                                      | Rear left tire force along the vehicle-fixed <i>y</i> -axis     | Computed                                                           | N                                                                  |          |   |
|        |         |       |    |                                                             |                                                                 | Rear left tire force along the vehicle-fixed <i>z</i> -axis        | Computed                                                           | N        |   |
|        |         |       |    | g<br>h                                                      |                                                                 | Rear right tire force along the vehicle-fixed <i>x</i> -axis       | Computed                                                           | N        |   |
|        |         |       |    |                                                             | F<br>y                                                          | Rear right tire force along the vehicle-fixed <i>y</i> -axis       | Computed                                                           | N        |   |
|        |         |       |    |                                                             | F<br>z                                                          | Rear right tire force along the vehicle-fixed <i>z</i> -axis       | Computed                                                           | N        |   |
|        |         | Drag  | Fx |                                                             |                                                                 | Drag force on vehicle CM along the vehicle-fixed <i>x</i> -axis    | Computed                                                           | N        |   |
|        | Fy      | Fy    |    |                                                             | Drag force on vehicle CM along the vehicle-fixed <i>y</i> -axis | Computed                                                           | N                                                                  |          |   |
|        |         | Fz    | Fz |                                                             |                                                                 | Drag force on vehicle CM along the vehicle-fixed z-axis            | Computed                                                           | N        |   |
|        |         | Grvty | Fx | Fx                                                          |                                                                 |                                                                    | Gravity force on vehicle CM along the vehicle-fixed x-axis         | Computed | N |
|        |         |       |    | Fy                                                          |                                                                 |                                                                    | Gravity force on vehicle CM along the vehicle-fixed <i>y</i> -axis | Computed | N |
|        |         |       | Fz |                                                             |                                                                 | Gravity force on vehicle CM along the vehicle-fixed <i>z</i> -axis | Computed                                                           | N        |   |

| Signal |         |      |      |          | Description                                                          | Value    | Units |
|--------|---------|------|------|----------|----------------------------------------------------------------------|----------|-------|
|        | Moments | Body | Mx   |          | Body moment on vehicle<br>CM about the vehicle-<br>fixed x-axis      | Computed | N·m   |
|        |         |      | Му   |          | Body moment on vehicle<br>CM about the vehicle-<br>fixed y-axis      | Computed | N·m   |
|        |         |      | Mz   |          | Body moment on vehicle CM about the vehicle-fixed z-axis             | Computed | N·m   |
|        |         | Drag | Mx   |          | Drag moment on vehicle<br>CM about the vehicle-<br>fixed x-axis      | Computed | N·m   |
|        |         |      | Му   |          | Drag moment on vehicle<br>CM about the vehicle-<br>fixed y-axis      | Computed | N·m   |
|        |         |      | Mz   |          | Drag moment on vehicle<br>CM about the vehicle-<br>fixed z-axis      | Computed | N·m   |
|        |         | Lft  | Disp | x        | Front left axle displacement along the vehicle-fixed x-axis          | Computed | m     |
|        |         |      |      | У        | Front left axle displacement along the vehicle-fixed <i>y</i> -axis  | Computed | m     |
|        |         |      |      | Z        | Front left axle displacement along the vehicle-fixed z-axis          | Computed | m     |
|        |         |      | Vel  | xdo<br>t | Front left axle velocity along the vehicle-fixed $x$ -axis           | Computed | m/s   |
|        |         |      |      | ydo<br>t | Front left axle velocity along the vehicle-fixed <i>y</i> -axis      | Computed | m/s   |
|        |         |      |      | zdo<br>t | Front left axle velocity along the vehicle-fixed $z$ -axis           | Computed | m/s   |
|        |         | Rght | Disp | x        | Front right axle displacement along the vehicle-fixed x-axis         | Computed | m     |
|        |         |      |      | У        | Front right axle displacement along the vehicle-fixed <i>y</i> -axis | Computed | m     |
|        |         |      |      | Z        | Front right axle displacement along the vehicle-fixed <i>z</i> -axis | Computed | m     |

| Signal |         |           |      |                                                                           | Description                                                      | Value    | Units |
|--------|---------|-----------|------|---------------------------------------------------------------------------|------------------------------------------------------------------|----------|-------|
|        |         |           | Vel  | xdo                                                                       | ·                                                                | Computed | m/s   |
|        |         |           |      | ydo<br>t                                                                  | Front right axle velocity along the vehicle-fixed <i>y</i> -axis | Computed | m/s   |
|        |         |           |      | zdo<br>t                                                                  | Front right axle velocity along the vehicle-fixed $z$ -axis      | Computed | m/s   |
|        | RearAxl | Lft       | Disp | х                                                                         | Rear left axle<br>displacement along the<br>vehicle-fixed x-axis | Computed | m     |
|        |         |           |      | У                                                                         | Rear left axle displacement along the vehicle-fixed y-axis       | Computed | m     |
|        | Rght    |           |      | Z                                                                         | Rear left axle displacement along the vehicle-fixed z-axis       | Computed | m     |
|        |         |           | Vel  | xdo<br>t                                                                  | Rear left axle velocity along the vehicle-fixed <i>x</i> -axis   | Computed | m/s   |
|        |         |           |      | ydo<br>t                                                                  | Rear left axle velocity along the vehicle-fixed <i>y</i> -axis   | Computed | m/s   |
|        |         |           |      | zdo<br>t                                                                  | Rear left axle velocity along the vehicle-fixed $z$ -axis        | Computed | m/s   |
|        |         | Rght Disp | Disp | х                                                                         | Rear right axle displacement along the vehicle-fixed x-axis      | Computed | m     |
|        |         |           | У    | Rear right axle<br>displacement along the<br>vehicle-fixed <i>y</i> -axis | Computed                                                         | m        |       |
|        |         |           |      | Z                                                                         | Rear right axle displacement along the vehicle-fixed z-axis      | Computed | m     |
|        |         |           | Vel  | xdo<br>t                                                                  | Rear right axle velocity along the vehicle-fixed <i>x</i> -axis  | Computed | m/s   |
|        |         |           |      | ydo<br>t                                                                  | Rear right axle velocity along the vehicle-fixed <i>y</i> -axis  | Computed | m/s   |
|        |         |           |      | zdo<br>t                                                                  | Rear right axle velocity along the vehicle-fixed <i>z</i> -axis  | Computed | m/s   |

| Signal |      |          |          | Description                                                                     | Value    | Units |
|--------|------|----------|----------|---------------------------------------------------------------------------------|----------|-------|
|        | Pwr  | r PwrExt |          | Applied external power                                                          | Computed | W     |
|        | Drag | Drag     |          | Power loss due to drag                                                          | Computed | W     |
|        | Geom |          | х        | Vehicle chassis offset from axle plane along the vehicle-fixed $x$ -axis        | Input    | m     |
|        |      |          | у        | Vehicle chassis offset from center plane along the vehicle-fixed <i>y</i> -axis | Input    | m     |
|        |      |          | Z        | Vehicle chassis offset from axle plane along the earth-fixed $z$ -axis          | Input    | m     |
|        |      | Vel      | xdo<br>t | Vehicle chassis offset<br>velocity along the vehicle-<br>fixed <i>x</i> -axis   | Computed | m/s   |
|        |      |          | ydo<br>t | Vehicle chassis offset velocity along the vehicle-fixed <i>y</i> -axis          | Computed | m/s   |
|        |      |          | zdo<br>t | Vehicle chassis offset velocity along the vehicle-fixed <i>z</i> -axis          | Computed | m/s   |
|        |      | Ang      | Bet<br>a | Body slip angle, $\beta$ $\beta = \frac{V_y}{V_x}$                              | Computed | rad   |

## Vb — Vehicle velocity along the vehicle-fixed frame

vector

Vehicle CM velocity along the vehicle-fixed x-, y-, z- axes, respectively, in m/s.

## pqr — Vehicle angular velocity about the vehicle-fixed frame

vector

Vehicle CM angular velocity about the vehicle-fixed x(roll rate)-, y(pitch rate)-, z(yaw rate)- axes, respectively, in rad/s.

#### **DCM** — **Direction cosine matrix**

array

Direction cosine matrix, in rad.

### **Euler** — **Euler** angles

array

Euler angles,  $\varphi$ ,  $\theta$ , and  $\psi$ , respectively, in rad.

#### Xe — Vehicle position in the inertial reference frame

vector

Vehicle CM position along inertial-fixed X-, Y-, Z- axes, respectively, in m.

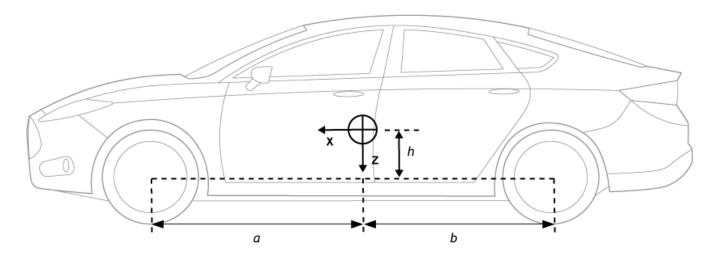
## Ve — Vehicle velocity in the inertial reference frame

vector

Vehicle CM velocity along inertial-fixed *X*-, *Y*-, *Z*- axes, respectively, in m/s.

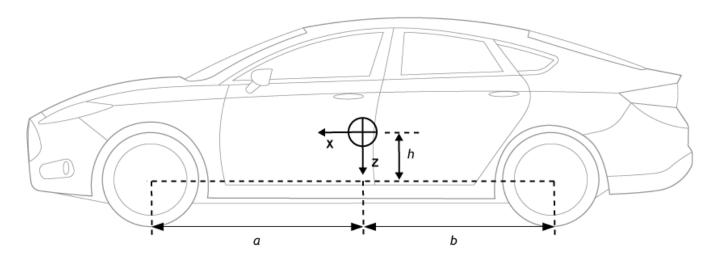
#### **Parameters**

#### **Chassis**


#### **Vehicle mass, m — Mass**

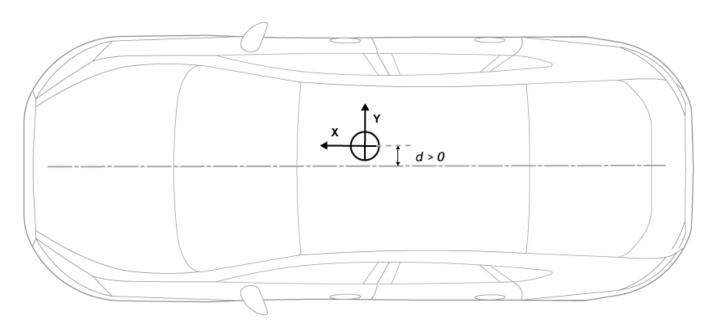
2000 (default) | scalar

Vehicle mass, m, in kg.


# Longitudinal distance from center of mass to front axle, a — Distance $1.4\,(\mathrm{default})\,|\,\mathrm{scalar}$

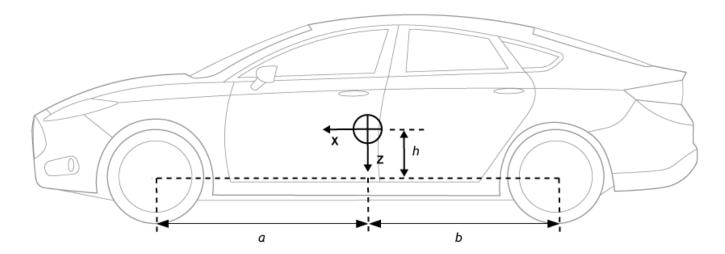
Distance from vehicle CM to front axle, a, in m.




Longitudinal distance from center of mass to rear axle, b — Distance 1.6 (default) | scalar

Distance from vehicle CM to front axle, b, in m.




Lateral distance from geometric centerline to center of mass, d — Distance 0 (default)  $\mid$  scalar

Lateral distance from geometric centerline to center of mass, d, in m, along the vehicle-fixed y. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.



Vertical distance from center of mass to axle plane, h- Distance .35 (default) | scalar

Vertical distance from vehicle CM to axle plane, *h*, in m.



Initial position in the inertial frame [Xeo,Yeo,Zeo], Xe\_o — Position [0,0,0] (default) | vector

Initial position of vehicle in the inertial frame,  $Xe_o$ , in m.

Initial velocity in body axes [xdot\_o,ydot\_o,zdot\_o], xbdot\_o — Velocity
[0,0,0] (default) | vector

Initial vehicle CM velocity along the vehicle-fixed x, y-, and z- axes, respectively, in m/s.

Initial Euler orientation [roll, pitch, yaw], eul\_o — Rotation
[0,0,0] (default) | vector

Initial Euler rotation of the vehicle-fixed frame about the earth-fixed X(roll)-, Y(pitch)-, Z(yaw)- axes, respectively, in rad.

Initial body rotation rates [p,q,r], p\_o — Rotation rate
[0,0,0] (default) | vector

Initial vehicle CM angular velocity about the vehicle-fixed x(roll rate)-, y(pitch rate)-, z(yaw rate)-axes, respectively, in rad/s.

## Chassis inertia tensor, Iveh — Inertia

[430 0 0; 0 1900 0; 0 0 2100] (default) | array

Vehicle inertia tensor,  $I_{veh}$ , in kg\*m^2. Dimensions are [3-by-3].

# Track widths [front,rear], w — Widths

[1.9,1.9] (default) | vector

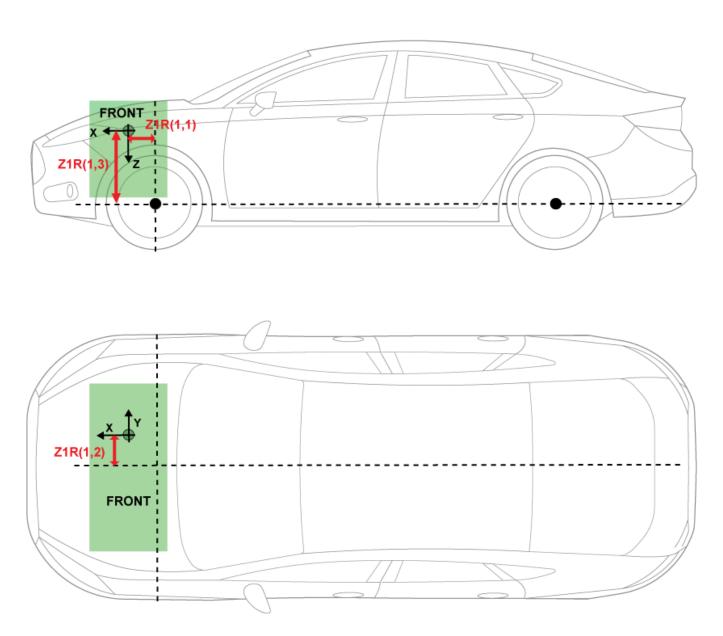
Front and rear track width, in m. Dimensions are [1-by-2].

## **Inertial Loads**

#### Front

Mass, zlm — Mass

0 (default) | scalar


Mass, z1m, in kg.

# Distance vector from front axle, z1R — Distance

[-.25,.125,.15] (default) | vector

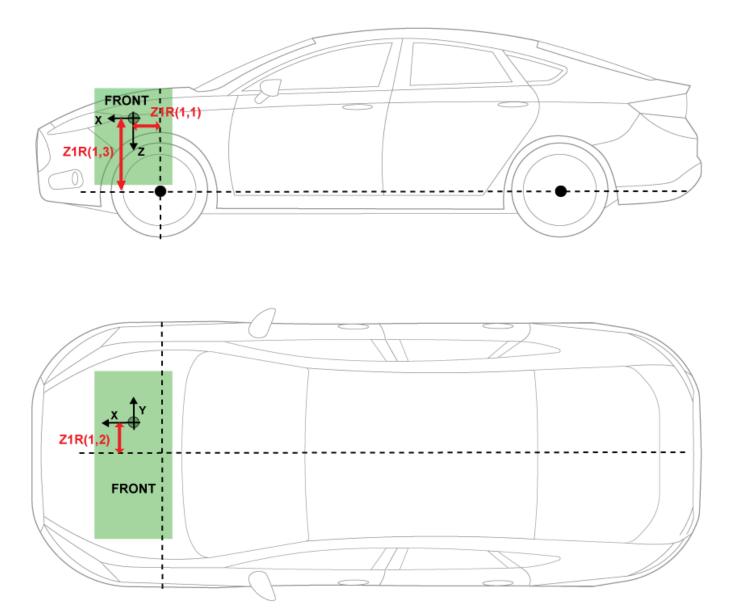
Distance vector from front axle to load, z1R, in m. Dimensions are [1-by-3].

| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
| z1R(1,1)      | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z1R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z1R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dots.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Forward of the front axle                 | • $z1R(1,1) < 0$ |
| Right of the vehicle centerline           | • $z1R(1,2) > 0$ |
| Above the front axle suspension hardpoint | • $z1R(1,3) > 0$ |


# Inertia tensor, zlI — Inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].\*0 (default) | array

Inertia tensor, z1I, in kg·m<sup>2</sup>. Dimensions are [3-by-3].

$$z1I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

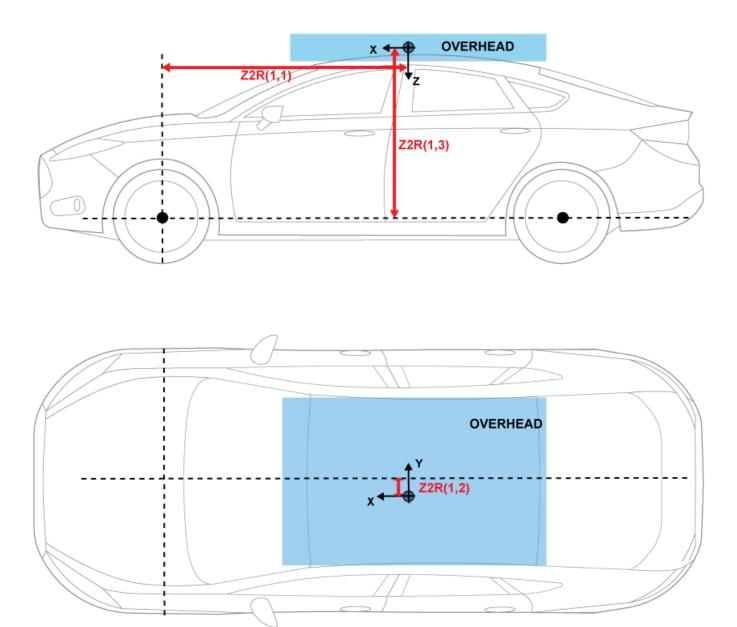
- *x*-axis along the vehicle-fixed *x*-axis
- *y*-axis along the vehicle-fixed *y*-axis
- z-axis along the vehicle-fixed z-axis



#### Overhead

Mass, z2m — Mass

0 (default) | scalar


Mass, z2m, in kg.

### Distance vector from front axle, z2R — Distance

[1.4,0,.8] (default) | vector

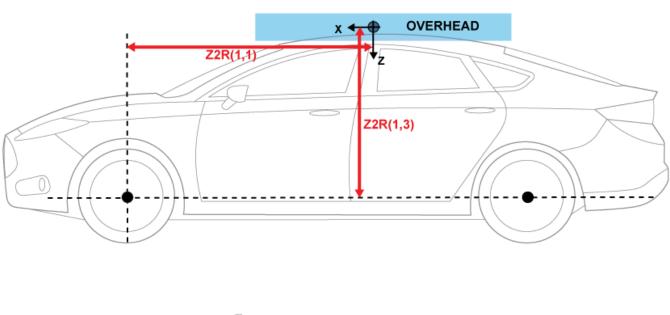
Distance vector from front axle to load, *z2R*, in m. Dimensions are [1-by-3].

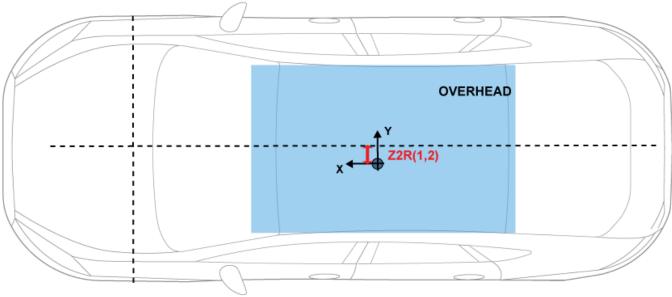
| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
| z2R(1,1)      | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z2R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z2R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Rear of the front axle                    | • $z2R(1,1) > 0$ |
| • Left of the vehicle centerline          | • $z2R(1,2) < 0$ |
| Above the front axle suspension hardpoint | • $z2R(1,3) > 0$ |


# Inertia tensor, z2I — Inertia


[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].\*0 (default) | array

Inertia tensor, z2I, in kg·m<sup>2</sup>. Dimensions are [3-by-3].

$$z2I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

- *x*-axis along the vehicle-fixed *x*-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis

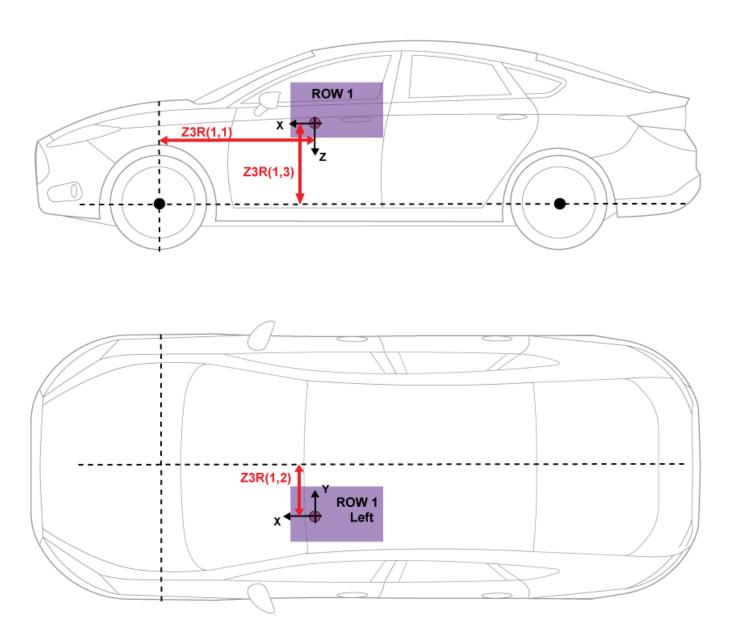




## Row 1, left side

Mass, z3m — Mass

0 (default) | scalar


Mass, z3m, in kg.

## Distance vector from front axle, z3R — Distance

[.75,-.5,.4] (default) | vector

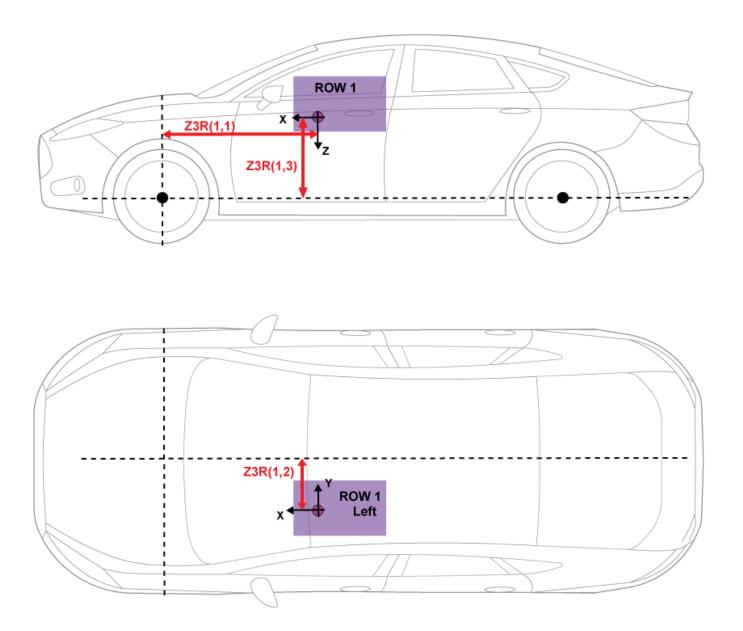
Distance vector from front axle to load, *z3R*, in m. Dimensions are [1-by-3].

| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
|               | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z3R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z3R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Rear of the front axle                    | • $z3R(1,1) > 0$ |
| • Left of the vehicle centerline          | • $z3R(1,2) < 0$ |
| Above the front axle suspension hardpoint | • $z3R(1,3) > 0$ |


# Inertia tensor, z3I — Inertia

[5,-.1,-2;-2,9,.1;-.1,.1,6].\*0 (default) | array

Inertia tensor, z3I, in kg·m^2. Dimensions are [3-by-3].

$$z3I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

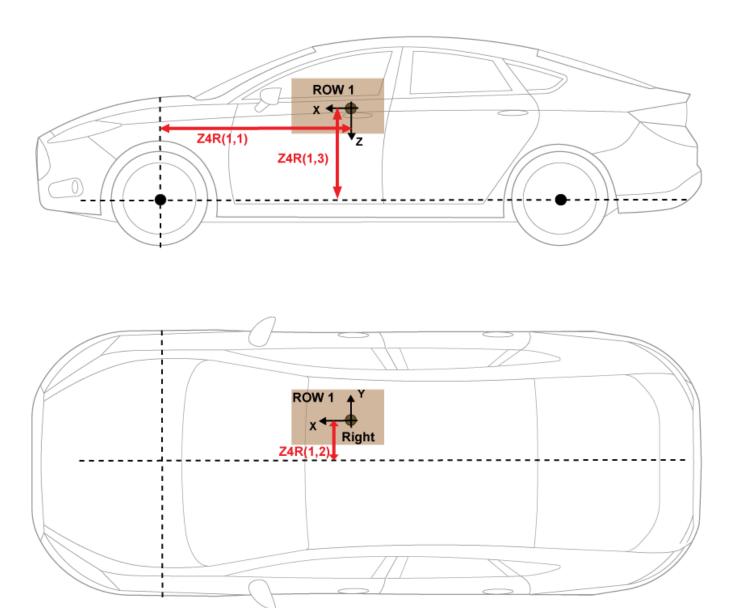
- *x*-axis along the vehicle-fixed *x*-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis



## Row 1, right side

Mass, z4m — Mass

0 (default) | scalar


Mass, z4m, in kg.

## Distance vector from front axle, z4R — Distance

[.75,.5,.4] (default) | vector

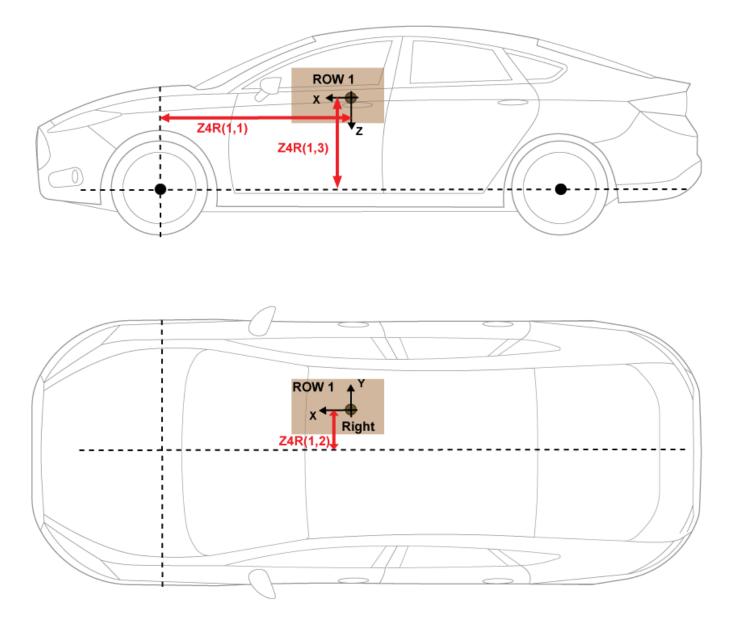
Distance vector from front axle to load, z4R, in m. Dimensions are [1-by-3].

| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
| z4R(1,1)      | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z4R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z4R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Rear of the front axle                    | • $z4R(1,1) > 0$ |
| • Right of the vehicle centerline         | • $z4R(1,2) > 0$ |
| Above the front axle suspension hardpoint | • $z4R(1,3) > 0$ |


# Inertia tensor, z4I — Inertia

[5,-.1,-2;-2,9,.1;-.1,.1,6].\*0 (default) | array

Inertia tensor, z4I, in kg·m<sup>2</sup>. Dimensions are [3-by-3].

$$z4I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

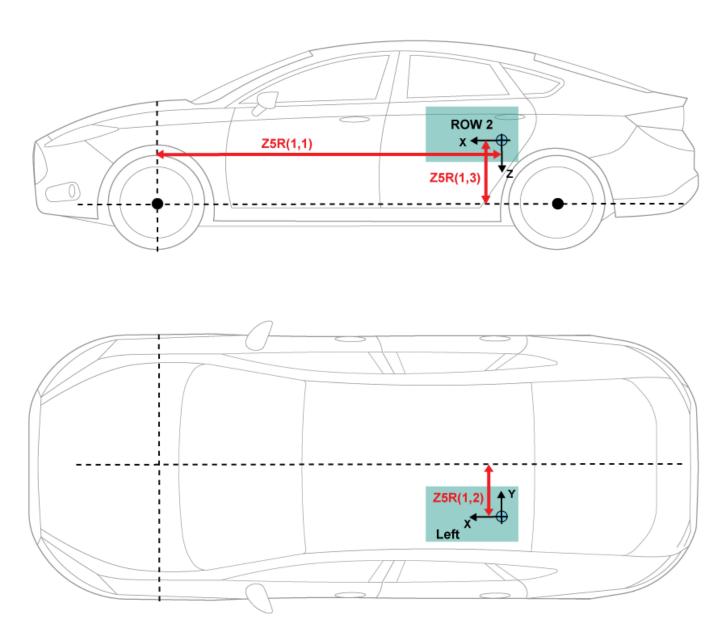
- *x*-axis along the vehicle-fixed *x*-axis
- *y*-axis along the vehicle-fixed *y*-axis
- z-axis along the vehicle-fixed z-axis



## Row 2, left side

Mass, z5m — Mass

0 (default) | scalar


Mass, z5m, in kg.

## Distance vector from front axle, z5R — Distance

[1.25, -.5, .4] (default) | vector

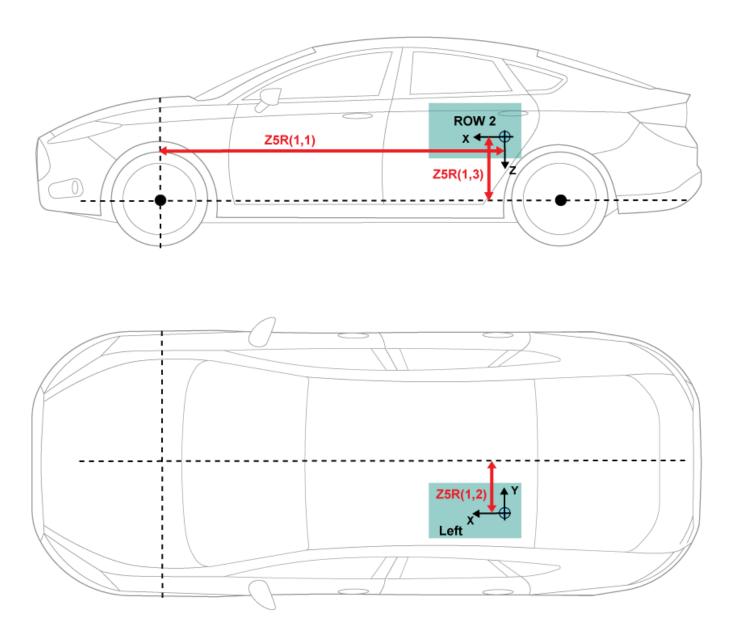
Distance vector from front axle to load, z5R, in m. Dimensions are [1-by-3].

| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
| z5R(1,1)      | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z5R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z5R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Rear of the front axle                    | • $z5R(1,1) > 0$ |
| • Left of the vehicle centerline          | • $z5R(1,2) < 0$ |
| Above the front axle suspension hardpoint | • $z5R(1,3) > 0$ |


# Inertia tensor, z5I — Inertia

[5,-.1,-2;-2,9,.1;-.1,.1,6].\*0 (default) | array

Inertia tensor, z5I, in kg·m<sup>2</sup>. Dimensions are [3-by-3].

$$z5I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

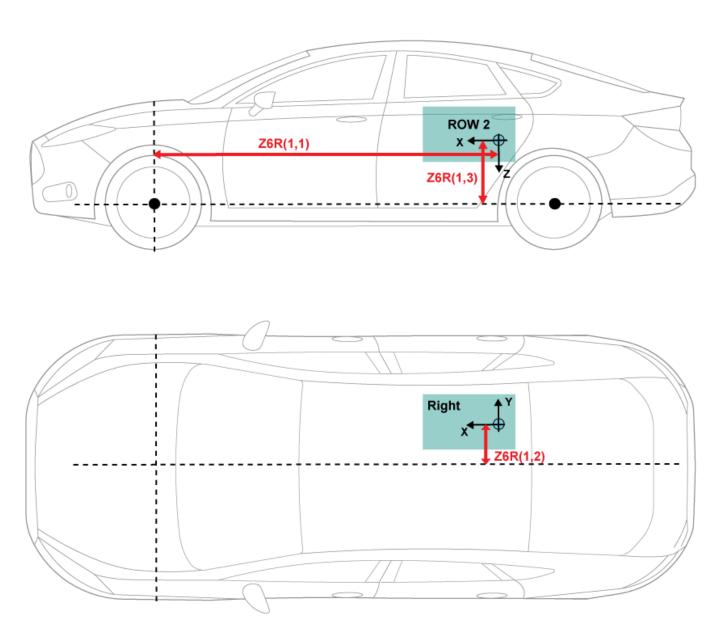
- *x*-axis along the vehicle-fixed *x*-axis
- *y*-axis along the vehicle-fixed *y*-axis
- z-axis along the vehicle-fixed z-axis



## Row 2, right side

Mass, z6m — Mass

0 (default) | scalar


Mass, z6m, in kg.

## Distance vector from front axle, z6R — Distance

[1.25, -.5, .4] (default) | vector

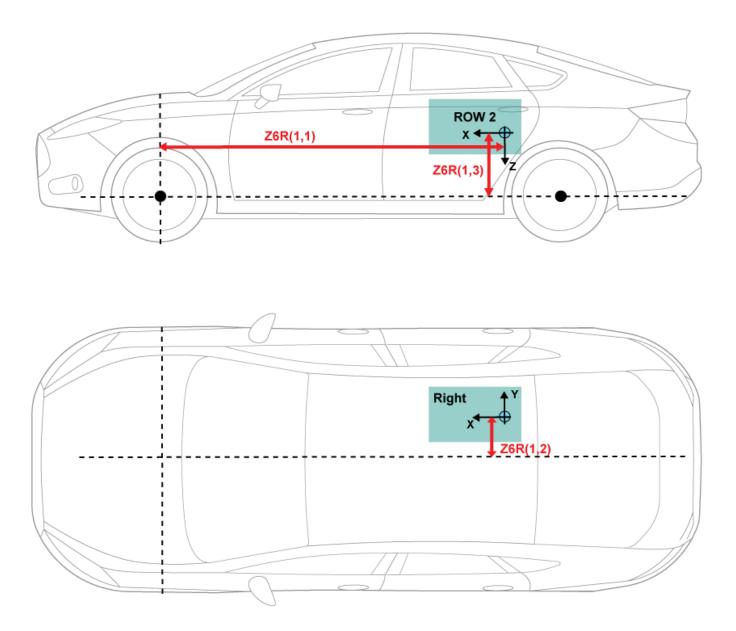
Distance vector from front axle to load, *z6R*, in m. Dimensions are [1-by-3].

| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
| z6R(1,1)      | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z6R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z6R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Rear of the front axle                    | • $z6R(1,1) > 0$ |
| Right of the vehicle centerline           | • $z6R(1,2) > 0$ |
| Above the front axle suspension hardpoint | • $z6R(1,3) > 0$ |


# Inertia tensor, z6I — Inertia

[5,-.1,-2;-2,9,.1;-.1,.1,6].\*0 (default) | array

Inertia tensor, z6I, in kg·m<sup>2</sup>. Dimensions are [3-by-3].

$$z6I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

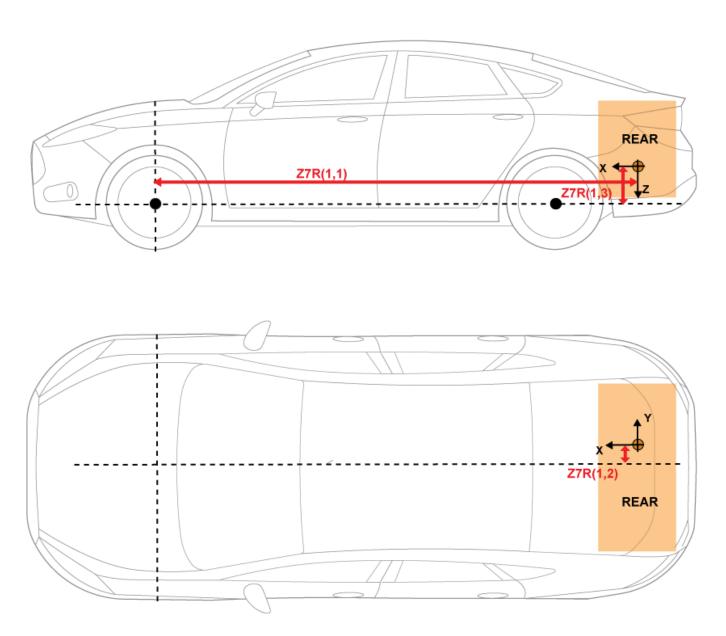
- *x*-axis along the vehicle-fixed *x*-axis
- y-axis along the vehicle-fixed y-axis
- z-axis along the vehicle-fixed z-axis



#### Rear

Mass, z7m — Mass

0 (default) | scalar


Mass, z7m, in kg.

## Distance vector from front axle, z7R — Distance

[2,0,.25] (default) | vector

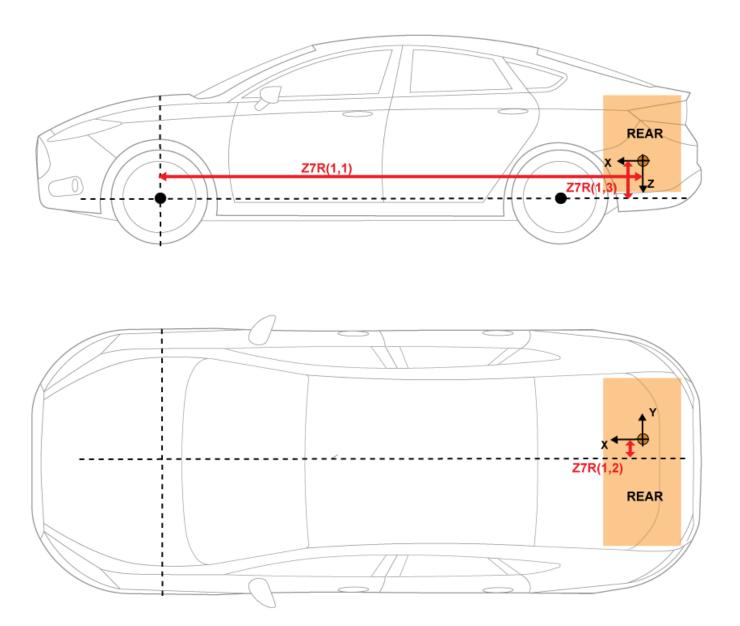
Distance vector from front axle to load, z7R, in m. Dimensions are [1-by-3].

| Array Element | Description                                                       |
|---------------|-------------------------------------------------------------------|
|               | Front suspension hardpoint to load, along vehicle-fixed $x$ -axis |
| z7R(1,2)      | Vehicle centerline to load, along vehicle-fixed y-axis            |
| z7R(1,3)      | Front suspension hardpoint to load, along vehicle-fixed $z$ -axis |



For example, this table summarizes the parameter settings that specify the load location indicated by the dot.

| <b>Example Location</b>                   | Sign             |
|-------------------------------------------|------------------|
| Rear of the front axle                    | • $z7R(1,1) > 0$ |
| • Right of the vehicle centerline         | • $z7R(1,2) > 0$ |
| Above the front axle suspension hardpoint | • $z7R(1,3) > 0$ |


# Inertia tensor, z7I — Inertia

[1.4,-.2,.1;-.2,1.4,.1;.1,.1,2.25].\*0 (default) | array

Inertia tensor, z7I, in kg·m^2. Dimensions are [3-by-3].

$$z7I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

- *x*-axis along the vehicle-fixed *x*-axis
- *y*-axis along the vehicle-fixed *y*-axis
- z-axis along the vehicle-fixed z-axis



### **Aerodynamic**

### Longitudinal drag area, Af — Area

2 (default) | scalar

Effective vehicle cross-sectional area,  $A_f$  to calculate the aerodynamic drag force on the vehicle, in m<sup>2</sup>.

### Longitudinal drag coefficient, Cd — Drag

.3 (default) | scalar

Air drag coefficient,  $C_d$ , dimensionless.

### Longitudinal lift coefficient, Cl - Lift

.1 (default) | scalar

Air lift coefficient,  $C_l$ , dimensionless.

### Longitudinal drag pitch moment, Cpm — Pitch drag

.1 (default) | scalar

Longitudinal drag pitch moment coefficient,  $C_{pm}$ , dimensionless.

### Relative wind angle vector, beta\_w — Wind angle

[0:0.001:0.01] (default) | vector

Relative wind angle vector,  $\beta_w$ , in rad.

### Side force coefficient vector, Cs — Side force drag

[0:0.01:0.1] (default) | vector

Side force coefficient vector coefficient,  $C_s$ , dimensionless.

### Yaw moment coefficient vector, Cym — Yaw moment drag

[0:0.001:0.01] (default) | vector

Yaw moment coefficient vector coefficient,  $C_{vm}$ , dimensionless.

#### **Environment**

### Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental air absolute pressure,  $P_{abs}$ , in Pa.

### Air temperature, Tair — Ambient air temperature

273 (default) | scalar

Ambient air temperature,  $T_{air}$ , in K.

### **Dependencies**

To enable this parameter, clear **Air temperature**.

### **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, g, in m/s $^2$ .

#### Simulation

# **Longitudinal velocity tolerance, xdot\_tol — Tolerance** .1 (default) | scalar

Longitudinal velocity tolerance,  $xdot_{tol}$ , in m/s.

The block uses this parameter to avoid a division by zero when it calculates the body slip angle,  $\beta$ .

# Geometric longitudinal offset from axle plane, long0ff — Longitudinal offset $0 (default) \mid scalar$

Vehicle chassis offset from axle plane along body-fixed *x*-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

# Geometric lateral offset from center plane, lat0ff — Lateral offset 0 (default) | scalar

Vehicle chassis offset from center plane along body-fixed *y*-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

# **Geometric vertical offset from axle plane, vertOff — Vertical offset** 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed z-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

# Wrap Euler angles, wrapAng — Selection on (default) | off

Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

- Track the total vehicle vaw rotation.
- Avoid discontinuities in the vehicle state estimators.

### References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

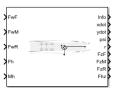
# **Extended Capabilities**

### C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

### See Also

6DOF (Euler Angles) | Vector Concatenate, Matrix Concatenate | Vehicle Body 3DOF


### **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

# Introduced in R2018a

# **Trailer Body 3DOF**

Trailer body with longitudinal, lateral, and yaw motion **Library:** Vehicle Dynamics Blockset / Vehicle Body



# **Description**

The Trailer Body 3DOF block implements a rigid two-axle or three-axle trailer body model to calculate longitudinal, lateral, and yaw motion. Configure the block for a single or dual track. The block accounts for axle and hitch reaction forces due to the trailer acceleration, aerodynamic drag, and steering.

Use this block in vehicle dynamics and automated driving studies to model nonholonomic vehicle motion when vehicle pitch, roll, and vertical motion are not significant.

Use the **Vehicle track** parameter to specify the number of tracks.

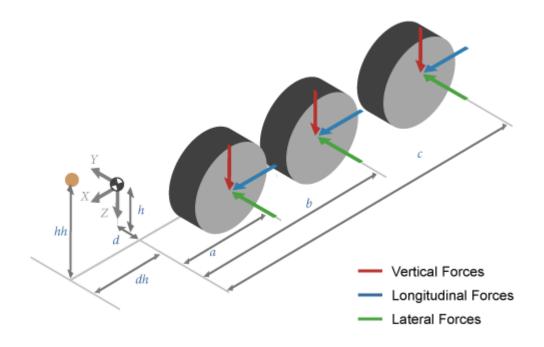
| Vehicle Track Setting | Implementation                                                                          |  |
|-----------------------|-----------------------------------------------------------------------------------------|--|
| Single 2-axle         | Trailer with a single track and two axles.                                              |  |
|                       | Forces act along the center line of the axles.                                          |  |
|                       | No lateral load transfer.                                                               |  |
| Dual 2-axle           | Trailer with a dual track and two axles. Forces act at the axle hard-point locations.   |  |
| Single 3-axle         | Trailer with a single track and three axles.                                            |  |
|                       | <ul> <li>Forces act along the center line of the axles.</li> </ul>                      |  |
|                       | No lateral load transfer.                                                               |  |
| Dual 3-axle (default) | Trailer with a dual track and three axles. Forces act at the axle hard-point locations. |  |

Use the **Axle forces** parameter to specify the type of force.

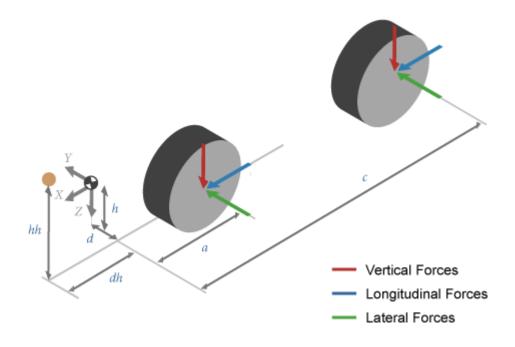
| Axle Forces Setting            | Implementation                                                                                                                                 |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| External longitudinal velocity | The block assumes that the external longitudinal velocity is in a quasi-steady state, and the longitudinal acceleration is approximately zero. |  |  |
|                                | Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness.             |  |  |
|                                | Consider this setting when you want to:                                                                                                        |  |  |
|                                | Generate virtual sensor signal data.                                                                                                           |  |  |
|                                | <ul> <li>Conduct high-level software studies that are not impacted by<br/>driveline or nonlinear tire responses.</li> </ul>                    |  |  |
| External longitudinal forces   | The block uses the external longitudinal force to accelerate or brake the vehicle.                                                             |  |  |
|                                | The block calculates lateral forces using the tire slip angles and linear cornering stiffness.                                                 |  |  |
|                                | Consider this setting when you want to:                                                                                                        |  |  |
|                                | Account for changes in the longitudinal velocity on the lateral and yaw motion.                                                                |  |  |
|                                | <ul> <li>Specify the external longitudinal motion through a force instead<br/>of an external longitudinal velocity.</li> </ul>                 |  |  |
|                                | <ul> <li>Connect the block to tractive actuators, wheels, brakes, and<br/>hitches.</li> </ul>                                                  |  |  |
| External forces                | The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle.                                        |  |  |
|                                | The block does not use the steering input to calculate vehicle motion.                                                                         |  |  |
|                                | Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.                           |  |  |

To create additional input ports, under **Input signals**, select these block parameters.

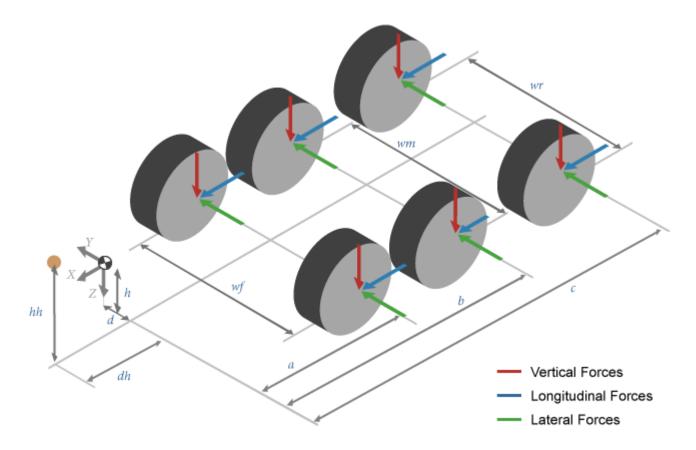
| Input Signals Pane<br>Parameter | Input Port | Description                                                                                                      |  |
|---------------------------------|------------|------------------------------------------------------------------------------------------------------------------|--|
| Front wheel steering            | WhlAngF    | Front wheel angle, $\delta_F$                                                                                    |  |
| Middle wheel steering           | WhlAngM    | Middle wheel angle, $\delta_M$                                                                                   |  |
| Rear wheel steering             | WhlAngR    | Rear wheel angle, $\delta_{R}$                                                                                   |  |
| External wind                   | WindXYZ    | Wind speed, $W_X$ , $W_Y$ , and $W_Z$ , in an inertial reference frame                                           |  |
| External friction               | Mu         | Friction coefficient                                                                                             |  |
| External forces                 | FExt       | External force on the vehicle center of gravity (CG), $F_x$ , $F_y$ , and $F_z$ , in the vehicle-fixed frame     |  |
| <b>External moments</b>         | MExt       | External moment about the vehicle CG, $M_x$ , $M_y$ , and $M_z$ , in the vehicle-fixed frame                     |  |
| Hitch forces                    | Fh         | Hitch force applied to the body at the hitch location, $Fh_x$ , $Fh_y$ , and $Fh_z$ , in the vehicle-fixed frame |  |


| Input Signals Pane<br>Parameter | Input Port | Description                                                                                        |
|---------------------------------|------------|----------------------------------------------------------------------------------------------------|
| Hitch moments                   | Mh         | Hitch moment at the hitch location, $Mh_x$ , $Mh_y$ , and $Mh_z$ , about the vehicle-fixed frame   |
| Initial longitudinal position   | X_o        | Initial vehicle CG displacement along the earth-fixed $X$ -axis                                    |
| Initial yaw angle               | psi_o      | Initial rotation of the vehicle-fixed frame about the earth-fixed $Z$ -axis (yaw)                  |
| Initial longitudinal velocity   | xdot_o     | Initial vehicle CG velocity along the vehicle-fixed $x$ -axis                                      |
| Initial yaw rate                | r_o        | Initial vehicle angular velocity about the vehicle-fixed $z$ -axis (yaw rate)                      |
| Initial lateral position        | Y_0        | Initial vehicle CG displacement along the earth-fixed Y-axis                                       |
| Air temperature                 | AirTemp    | Ambient air temperature. Consider this option if you want to vary the temperature during run time. |
| Initial lateral velocity        | ydot_o     | Initial vehicle CG velocity along the vehicle-fixed y-axis                                         |

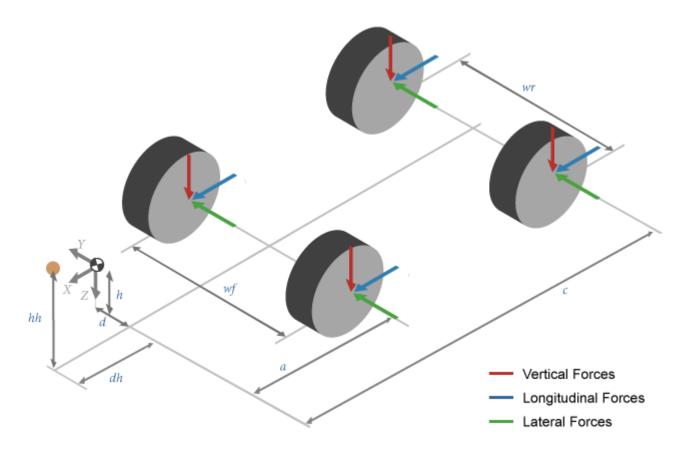
# Theory


To determine the vehicle motion, the block solves the rigid body planar dynamics equations of motion.

| Calculation     | Description                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Dynamics        | The block solves the rigid-body planar dynamics equations to determine the vehicle longitudinal motion. If you set <b>Axle forces</b> to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration.                                                                                                                         |  |  |
| External forces | External forces include both drag and external force inputs. The forces act on the vehicle CG.  The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block maintains pitch and roll equilibrium.                                                                                  |  |  |
| Tire forces     | The block uses the ratio of the local, longitudinal, and lateral velocities to determine the slip angles.  The block uses the steering angles to transform the tire forces to the vehicle-fixed frame.  If you set <b>Axle forces</b> to External forces, the block assumes that the externally provided forces are in the vehicle-fixed frame at the axle-wheel location. |  |  |


 ${\bf Single\ Track-Three\ Axles}$ 




Single Track — Two Axles



**Dual Track** — Three Axles



### **Dual Track** — Two Axles



The illustrations use these variables.

| a, b, c    | Longitudinal distance of the front, middle, and rear axles, respectively, from the normal projection point of the vehicle CG onto the common axle plane |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| h          | Height of the tractor CG above the axle plane along the vehicle-fixed $z$ -axis                                                                         |
| d          | Lateral distance from the geometric centerline to the center of mass along the vehicle-fixed $y$ -axis                                                  |
| hh         | Height of the hitch above the axle plane along the vehicle-fixed $z$ -axis                                                                              |
| dh         | Longitudinal distance of the hitch from the normal projection point of tractor CG onto the common axle plane                                            |
| wf, wm, wr | Front, middle, and rear track width, respectively                                                                                                       |

# Drag

This table summarizes the block implementation for the drag calculation.

| Calculation    | Description                                                                  |
|----------------|------------------------------------------------------------------------------|
| Coordinate     | The block transforms the wind speeds from the inertial frame to the vehicle- |
| transformation | fixed frame.                                                                 |

| Calculation  | Description                                                                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | To determine a relative airspeed, the block subtracts the wind speed from the CG vehicle velocity. Using the relative airspeed, the block determines the drag forces. |
| Drag moments | Using the relative airspeed, the block determines the drag moments.                                                                                                   |

## **Lateral Corner Stiffness and Relaxation Dynamics**

To enable the mapped corner stiffness and relaxation length dynamic parameters, set **Axle forces** to External longitudinal forces or External longitudinal velocity.

| Parameter Settings         |                                       | Description                                                                                                                                                                                                                                                               |
|----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mapped Corner<br>Stiffness | Include Relaxation<br>Length Dynamics |                                                                                                                                                                                                                                                                           |
| Off (default)              | On (default)                          | The block uses constant corner stiffness values.  The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel.                                              |
| On                         | On (default)                          | The block uses lookup tables that are functions of the corner stiffness data and slip angles.  The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel. |
| Off (default)              | 0ff                                   | The block uses constant corner stiffness values.                                                                                                                                                                                                                          |

## **Ports**

## Input

## WhlAngF — Front wheel steering angles

scalar|array

Front wheel steering angles,  $\delta_F$ , in rad.

| Vehicle Track Setting | Variable                                                                                                      | Signal Dimension       |
|-----------------------|---------------------------------------------------------------------------------------------------------------|------------------------|
| Single 2-axle         | $\delta_F$                                                                                                    | Scalar - 1             |
| Single 3-axle         |                                                                                                               |                        |
| Dual 2-axle           | $\delta_F = [\delta_{fl} \ \delta_{fr}] \text{ or } \begin{bmatrix} \delta_{fl} \\ \delta_{fr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
| Dual 3-axle           | $[o_{fr}]$                                                                                                    |                        |

### **Dependencies**

To enable this port, under Input signals, select Front wheel steering.

### WhlAngM — Middle wheel steering angles

scalar | array

Middle wheel steering angles,  $\delta_M$ , in rad.

| Vehicle Track Setting | Variable                                                                                                        | Signal Dimension       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| Single 3-axle         | $\delta_M$                                                                                                      | Scalar - 1             |
| Dual 3-axle           | $\delta_{M} = [\delta_{ml} \ \delta_{mr}] \text{ or } \begin{bmatrix} \delta_{ml} \\ \delta_{mr} \end{bmatrix}$ | Array - [1x2] or [2x1] |

### **Dependencies**

To enable this port:

- Set **Vehicle track** to **Single 3-axle** or **Dual 3-axle**.
- To enable this port, under Input signals, select Middle wheel steering.

### WhlAngR — Rear wheel steering angles

scalar | array

Rear wheel steering angles,  $\delta_R$ , in rad.

| Vehicle Track Setting | Variable                                                                                                        | Signal Dimension       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| Single 2-axle         | $\delta_R$                                                                                                      | Scalar - 1             |
| Single 3-axle         |                                                                                                                 |                        |
| Dual 2-axle           | $\delta_R = [\delta_{rl} \ \delta_{rr}] \ \text{or} \ \begin{bmatrix} \delta_{rl} \\ \delta_{rr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
| Dual 3-axle           | $\left[ egin{array}{cccccccccccccccccccccccccccccccccccc$                                                       |                        |

### **Dependencies**

To enable this port, under Input signals, select Rear wheel steering.

### xdotin — Longitudinal velocity

scalar

Vehicle CG velocity along the vehicle-fixed x-axis, in m/s.

#### **Dependencies**

To enable this port, set **Axle forces** to External longitudinal velocity.

### FwF — Total force on the front wheels

scalar | array

Force on the front wheels,  $Fw_F$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting        | Axle Forces<br>Setting             | Description                                         | Variable                                                                                 | Signal<br>Dimension    |
|------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
| Single 2-axle                      | External<br>longitudinal<br>forces | Longitudinal force on the front wheel               | $FwF = Fx_f$                                                                             | Scalar - 1             |
| Single 3-<br>axle                  | External forces                    | Longitudinal and lateral forces on the front wheel  | $FwF = [Fx_f \ Fy_f] \ \text{or} \begin{bmatrix} Fx_f \\ Fy_f \end{bmatrix}$             |                        |
| Dual 2-<br>axle<br>Dual 3-<br>axle | External<br>longitudinal<br>forces | Longitudinal<br>force on the<br>front wheels        | $FwF = [F_{xfl} \ F_{xfr}] \text{ or } \begin{bmatrix} F_{xfl} \\ F_{xfr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
|                                    | External<br>forces                 | Longitudinal and lateral forces on the front wheels | $FwF = \begin{bmatrix} F_{xfl} & F_{xfr} \\ F_{yfl} & F_{yfr} \end{bmatrix}$             | Array - [2x2]          |

## **Dependencies**

To enable this port, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

## FwM — Total force on the middle wheels

scalar|array

Force on the middle wheels,  $Fw_M$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting             | Description                                         | Variable                                                                          | Signal<br>Dimension    |
|-----------------------------|------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|
| Single 3-<br>axle           | External longitudinal forces       | Longitudinal force on the middle wheel              | $FwM = Fx_r$                                                                      | Scalar - 1             |
|                             | External forces                    | Longitudinal and lateral forces on the middle wheel | $FwM = [Fx_m \ Fy_m] \text{ or }$ $\begin{bmatrix} Fx_m \\ Fy_m \end{bmatrix}$    | Array - [1x2] or [2x1] |
| Dual 3-<br>axle             | External<br>longitudinal<br>forces | Longitudinal<br>force on the<br>middle wheels       | $FwM = [F_{xml} \ F_{xmr}]$ or $\begin{bmatrix} F_{xml} \\ F_{xmr} \end{bmatrix}$ | Array - [1x2] or [2x1] |

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting | Description                                                   |                                                                              | Signal<br>Dimension |
|-----------------------------|------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|
|                             | External forces        | Longitudinal and<br>lateral forces on<br>the middle<br>wheels | $FwM = \begin{bmatrix} F_{xml} & F_{xmr} \\ F_{yml} & F_{ymr} \end{bmatrix}$ | Array - [2x2]       |

### **Dependencies**

To enable this port, set:

- Vehicle track to Single 3-axle or Dual 3-axle.
- Axle forces to External longitudinal forces or External forces.

### FwR — Total force on the rear wheels

scalar | array

Force on the rear wheels,  $Fw_R$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting        | Axle Forces<br>Setting             | Description                                        | Variable                                                                                                 | Signal<br>Dimension    |
|------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|
| Single 2-axle                      | External longitudinal forces       | Longitudinal force on the rear wheel               | $FwR = Fx_r$                                                                                             | Scalar - 1             |
| Single 3-<br>axle                  | External forces                    | Longitudinal and lateral forces on the rear wheel  | $FwR = \begin{bmatrix} Fx_r & Fy_r \end{bmatrix} \text{ or } \begin{bmatrix} Fx_r \\ Fy_r \end{bmatrix}$ |                        |
| Dual 2-<br>axle<br>Dual 3-<br>axle | External<br>longitudinal<br>forces | Longitudinal<br>force on the rear<br>wheels        | $FwR = [F_{xrl} \ F_{xrr}] \text{ or } \begin{bmatrix} F_{xrl} \\ F_{xrr} \end{bmatrix}$                 | Array - [1x2] or [2x1] |
|                                    | External forces                    | Longitudinal and lateral forces on the rear wheels | $FwR = \begin{bmatrix} F_{xrl} & F_{xrr} \\ F_{yrl} & F_{yrr} \end{bmatrix}$                             | Array - [2x2]          |

### **Dependencies**

To enable this port, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

### FExt — External force on the vehicle CG

array

External forces applied to the vehicle CG,  $F_{xext}$ ,  $F_{yext}$ ,  $F_{zext}$ , in vehicle-fixed frame, in N. The signal vector dimensions are [1x3] or [3x1].

To enable this port, under **Input signals**, select **External forces**.

### MExt — External moment about vehicle CG

array

External moment about the vehicle CG,  $M_x$ ,  $M_y$ ,  $M_z$ , in the vehicle-fixed frame, in N·m. The signal vector dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, under Input signals, select External moments.

### Fh — Hitch force on the body

array

Hitch force applied to the body at the hitch location,  $Fh_x$ ,  $Fh_y$ ,  $Fh_z$ , in the vehicle-fixed frame, in N. The signal array dimensions are [1x3] or [3x1].

### **Dependencies**

To enable this port, under **Input signals**, select **Hitch forces**.

### Mh — Hitch moment about body

array

Hitch moment at the hitch location,  $Mh_x$ ,  $Mh_y$ ,  $Mh_z$ , about the vehicle-fixed frame, in N·m. The signal array dimensions are [1x3] or [3x1].

### **Dependencies**

To enable this port, under **Input signals**, select **Hitch moments**.

### WindXYZ — Wind speed

array

Wind speed,  $W_x$ ,  $W_y$ ,  $W_z$ , along the inertial X-, Y-, and Z-axes, in m/s. The signal vector dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, under Input signals, select External wind.

#### Mu — Tire friction coefficient

array

Tire friction coefficient,  $\mu$ . The value is dimensionless.

| <b>Vehicle Track Setting</b> | Description                        | Variable                                                                                   | Signal Dimension       |
|------------------------------|------------------------------------|--------------------------------------------------------------------------------------------|------------------------|
| Single 2-axle                | Friction coefficient on the wheels | $Mu = \left[\mu_f \ \mu_r\right] \text{ or } \begin{bmatrix} \mu_f \\ \mu_r \end{bmatrix}$ | Array - [1x2] or [2x1] |
| Dual 2-axle                  | Friction coefficient on the wheels | $Mu = \begin{bmatrix} \mu_{fl} & \mu_{fr} \\ \mu_{rl} & \mu_{rr} \end{bmatrix}$            | Array - [2x2]          |

| <b>Vehicle Track Setting</b> | Description                        | Variable                                                                                           | Signal Dimension       |
|------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|
| Single 3-axle                | Friction coefficient on the wheels | $Mu = [\mu_f \ \mu_m \ \mu_r] \text{ or }$ $\begin{bmatrix} \mu_f \\ \mu_m \\ \mu_r \end{bmatrix}$ | Array - [1x3] or [3x1] |
| Dual 3-axle                  | Friction coefficient on the wheels | $Mu = egin{bmatrix} \mu_{fl} & \mu_{fr} \ \mu_{ml} & \mu_{mr} \ \mu_{rl} & \mu_{rr} \end{bmatrix}$ | Array - [3x2]          |

To enable this port, under **Input signals**, select **External friction**.

### AirTemp — Ambient air temperature

scalar

Ambient air temperature, in K.

### **Dependencies**

To enable this port, under **Input signals**, select **Air temperature**.

### X\_o — Initial longitudinal position

scalar

Initial vehicle CG displacement along the earth-fixed *X*-axis, in m.

### **Dependencies**

To enable this port, under **Input signals**, select **Initial longitudinal position**.

### **Y\_o** — Initial lateral position

scalar

Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

#### **Dependencies**

To enable this port, under Input signals, select Initial lateral position.

### xdot\_o — Initial longitudinal position

scalar

Initial vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

### **Dependencies**

To enable this port:

**1** Set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

### 2 Under Input signals, select Initial longitudinal velocity

### ydot\_o — Initial lateral position

scalar

Initial vehicle CG velocity along the vehicle-fixed y-axis, in m/s.

### **Dependencies**

To enable this port, under Input signals, select Initial lateral velocity.

### psi\_o — Initial yaw angle

scalar

Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

### **Dependencies**

To enable this port, under Input signals, select Initial yaw angle.

### r\_o — Initial yaw rate

scalar

Vehicle angular velocity about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

### **Dependencies**

To enable this port, under Input signals, select Initial yaw rate.

### Output

### Info — Trailer data

bus

Trailer data, returned as a bus signal containing these block values.

| Signal           |      |                                                              |                                                         | Description                                              | Value    | Units |
|------------------|------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------|-------|
| InertFrm Cg Disp | Disp | X                                                            | Vehicle CG displacement along the earth-fixed $X$ -axis | Computed                                                 | m        |       |
|                  | Υ    | Vehicle CG displacement along the earth-fixed <i>Y</i> -axis | Computed                                                | m                                                        |          |       |
|                  |      |                                                              | Z                                                       | Vehicle CG displacement along the earth-fixed $Z$ -axis  | 0        | m     |
|                  |      | Vel                                                          | Xdot                                                    | Vehicle CG velocity along the earth-fixed $X$ -axis      | Computed | m/s   |
|                  |      |                                                              | Ydot                                                    | Vehicle CG velocity along the earth-fixed <i>Y</i> -axis | Computed | m/s   |

| Signal |         |      |       |          | Description                                                                             | Value    | Units |
|--------|---------|------|-------|----------|-----------------------------------------------------------------------------------------|----------|-------|
|        |         |      | Zdot  |          | Vehicle CG velocity along the earth-fixed Z-axis                                        | 0        | m/s   |
|        |         | Ang  | phi   |          | Rotation of the vehicle-fixed frame about the earth-fixed <i>X</i> -axis (roll)         | Θ        | rad   |
|        |         |      | theta |          | Rotation of the vehicle-<br>fixed frame about the<br>earth-fixed <i>Y</i> -axis (pitch) | 0        | rad   |
|        |         |      | psi   |          | Rotation of the vehicle-fixed frame about the earth-fixed <i>Z</i> -axis (yaw)          | Computed | rad   |
|        | FrntAxl | Lft  | Disp  | X        | Front left wheel displacement along the earth-fixed <i>X</i> -axis                      | Computed | m     |
|        |         | Vel  |       | Y        | Front left wheel displacement along the earth-fixed <i>Y</i> -axis                      | Computed | m     |
|        |         |      |       | Z        | Front left wheel displacement along the earth-fixed Z-axis                              | 0        | m     |
|        |         |      | Vel   | Xdo<br>t | Front left wheel velocity along the earth-fixed $X$ -axis                               | Computed | m/s   |
|        |         |      |       | Ydo<br>t | Front left wheel velocity along the earth-fixed <i>Y</i> -axis                          | Computed | m/s   |
|        |         |      |       | Zdo<br>t | Front left wheel velocity along the earth-fixed $Z$ -axis                               | 0        | m/s   |
|        |         | Rght | Disp  | Х        | Front right wheel displacement along the earth-fixed <i>X</i> -axis                     | Computed | m     |
|        |         |      |       | Y        | Front right wheel displacement along the earth-fixed <i>Y</i> -axis                     | Computed | m     |
|        |         |      |       | Z        | Front right wheel displacement along the earth-fixed Z-axis                             | 0        | m     |
|        |         |      | t     | Xdo<br>t | Front right wheel velocity along the earth-fixed <i>X</i> -axis                         | Computed | m/s   |
|        |         |      |       | Ydo<br>t | Front right wheel velocity along the earth-fixed <i>Y</i> -axis                         | Computed | m/s   |

| Signal |         |        |      |                                                                   | Description                                                         | Value    | Units |
|--------|---------|--------|------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------|-------|
|        |         |        |      | Zdo<br>t                                                          | Front right wheel velocity along the earth-fixed <i>Z</i> -axis     | 0        | m/s   |
|        | MidlAxl | xl Lft | Disp | X                                                                 | Middle left wheel displacement along the earth-fixed <i>X</i> -axis | Computed | m     |
|        |         |        |      | Υ                                                                 | Middle left wheel displacement along the earth-fixed <i>Y</i> -axis | Computed | m     |
|        |         |        | Z    | Middle left wheel displacement along the earth-fixed Z-axis       | 0                                                                   | m        |       |
|        |         |        | Vel  | Xdo<br>t                                                          | Middle left wheel velocity along the earth-fixed $X$ -axis          | Computed | m/s   |
|        |         |        |      | Ydo<br>t                                                          | Middle left wheel velocity along the earth-fixed <i>Y</i> -axis     | Computed | m/s   |
|        |         |        |      | Zdo<br>t                                                          | Middle left wheel velocity along the earth-fixed $Z$ -axis          | Θ        | m/s   |
|        |         | Rght   |      | Х                                                                 | Middle right wheel displacement along the earth-fixed X-axis        | Computed | m     |
|        |         |        |      | Υ                                                                 | Middle right wheel<br>displacement along the<br>earth-fixed Y-axis  | Computed | m     |
|        |         |        |      | Z                                                                 | Middle right wheel displacement along the earth-fixed Z-axis        | Θ        | m     |
|        |         |        |      | Xdo<br>t                                                          | Middle right wheel velocity along the earth-fixed X-axis            | Computed | m/s   |
|        |         |        |      | Ydo<br>t                                                          | Middle right wheel velocity along the earth-fixed <i>Y</i> -axis    | Computed | m/s   |
|        |         |        |      | Zdo<br>t                                                          | Middle right wheel velocity along the earth-fixed Z-axis            | 0        | m/s   |
|        | RearAxl | Lft    | Disp | Х                                                                 | Rear left wheel displacement along the earth-fixed X-axis           | Computed | m     |
|        |         |        | Υ    | Rear left wheel displacement along the earth-fixed <i>Y</i> -axis | Computed                                                            | m        |       |

| Signal |      |      |      |          | Description                                                                          | Value    | Units |
|--------|------|------|------|----------|--------------------------------------------------------------------------------------|----------|-------|
|        |      |      |      | Z        | Rear left wheel displacement along the earth-fixed Z-axis                            | Θ        | m     |
|        |      |      | Vel  | Xdo<br>t | Rear left wheel velocity along the earth-fixed $X$ -axis                             | Computed | m/s   |
|        |      |      |      | Ydo<br>t | Rear left wheel velocity along the earth-fixed <i>Y</i> -axis                        | Computed | m/s   |
|        |      |      |      | Zdo<br>t | Rear left wheel velocity along the earth-fixed $Z$ -axis                             | 0        | m/s   |
|        |      | Rght | ,    | Х        | Rear right wheel displacement along the earth-fixed <i>X</i> -axis                   | Computed | m     |
|        |      |      |      | Y        | Rear right wheel<br>displacement along the<br>earth-fixed Y-axis                     | Computed | m     |
|        |      |      |      | Z        | Rear right wheel displacement along the earth-fixed Z-axis                           | 0        | m     |
|        |      |      | -    | Xdo<br>t | Rear right wheel velocity along the earth-fixed $X$ -axis                            | Computed | m/s   |
|        |      |      |      | Ydo<br>t | Rear right wheel velocity along the earth-fixed <i>Y</i> -axis                       | Computed | m/s   |
|        |      |      |      | Zdo<br>t | Rear right wheel velocity along the earth-fixed $Z$ -axis                            | 0        | m/s   |
|        | Geom | Disp | Х    |          | Trailer body offset from the axle plane along the earth-fixed <i>X</i> -axis         | Computed | m     |
|        |      |      | Υ    |          | Trailer body offset from<br>the center plane along the<br>earth-fixed <i>Y</i> -axis | Computed | m     |
|        |      |      |      |          | Trailer body offset from the axle plane along the earth-fixed <i>Z</i> -axis         | Computed | m     |
|        |      | Vel  | Xdot |          | Trailer body offset velocity along the earthfixed <i>X</i> -axis                     | Computed | m/s   |
|        |      | Ydot |      |          | Trailer body offset velocity along the earthfixed Y-axis                             | Computed | m/s   |

| Signal |     |        |                                                                              | Description                                                                 | Value    | Units |
|--------|-----|--------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|-------|
|        |     |        | Zdot                                                                         | Trailer body offset velocity along the earth-fixed Z-axis                   | Computed | m/s   |
| BdyFrm | Cg  | Vel    | xdot                                                                         | Vehicle CG velocity along the vehicle-fixed <i>x</i> -axis                  | Computed | m/s   |
|        |     |        | ydot                                                                         | Vehicle CG velocity along the vehicle-fixed y-axis                          | Computed | m/s   |
|        |     |        | zdot                                                                         | Vehicle CG velocity along the vehicle-fixed $z$ -axis                       | 0        | m/s   |
|        |     | Ang    | Beta                                                                         | Body slip angle, $\beta$ $\beta = \frac{V_y}{V_x}$                          | Computed | rad   |
|        |     | AngVel | p                                                                            | Vehicle angular velocity about the vehicle-fixed <i>x</i> -axis (roll rate) | Θ        | rad/s |
|        |     | q      | Vehicle angular velocity about the vehicle-fixed <i>y</i> -axis (pitch rate) | 0                                                                           | rad/s    |       |
|        | Acc |        | r                                                                            | Vehicle angular velocity about the vehicle-fixed $z$ -axis (yaw rate)       | Computed | rad/s |
|        |     | Acc    | ax                                                                           | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis              | Computed | gn    |
|        |     |        | ay                                                                           | Vehicle CG acceleration along the vehicle-fixed <i>y</i> -axis              | Computed | gn    |
|        |     |        | az                                                                           | Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis              | 0        | gn    |
|        |     |        | xddot                                                                        | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis              | Computed | m/s^2 |
|        |     |        | yddot                                                                        | Vehicle CG acceleration along the vehicle-fixed <i>y</i> -axis              | Computed | m/s^2 |
|        |     |        | zddot                                                                        | Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis              | 0        | m/s^2 |
|        |     | AngAcc | pdot                                                                         | Vehicle angular acceleration about the vehicle-fixed <i>x</i> -axis         | 0        | rad/s |

| Signal |        |         |      |    | Description                                                                                  | Value    | Units |
|--------|--------|---------|------|----|----------------------------------------------------------------------------------------------|----------|-------|
|        |        |         | qdot |    | Vehicle angular acceleration about the vehicle-fixed <i>y</i> -axis                          | Θ        | rad/s |
|        |        |         | rdot |    | Vehicle angular acceleration about the vehicle-fixed $z$ -axis                               | Computed | rad/s |
|        | Forces | Body    | Fx   |    | Net force on the vehicle CG along the vehicle-fixed <i>x</i> -axis                           | Computed | N     |
|        |        |         | Fy   |    | Net force on the vehicle CG along the vehicle-fixed y-axis                                   | Computed | N     |
|        |        |         | Fz   |    | Net force on the vehicle CG along the vehicle-fixed z-axis                                   | 0        | N     |
|        |        | Ext     | Fx   |    | External force on the vehicle CG along the vehicle-fixed x-axis                              | Computed | N     |
|        |        |         | Fy   |    | External force on the vehicle CG along the vehicle-fixed y-axis                              | Computed | N     |
|        |        |         | Fz   |    | External force on the vehicle CG along the vehicle-fixed z-axis                              | 0        | N     |
|        |        | Hitch   | Fx   |    | Hitch force applied to the body at the hitch location along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |        |         | Fy   |    | Hitch force applied to the body at the hitch location along the vehicle-fixed <i>y</i> -axis | Computed | N     |
|        |        |         | Fz   |    | Hitch force applied to the body at the hitch location along the vehicle-fixed <i>z</i> -axis | Computed | N     |
|        |        | FrntAxl | Lft  | Fx | Longitudinal force on the left front wheel along the vehicle-fixed <i>x</i> -axis            | Computed | N     |
|        |        |         | Fy   |    | Lateral force on the left front wheel along the vehicle-fixed <i>y</i> -axis                 | Computed | N     |
|        |        |         |      | Fz | Normal force on the left front wheel along the vehicle-fixed z-axis                          | Computed | N     |

| Signal |         |        |        | Description                                                                         | Value    | Units |
|--------|---------|--------|--------|-------------------------------------------------------------------------------------|----------|-------|
|        |         | Rght   | Fx     | Longitudinal force on the right front wheel along the vehicle-fixed <i>x</i> -axis  | Computed | N     |
|        |         |        | Fy     | Lateral force on the right front wheel along the vehicle-fixed <i>y</i> -axis       | Computed | N     |
|        |         |        | Fz     | Normal force on the right front wheel along the vehicle-fixed <i>z</i> -axis        | Computed | N     |
|        | MidlAxl | Lft    | Lft Fx | Longitudinal force on the left middle wheel along the vehicle-fixed <i>x</i> -axis  | Computed | N     |
|        |         |        | Fy     | Lateral force on the left middle wheel along the vehicle-fixed <i>y</i> -axis       | Computed | N     |
|        |         |        | Fz     | Normal force on the left middle wheel along the vehicle-fixed <i>z</i> -axis        | Computed | N     |
|        |         | Rght   | Fx     | Longitudinal force on the right middle wheel along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |         | Fz     | Fy     | Lateral force on the right middle wheel along the vehicle-fixed <i>y</i> -axis      | Computed | N     |
|        |         |        | Fz     | Normal force on the right middle wheel along the vehicle-fixed <i>z</i> -axis       | Computed | N     |
|        | RearAxl | Lft Fx | Fx     | Longitudinal force on the left rear wheel along the vehicle-fixed x-axis            | Computed | N     |
|        |         |        | Fy     | Lateral force on the left<br>rear wheel along the<br>vehicle-fixed <i>y</i> -axis   | Computed | N     |
|        |         |        | Fz     | Normal force on the left rear wheel along the vehicle-fixed <i>z</i> -axis          | Computed | N     |
|        |         | Rght   | Fx     | Longitudinal force on the right rear wheel along the vehicle-fixed x-axis           | Computed | N     |
|        |         | Fy     | Fy     | Lateral force on the right rear wheel along the vehicle-fixed <i>y</i> -axis        | Computed | N     |
|        |         |        | Fz     | Normal force on the right rear wheel along the vehicle-fixed <i>z</i> -axis         | Computed | N     |

| Signal |          |               |             |        | Description                                                            | Value    | Units |
|--------|----------|---------------|-------------|--------|------------------------------------------------------------------------|----------|-------|
|        | Tires    | FrntTir<br>es |             | F<br>x | Front left tire force along the vehicle-fixed x-axis                   | Computed | N     |
|        |          |               | t           | F<br>y | Front left tire force along the vehicle-fixed <i>y</i> -axis           | Computed | N     |
|        |          |               |             | F<br>z | Front left tire force along the vehicle-fixed <i>z</i> -axis           | Computed | N     |
|        |          |               | R<br>g<br>h |        | Front right tire force along the vehicle-fixed <i>x</i> -axis          | Computed | N     |
|        |          |               | t           | F<br>y | Front right tire force along the vehicle-fixed <i>y</i> -axis          | Computed | N     |
|        |          |               |             | F<br>z | Front right tire force along the vehicle-fixed $z$ -axis               | Computed | N     |
|        |          | RearTir<br>es | L           |        | Rear left tire force along the vehicle-fixed x-axis                    | Computed | N     |
|        |          |               | t           | F<br>y | Rear left tire force along the vehicle-fixed <i>y</i> -axis            | Computed | N     |
|        |          |               |             | F<br>z | Rear left tire force along the vehicle-fixed z-axis                    | Computed | N     |
|        |          |               | R<br>g      | F<br>x | Rear right tire force along the vehicle-fixed x-axis                   | Computed | N     |
|        |          |               | h<br>t      |        | Rear right tire force along the vehicle-fixed <i>y</i> -axis           | Computed | N     |
|        |          |               |             | F<br>z | Rear right tire force along the vehicle-fixed <i>z</i> -axis           | Computed |       |
|        | Drag     | Fx            |             | •      | Drag force on the vehicle<br>CG along the vehicle-fixed<br>x-axis      | Computed | N     |
|        |          | Fy            |             |        | Drag force on the vehicle CG along the vehicle-fixed <i>y</i> -axis    | Computed | N     |
|        |          | Fz            |             |        | Drag force on the vehicle CG along the vehicle-fixed z-axis            | Computed | N     |
|        | Grvty Fx | Fx            |             |        | Gravity force on the vehicle CG along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |          | Fy            |             |        | Gravity force on the vehicle CG along the vehicle-fixed <i>y</i> -axis | Computed | N     |

| Signal |         |       |      |                                                                      | Description                                                              | Value    | Units |
|--------|---------|-------|------|----------------------------------------------------------------------|--------------------------------------------------------------------------|----------|-------|
|        |         |       | Fz   |                                                                      | Gravity force on the vehicle CG along the vehicle-fixed z-axis           | Computed | N     |
|        | Moments | Body  | Mx   |                                                                      | Body moment on the vehicle CG about the vehicle-fixed <i>x</i> -axis     | 0        | N·m   |
|        |         |       | Му   |                                                                      | Body moment on the vehicle CG about the vehicle-fixed <i>y</i> -axis     | Computed | N·m   |
|        |         |       | Mz   |                                                                      | Body moment on the vehicle CG about the vehicle-fixed z-axis             | 0        | N·m   |
|        | Drag    | Drag  | Mx   |                                                                      | Drag moment on the vehicle CG about the vehicle-fixed <i>x</i> -axis     | 0        | N·m   |
|        |         | Му    |      | Drag moment on the vehicle CG about the vehicle-fixed y-axis         |                                                                          | Computed | N·m   |
|        |         |       | Mz   |                                                                      | Drag moment on the vehicle CG about the vehicle-fixed $z$ -axis          | 0        | N·m   |
|        |         | Ext   | Mx   |                                                                      | External moment on the vehicle CG about the vehicle-fixed <i>x</i> -axis | Θ        | N·m   |
|        |         |       | Му   |                                                                      | External moment on the vehicle CG about the vehicle-fixed y-axis         | Computed | N·m   |
|        |         |       | Mz   |                                                                      | External moment on the vehicle CG about the vehicle-fixed z-axis         | 0        | N·m   |
|        |         | Hitch | Mx   |                                                                      | Hitch moment at the hitch location about vehicle-fixed x-axis            | 0        | N·m   |
|        |         |       | Му   |                                                                      | Hitch moment at the hitch location about vehicle-fixed <i>y</i> -axis    | Computed | N·m   |
|        |         |       | Mz   |                                                                      | Hitch moment at the hitch location about vehicle-fixed <i>z</i> -axis    | 0        | N·m   |
|        | FrntAxl | Lft   | Disp | Х                                                                    | Front left wheel displacement along the vehicle-fixed <i>x</i> -axis     | Computed | m     |
|        |         |       | у    | Front left wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed                                                                 | m        |       |

| Signal |         |       |          |                                                                       | Description                                                           | Value    | Units |
|--------|---------|-------|----------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------|-------|
|        |         |       |          | Z                                                                     | Front left wheel displacement along the vehicle-fixed $z$ -axis       | Computed | m     |
|        |         |       | Vel      | xdo<br>t                                                              | Front left wheel velocity along the vehicle-fixed <i>x</i> -axis      | Computed | m/s   |
|        |         |       |          | ydo<br>t                                                              | Front left wheel velocity along the vehicle-fixed <i>y</i> -axis      | Computed | m/s   |
|        |         |       |          | zdo<br>t                                                              | Front left wheel velocity along the vehicle-fixed <i>z</i> -axis      | 0        | m/s   |
|        | Rght    | Disp  | х        | Front right wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed                                                              | m        |       |
|        |         |       |          | У                                                                     | Front right wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed | m     |
|        |         |       |          | Z                                                                     | Front right wheel displacement along the vehicle-fixed $z$ -axis      | Computed | m     |
|        |         |       | Vel      | xdo<br>t                                                              | Front right wheel velocity along the vehicle-fixed <i>x</i> -axis     | Computed | m/s   |
|        |         |       |          | ydo<br>t                                                              | Front right wheel velocity along the vehicle-fixed <i>y</i> -axis     | Computed | m/s   |
|        |         |       |          | zdo<br>t                                                              | Front right wheel velocity along the vehicle-fixed <i>z</i> -axis     | 0        | m/s   |
|        |         | Steer | WhlAngFL | -                                                                     | Front left wheel steering angle                                       | Computed | rad   |
|        |         |       | WhlAngFF | }                                                                     | Front right wheel steering angle                                      | Computed | rad   |
|        | MidlAxl | Lft   | Disp     | Х                                                                     | Middle left wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed | m     |
|        |         |       |          | у                                                                     | Middle left wheel displacement along the vehicle-fixed y-axis         | Computed | m     |
|        |         |       |          | Z                                                                     | Middle left wheel displacement along the vehicle-fixed <i>z</i> -axis | Computed | m     |

| Signal |             |          |          |                                                                 | Description                                                               | Value    | Units |
|--------|-------------|----------|----------|-----------------------------------------------------------------|---------------------------------------------------------------------------|----------|-------|
|        |             |          | Vel      | xdo<br>t                                                        | Middle left wheel velocity along the vehicle-fixed <i>x</i> -axis         | Computed | m/s   |
|        |             |          |          | ydo<br>t                                                        | Middle left wheel velocity along the vehicle-fixed <i>y</i> -axis         | Computed | m/s   |
|        |             |          |          | zdo<br>t                                                        | Middle left wheel velocity along the vehicle-fixed <i>z</i> -axis         | 0        | m/s   |
|        |             | Rght     | Disp     | X                                                               | Middle right wheel displacement along the vehicle-fixed <i>x</i> -axis    | Computed | m     |
|        |             |          |          | у                                                               | Middle right wheel displacement along the vehicle-fixed <i>y</i> -axis    | Computed | m     |
|        |             |          |          | Z                                                               | Middle right wheel displacement along the vehicle-fixed $z$ -axis         | Computed | m     |
|        | Steer       |          | Vel      | xdo<br>t                                                        | Middle right wheel velocity along the vehicle-fixed x-axis                | Computed | m/s   |
|        |             |          |          | ydo<br>t                                                        | Middle right wheel velocity along the vehicle-fixed <i>y</i> -axis        | Computed | m/s   |
|        |             |          |          | zdo<br>t                                                        | Middle right wheel velocity along the vehicle-fixed z-axis                | 0        | m/s   |
|        |             | Steer    | WhlAngRL |                                                                 | Middle left wheel steering angle                                          | Computed | rad   |
|        |             | WhlAngRR |          | Middle right wheel steering angle                               | Computed                                                                  | rad      |       |
|        | RearAxl Lft | Lft      | Lft Disp | x                                                               | Rear left wheel displacement along the vehicle-fixed <i>x</i> -axis       | Computed | m     |
|        |             |          |          | у                                                               | Rear left wheel<br>displacement along the<br>vehicle-fixed <i>y</i> -axis | Computed | m     |
|        |             |          |          | Z                                                               | Rear left wheel displacement along the vehicle-fixed z-axis               | Computed | m     |
|        |             | Vel      | xdo<br>t | Rear left wheel velocity along the vehicle-fixed <i>x</i> -axis | Computed                                                                  | m/s      |       |

| Signal |           |          |          | Description                                                         | Value                                                                   | Units    |     |
|--------|-----------|----------|----------|---------------------------------------------------------------------|-------------------------------------------------------------------------|----------|-----|
|        |           |          |          | ydo<br>t                                                            | Rear left wheel velocity along the vehicle-fixed <i>y</i> -axis         | Computed | m/s |
|        |           |          |          | zdo<br>t                                                            | Rear left wheel velocity along the vehicle-fixed <i>z</i> -axis         | 0        | m/s |
|        |           | Rght     | Disp     | х                                                                   | Rear right wheel displacement along the vehicle-fixed x-axis            | Computed | m   |
|        |           |          |          | У                                                                   | Rear right wheel displacement along the vehicle-fixed <i>y</i> -axis    | Computed | m   |
|        |           |          |          | Z                                                                   | Rear right wheel displacement along the vehicle-fixed z-axis            | Computed | m   |
|        |           | Vel      | xdo<br>t | Rear right wheel velocity along the vehicle-fixed <i>x</i> -axis    | Computed                                                                | m/s      |     |
|        |           |          | ydo<br>t | Rear right wheel velocity along the vehicle-fixed <i>y</i> -axis    | Computed                                                                | m/s      |     |
|        |           |          |          | zdo<br>t                                                            | Rear right wheel velocity along the vehicle-fixed $z$ -axis             | 0        | m/s |
| Steer  | Steer     | WhlAngRL |          | Rear left wheel steering angle                                      | Computed                                                                | rad      |     |
|        |           |          | WhlAngRR |                                                                     | Rear right wheel steering angle                                         | Computed | rad |
|        |           | PwrExt   | t        |                                                                     | Applied external power                                                  | Computed | W   |
|        |           | PwrHtch  |          |                                                                     | Hitch power                                                             | Computed |     |
|        |           | Drag     |          |                                                                     | Power loss due to drag                                                  | Computed | W   |
|        | Geom Disp | Disp     |          | x                                                                   | Trailer offset from axle plane along the vehicle-fixed x-axis           | Input    | m   |
|        |           |          | У        |                                                                     | Trailer offset from center plane along the vehicle-fixed <i>y</i> -axis | Input    | m   |
|        |           | Z        |          | Trailer offset from axle plane along the earth-fixed <i>z</i> -axis | Input                                                                   | m        |     |
|        |           | Vel      |          | xdo<br>t                                                            | Trailer offset velocity along the vehicle-fixed <i>x</i> -axis          | Computed | m/s |

| Signal |     |          | Description                                                    | Value    | Units |
|--------|-----|----------|----------------------------------------------------------------|----------|-------|
|        |     |          | Trailer offset velocity along the vehicle-fixed <i>y</i> -axis | Computed | m/s   |
|        |     |          | Trailer offset velocity along the vehicle-fixed $z$ -axis      | 0        | m/s   |
|        | Ang | Bet<br>a | Body slip angle, $\beta$ $\beta = \frac{V_y}{V_x}$             | Computed | rad   |

### xdot — Trailer longitudinal velocity

scalar

Trailer CG velocity along the vehicle-fixed *x*-axis, in m/s.

### ydot — Trailer lateral velocity

scalar

Trailer CG velocity along the vehicle-fixed y-axis, in m/s.

### psi — Yaw

scalar

Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

### r - Yaw rate

scalar

Vehicle angular velocity, *r*, about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

### FzF — Normal force on the front wheels

scalar | array

Normal force on the front wheels,  $Fz_F$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                      | Variable                    | Signal Dimension |
|--------------------------|----------------------------------|-----------------------------|------------------|
| Single 2-axle            | Normal force on the front axle   | $FzF = Fz_f$                | Scalar - 1       |
| Single 3-axle            |                                  |                             |                  |
| Dual 2-axle              | Normal force on the front wheels | $FzF = [Fz_{fl} \ Fz_{fr}]$ | Array - [1x2]    |
| Dual 3-axle              |                                  |                             |                  |

### FzM — Normal force on the middle wheels

scalar|array

Normal force on the middle wheels,  $Fz_M$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                                      | Variable                    | Signal Dimension |
|--------------------------|--------------------------------------------------|-----------------------------|------------------|
| Single 3-axle            | Normal force on the middle axle                  | $FzM = Fz_m$                | Scalar - 1       |
| Dual 3-axle              | Normal force on the right and left middle wheels | $FzM = [Fz_{ml} \ Fz_{rl}]$ | Array - [1x2]    |

To enable this port, set **Vehicle track** to Single 3-axle or Dual 3-axle.

### FzR — Normal force on the rear wheels

scalar|array

Normal force on the rear wheels,  $Fz_R$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                     | Variable                    | Signal Dimension |
|--------------------------|---------------------------------|-----------------------------|------------------|
| Single 2-axle            | Normal force on the rear wheel  | $FzR = Fz_r$                | Scalar - 1       |
| Single 3-axle            |                                 |                             |                  |
| Dual 2-axle              | Normal force on the rear wheels | $FzR = [Fz_{rl} \ Fz_{rr}]$ | Array - [1x2]    |
| Dual 3-axle              |                                 |                             |                  |

### Fhz — Normal component of hitch force on the body

scalar

Normal hitch force applied to the body at the hitch location,  $Fh_z$ , in the vehicle-fixed frame z-axis, in N.

If you enable the **Hitch forces** parameter, the block offsets the normal hitch force,  $Fh_z$ , with the value of the Fh input port component along the vehicle-fixed z-axis.

### **Parameters**

### **Options**

### Vehicle track — Type of vehicle track

Dual 3-axle (default) | Single 2-axle | Single 3-axle | Dual 2-axle

Use the **Vehicle track** parameter to specify the number of tracks.

| Vehicle Track Setting | Implementation                                 |
|-----------------------|------------------------------------------------|
| Single 2-axle         | Trailer with a single track and two axles.     |
|                       | Forces act along the center line of the axles. |
|                       | No lateral load transfer.                      |

| Vehicle Track Setting | Implementation                                                                                                                                          |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dual 2-axle           | Trailer with a dual track and two axles. Forces act at the axle hard-point locations.                                                                   |
| Single 3-axle         | <ul><li>Trailer with a single track and three axles.</li><li>Forces act along the center line of the axles.</li><li>No lateral load transfer.</li></ul> |
| Dual 3-axle (default) | Trailer with a dual track and three axles. Forces act at the axle hard-point locations.                                                                 |

Axle forces — Type of axle force External forces (default) | External longitudinal velocity | External longitudinal forces

Use the **Axle forces** parameter to specify the type of force.

| Axle Forces Setting            | Implementation                                                                                                                                 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| External longitudinal velocity | The block assumes that the external longitudinal velocity is in a quasi-steady state, and the longitudinal acceleration is approximately zero. |
|                                | Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness.             |
|                                | Consider this setting when you want to:                                                                                                        |
|                                | Generate virtual sensor signal data.                                                                                                           |
|                                | <ul> <li>Conduct high-level software studies that are not impacted by<br/>driveline or nonlinear tire responses.</li> </ul>                    |
| External longitudinal forces   | The block uses the external longitudinal force to accelerate or brake the vehicle.                                                             |
|                                | The block calculates lateral forces using the tire slip angles and linear cornering stiffness.                                                 |
|                                | Consider this setting when you want to:                                                                                                        |
|                                | <ul> <li>Account for changes in the longitudinal velocity on the lateral<br/>and yaw motion.</li> </ul>                                        |
|                                | <ul> <li>Specify the external longitudinal motion through a force instead<br/>of an external longitudinal velocity.</li> </ul>                 |
|                                | <ul> <li>Connect the block to tractive actuators, wheels, brakes, and<br/>hitches.</li> </ul>                                                  |
| External forces                | The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle.                                        |
|                                | The block does not use the steering input to calculate vehicle motion.                                                                         |
|                                | Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.                           |

### **Input Signals**

### Front wheel steering — WhlAngFinput port

off (default) | on

Select to create input port WhlAngF.

### Middle wheel steering — WhlAngM input port

off (default) | on

Select to create input port WhlAngM.

### **Dependencies**

To enable this parameter, set **Vehicle track** to Single 3-axle or Dual 3-axle.

### Rear wheel steering — WhlAngR input port

off (default) | on

Select to create input port WhlAngR.

### External wind — WindXYZ input port

off (default) | on

Select to create input port WindXYZ.

### External friction — Mu input port

off (default) | on

Select to create input port Mu.

#### **Dependencies**

To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

### External forces — FExt input port

off (default) | on

Select to create input port FExt.

### External moments — MExt input port

off (default) | on

Select to create input port MExt.

### Hitch forces — Fh input port

on (default) | off

Select to create input port Fh.

### Hitch moments — Mh input port

on (default) | off

Select to create input port Mh.

### Initial longitudinal position — X\_o input port

off (default) | on

Select to create input port X\_o.

### Initial yaw angle — psi\_o input port

off (default) | on

Select to create input port psi o.

### Initial longitudinal velocity — xdot\_o input port

off (default) | on

Select to create input port xdot\_o.

### **Dependencies**

To enable this parameter, set **Axle forces** to External longitudinal forces or External forces.

### Initial yaw rate — r\_o input port

off (default) | on

Select to create input port r\_o.

### Initial lateral position — Y\_o input port

off (default) | on

Select to create input port Y\_o.

#### Air temperature — AirTemp input port

off (default) | on

Select to create input port AirTemp.

### Initial lateral velocity — ydot\_o input port

off (default) | on

Select to create input port ydot\_o.

### Longitudinal

#### Number of wheels on front axle, NF — Front wheel count

2 (default) | scalar

Number of wheels on the front axle,  $N_F$ . The value is dimensionless.

### Number of wheels on middle axle, NM - Middle wheel count

2 (default) | scalar

Number of wheels on the middle axle,  $N_{\rm M}$ . The value is dimensionless.

#### **Dependencies**

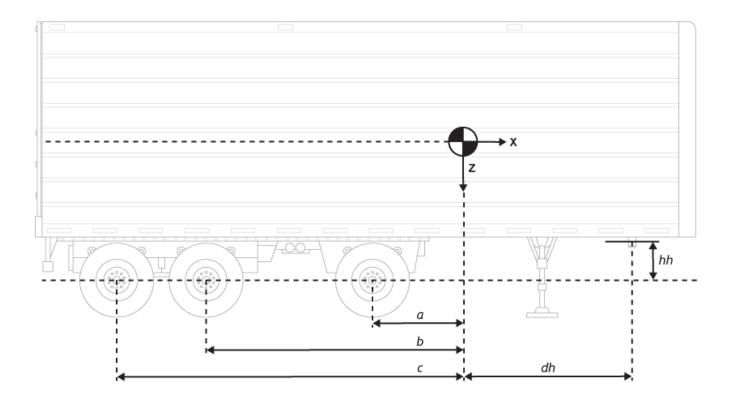
To enable this parameter, set **Vehicle track** to Single 3-axle or Dual 3-axle.

### Number of wheels on rear axle, NR — Rear wheel count

2 (default) | scalar

Number of wheels on the rear axle,  $N_{\rm R}$ . The value is dimensionless.

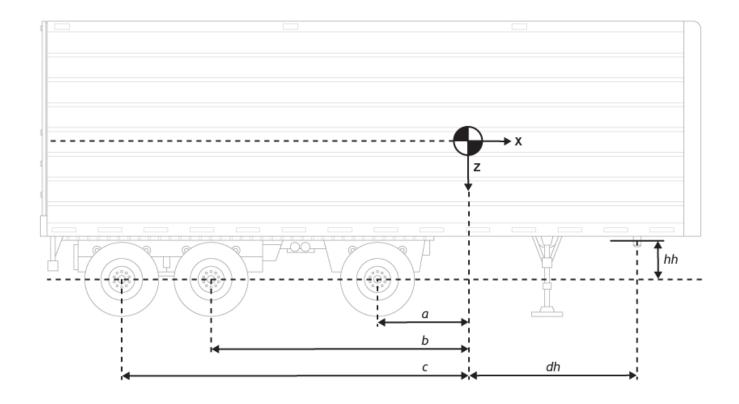
### **Vehicle mass, m — Vehicle mass**


26000 (default) | scalar

Vehicle mass, m, in kg.

## Longitudinal distance from center of mass to front axle, a - Distance from CM to front axle

4 (default) | scalar

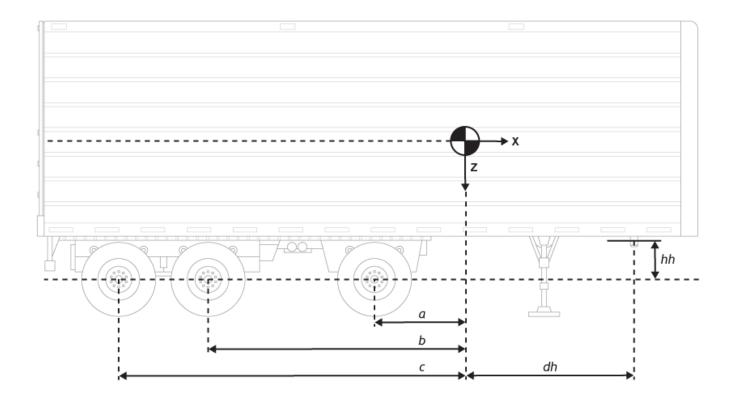

Distance from the vehicle CM to the front axle, *a*, in m.



## Longitudinal distance from center of mass to middle axle, ${\bf b}-{\bf Distance}$ from CM to middle axle

4.5 (default) | scalar

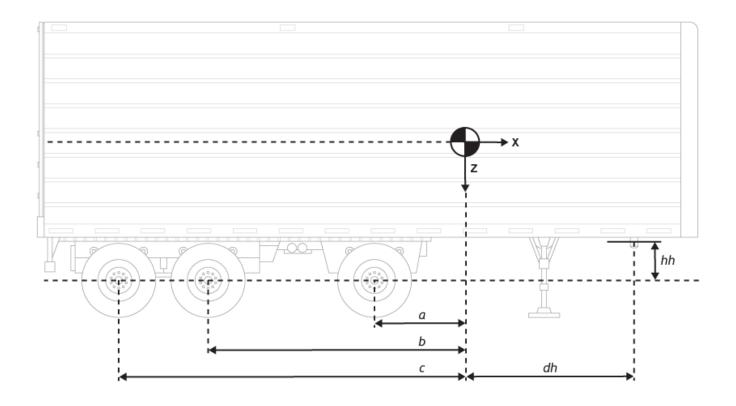
Distance from vehicle CM to middle axle, b, in m.




To enable this parameter, set **Vehicle track** to Single 3-axle or Dual 3-axle.

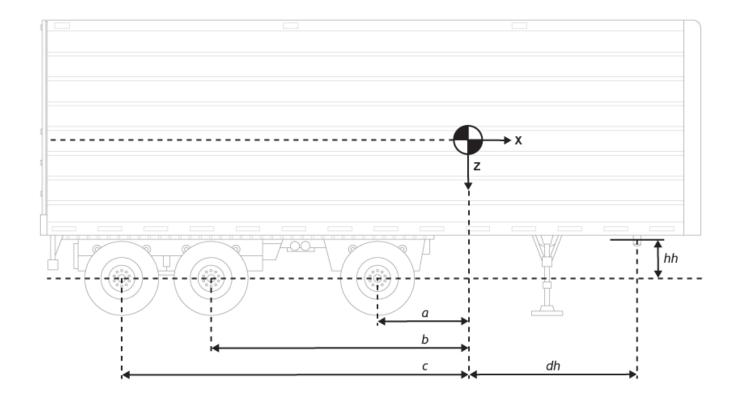
## Longitudinal distance from center of mass to rear axle, $c-\mbox{\rm Distance}$ from CM to rear axle

5 (default) | scalar


Distance from vehicle CM to the front axle, c, in m.



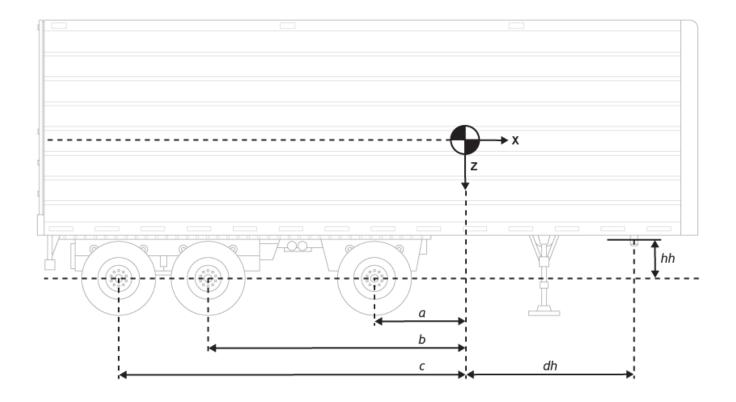
Vertical distance from center of mass to axle plane,  $h-\mbox{\rm Distance}$  from CM to axle plane


2 (default) | scalar

Vertical distance from vehicle CM to the axle plane, h, in m.



Vertical distance from hitch to axle plane, hh — Distance from hitch to axle plane 0.6 (default) | scalar


Vertical distance from the hitch to the axle plane, hh, in m.



To enable this parameter, on the **Input signals** pane, select **Hitch forces** or **Hitch moments**.

Longitudinal distance from center of mass to hitch, dh — Distance to hitch  $7.5~(\mathrm{default})~|~\mathrm{scalar}$ 

Longitudinal distance from the center of mass to the hitch, dh, in m.



To enable this parameter, on the **Input signals** pane, select **Hitch forces** or **Hitch moments**.

Initial inertial frame longitudinal position, X\_o — Initial inertial X location 0 (default) | scalar

Initial vehicle CG displacement along the earth-fixed *X*-axis, in m.

## Initial longitudinal velocity, xdot\_o — Initial velocity 0 (default) | scalar

Initial vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

### **Dependencies**

To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

### Lateral

## **Mapped corner stiffness — Selection** off (default) | on

Enables mapped corner stiffness calculation.

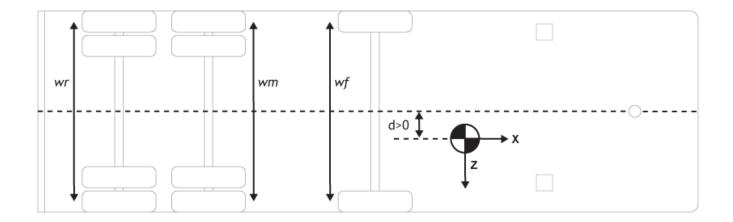
To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

**Include relaxation length dynamics — Enable relaxation length dynamics** on (default) | off

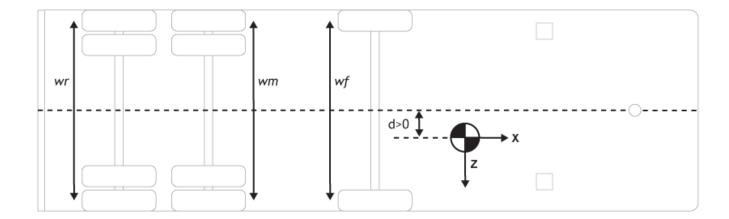
Enables relaxation length dynamics.

### **Dependencies**


To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

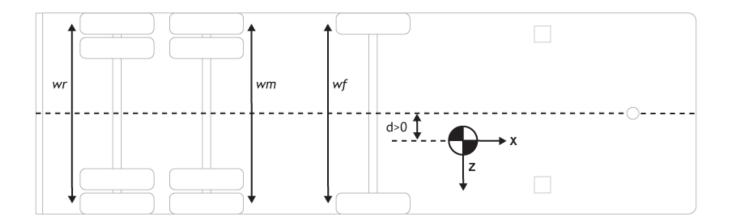
## Lateral distance from geometric centerline to center of mass, $\mathbf{d}-\mathbf{Distance}$ from centerline to CM


0 (default) | scalar

Lateral distance from the geometric centerline to the center of mass, d, in m, along the vehicle-fixed y. Positive values indicate that the trailer CM is to the right of the geometric centerline. Negative values indicate that the trailer CM is to the left of the geometric centerline.



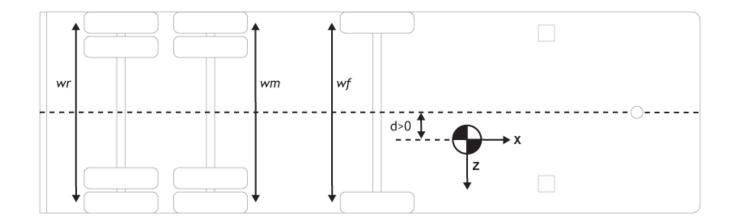
# Front track width, w\_f — Front track width 1.82 (default) | scalar


Front track width, wf, in m.



To enable this parameter, set **Vehicle track** to Dual 2-axle or Dual 3-axle.

# 


Middle track width, wm, in m.



To enable this parameter, set **Vehicle track** to Dual 3-axle.

# Rear track width, w\_r — Rear track width 1.82 (default) | scalar

Rear track width, wr, in m.



To enable this parameter, set Vehicle track to Dual 2-axle or Dual 3-axle.

## Front axle tire corner stiffness, $Cy_f$ — Front axle tire stiffness 12.3 (default) | scalar

Front tire corner stiffness,  $Cy_f$ , in N/rad.

### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

## Middle axle tire corner stiffness, Cy\_m — Middle axle tire stiffness $11.3~(default) \mid scalar$

Middle tire corner stiffness,  $Cy_m$ , in N/rad.

### **Dependencies**

To enable this parameter:

- **1** Set **Vehicle track** to one of these options:
  - Single 3-axle
  - Dual 3-axle
- **2** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 3 Clear Mapped corner stiffness.

### Rear axle tire corner stiffness, Cy\_r — Rear axle tire stiffness

11.3 (default) | scalar

Rear tire corner stiffness,  $Cy_r$ , in N/rad.

### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

### Front tire(s) relaxation length, sigma\_f — Relaxation length

.1 (default) | scalar

Front tire relaxation length,  $\sigma_f$ , in m.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- **2** Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

### Middle tire(s) relaxation length, sigma\_m — Relaxation length

.1 (default) | scalar

Middle tire relaxation length,  $\sigma_m$ , in m.

### **Dependencies**

To enable this parameter:

**1** Set **Vehicle track** to one of these options:

- Single 3-axle
- Dual 3-axle
- **2** Set **Axle forces** to one of these options:
  - · External longitudinal velocity
  - External longitudinal forces
- **3** Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

### Rear tire(s) relaxation length, sigma\_r — Relaxation length

```
.1 (default) | scalar
```

Rear tire relaxation length,  $\sigma_r$ , in m.

### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- **2** Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

### Front axle slip angle breakpoints, alpha\_f\_brk — Breakpoints

```
[-.1 .1] (default) | vector
```

Front axle slip angle breakpoints,  $\alpha_{fbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

### Front axle corner data, Cy\_f\_data — Breakpoints

```
[-9e3 9e3] (default) | vector
```

Front axle corner data,  $Cy_{fdata}$ , in N/rad.

### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

## Middle axle slip angle breakpoints, alpha\_m\_brk — Breakpoints [-.1 .1] (default) | vector

Middle axle slip angle breakpoints,  $\alpha_{mbrk}$ , in rad.

### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

### Middle axle corner data, Cy\_m\_data — Breakpoints

[-9e3 9e3] (default) | vector

Middle axle corner data,  $Cy_{mdata}$ , in N/rad.

### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

## Rear axle slip angle breakpoints, alpha\_r\_brk — Breakpoints [-.1 .1] (default) | vector

Rear axle slip angle breakpoints,  $\alpha_{rbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

### Rear axle corner data, Cy\_r\_data — Data

[-9e3 9e3] (default) | vector

Rear axle corner data,  $Cy_{rdata}$ , in N/rad.

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

## **Initial inertial frame lateral displacement, Y\_o — Position** 0 (default) | scalar

Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

## Initial lateral velocity, ydot\_o — Velocity

0 (default) | scalar

Initial vehicle CG velocity along the vehicle-fixed *y*-axis, in m/s.

#### Yaw

### Yaw polar inertia, Izz — Inertia

4000 (default) | scalar

Yaw polar inertia, in kg\*m^2.

### Initial yaw angle, $psi_o - Psi$ rotation

0 (default) | scalar

Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad.

### Initial yaw rate, r\_o — Yaw rate

0 (default) | scalar

Vehicle angular velocity about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

### **Aerodynamic**

### Longitudinal drag area, Af — Effective vehicle cross-sectional area

2 (default) | scalar

Effective vehicle cross-sectional area,  $A_f$ , to calculate the aerodynamic drag force on the vehicle, in  $m^2$ .

### Longitudinal drag coefficient, Cd — Air drag coefficient

.3 (default) | scalar

Air drag coefficient,  $C_d$ . The value is dimensionless.

### Longitudinal lift coefficient, Cl — Air lift coefficient

.1 (default) | scalar

Air lift coefficient,  $C_l$ . The value is dimensionless.

### Longitudinal drag pitch moment, Cpm — Pitch drag

.1 (default) | scalar

Longitudinal drag pitch moment coefficient,  $C_{\it pm}$ . The value is dimensionless.

### Relative wind angle vector, beta\_w — Wind angle

[0:0.01:0.3] (default) | vector

Relative wind angle vector,  $\beta_w$ , in rad.

### Side force coefficient vector, Cs - Side force coefficient

[0:0.03:0.9] (default) | vector

Side force coefficient vector coefficient,  $C_s$ . The value is dimensionless.

### Yaw moment coefficient vector, Cym — Yaw moment drag

[0:0.01:0.3] (default) | vector

Yaw moment coefficient vector coefficient,  $C_{vm}$ . The value is dimensionless.

#### **Environment**

### Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental absolute pressure,  $P_{abs}$ , in Pa.

### Air temperature, Tair — Temperature

273 (default) | scalar

Environmental absolute temperature, T, in K.

### **Dependencies**

To enable this parameter, clear **Air temperature**.

#### **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, g, in m/s $^2$ .

### Nominal friction scaling factor, mu — Friction scale factor

1 (default) | scalar

Nominal friction scale factor,  $\mu$ . The value is dimensionless.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear External Friction.

#### **Simulation**

## **Longitudinal velocity tolerance, xdot\_tol — Tolerance** .01 (default) | scalar

Longitudinal velocity tolerance, in m/s.

## Nominal normal force, Fznom — Normal force 5000 (default) | scalar

Nominal normal force, in N.

### **Dependencies**

To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

## **Geometric longitudinal offset from axle plane, longOff — Longitudinal offset** 0 (default) | scalar

Vehicle chassis offset from the axle plane along the vehicle-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

## **Geometric lateral offset from center plane, latOff — Lateral offset** 0 (default) | scalar

Vehicle chassis offset from the center plane along the vehicle-fixed *y*-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

## **Geometric vertical offset from axle plane, vertOff — Vertical offset** 0 (default) | scalar

Vehicle chassis offset from the axle plane along the vehicle-fixed z-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

## Wrap Euler angles, wrapAng — Wrap the Euler angles to the interval [-pi, pi] off $(default) \mid on$

Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of this interval, consider clearing the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

### References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

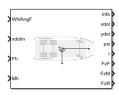
# **Extended Capabilities**

# **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder $^{\text{\tiny TM}}$ .

# **See Also**

Vehicle Body 3DOF Three Axles


# **Topics**

"Coordinate Systems in Vehicle Dynamics Blockset"

# Introduced in R2020a

# **Vehicle Body 3DOF Three Axles**

Three-axle vehicle body with longitudinal, lateral, and yaw motion **Library:** Vehicle Dynamics Blockset / Vehicle Body



# **Description**

The Vehicle Body 3DOF Three Axles block implements a rigid, three-axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for the axle and hitch reaction forces due to the vehicle body mass acceleration, aerodynamic drag, and steering.

Use this block in vehicle dynamics and automated driving studies to model nonholonomic vehicle motion when vehicle pitch, roll, and vertical motion are not significant.

Use the **Vehicle track** parameter to specify the number of tracks.

| Vehicle Track Setting | Implementation                                 |  |
|-----------------------|------------------------------------------------|--|
| Single (bicycle)      | Forces act along the center line of the axles. |  |
|                       | No lateral load transfer.                      |  |
| Dual                  | Forces act at the axle hard-point locations.   |  |

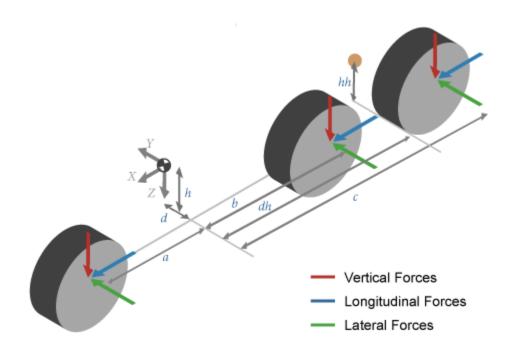
Use the **Axle forces** parameter to specify the type of force.

| Axle Forces Setting            | Implementation                                                                                                                                                                                                         |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| External longitudinal velocity | • The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero.                                                                        |  |
|                                | Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness.                                                                                     |  |
|                                | <ul> <li>Consider this setting when you want to:</li> <li>Generate virtual sensor signal data.</li> <li>Conduct high-level software studies that are not impacted by driveline or nonlinear tire responses.</li> </ul> |  |

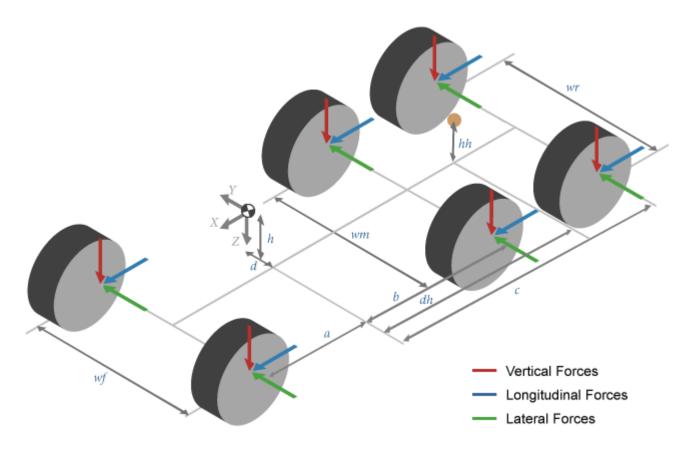
| Axle Forces Setting          | Implementation                                                                                                                               |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| External longitudinal forces | The block uses the external longitudinal force to accelerate or brake the vehicle.                                                           |  |
|                              | The block calculates lateral forces using the tire slip angles and linear cornering stiffness.                                               |  |
|                              | Consider this setting when you want to:                                                                                                      |  |
|                              | Account for changes in the longitudinal velocity on the lateral and yaw motion.                                                              |  |
|                              | <ul> <li>Specify the external longitudinal motion through a force instead<br/>of an external longitudinal velocity.</li> </ul>               |  |
|                              | <ul> <li>Connect the block to tractive actuators, wheels, brakes, and<br/>hitches.</li> </ul>                                                |  |
| External forces              | The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle.                                      |  |
|                              | <ul> <li>The block does not use the steering input to calculate vehicle<br/>motion.</li> </ul>                                               |  |
|                              | <ul> <li>Consider this setting when you need tire models with more<br/>accurate nonlinear combined lateral and longitudinal slip.</li> </ul> |  |

To create additional input ports, under  ${\bf Input\ signals},$  select these block parameters.

| Input Signals Pane<br>Parameter | Input Port | Description                                                                                                      |
|---------------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| Front wheel steering            | WhlAngF    | Front wheel angle, $\delta_F$                                                                                    |
| Middle wheel steering           | WhlAngM    | Middle wheel angle, $\delta_M$                                                                                   |
| Rear wheel steering             | WhlAngR    | Rear wheel angle, $\delta_R$                                                                                     |
| External wind                   | WindXYZ    | Wind speed, $W_X$ , $W_Y$ , and $W_Z$ , in an inertial reference frame                                           |
| External friction               | Mu         | Friction coefficient                                                                                             |
| External forces                 | FExt       | External force on the vehicle center of gravity (CG), $F_x$ , $F_y$ , and $F_z$ , in the vehicle-fixed frame     |
| External moments                | MExt       | External moment about the vehicle CG, $M_x$ , $M_y$ , and $M_z$ , in the vehicle-fixed frame                     |
| Hitch forces                    | Fh         | Hitch force applied to the body at the hitch location, $Fh_x$ , $Fh_y$ , and $Fh_z$ , in the vehicle-fixed frame |
| Hitch moments                   | Mh         | Hitch moment at the hitch location, $Mh_x$ , $Mh_y$ , and $Mh_z$ , about the vehicle-fixed frame                 |
| Initial longitudinal position   | X_0        | Initial vehicle CG displacement along the earth-fixed $X$ -axis                                                  |
| Initial yaw angle               | psi_o      | Initial rotation of the vehicle-fixed frame about the earth-fixed $Z$ -axis (yaw)                                |
| Initial longitudinal velocity   | xdot_o     | Initial vehicle CG velocity along the vehicle-fixed <i>x</i> -axis                                               |


| Input Signals Pane<br>Parameter | Input Port | Description                                                                                        |
|---------------------------------|------------|----------------------------------------------------------------------------------------------------|
| Initial yaw rate                | r_o        | Initial vehicle angular velocity about the vehicle-fixed $z$ -axis (yaw rate)                      |
| Initial lateral position        | Y_0        | Initial vehicle CG displacement along the earth-fixed Y-axis                                       |
| Air temperature                 | AirTemp    | Ambient air temperature. Consider this option if you want to vary the temperature during run time. |
| Initial lateral velocity        | ydot_o     | Initial vehicle CG velocity along the vehicle-fixed y-axis                                         |

# Theory


To determine the vehicle motion, the block solves the rigid body planar dynamics equations of motion.

| Calculation     | Description                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dynamics        | The block solves the rigid-body planar dynamics equations to determine the vehicle longitudinal motion. If you set <b>Axle forces</b> to External longitudinal velocity, the block assumes a quasi-steady state for the longitudinal acceleration.                                                                                                                         |  |
| External forces | External forces include both drag and external force inputs. The forces act on the vehicle CG.  The block divides the normal forces by the nominal normal load to vary the effective friction parameters during weight and load transfer. The block maintains pitch and roll equilibrium.                                                                                  |  |
| Tire forces     | The block uses the ratio of the local, longitudinal, and lateral velocities to determine the slip angles.  The block uses the steering angles to transform the tire forces to the vehicle-fixed frame.  If you set <b>Axle forces</b> to External forces, the block assumes that the externally provided forces are in the vehicle-fixed frame at the axle-wheel location. |  |

# Single Track



#### **Dual Track**



The illustrations use these variables.

| a, b, c    | Longitudinal distance of the front, middle, and rear axles, respectively, from the normal projection point of the vehicle CG onto the common axle plane |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| h          | Height of vehicle CG above the axle plane along the vehicle-fixed $z$ -axis                                                                             |
| d          | Lateral distance from geometric centerline to center of mass along the vehicle-fixed $y$ -axis                                                          |
| hh         | Height of the hitch above the axle plane along the vehicle-fixed $z$ -axis                                                                              |
| dh         | Longitudinal distance of the hitch from normal projection point of the vehicle CG onto the common axle plane                                            |
| wf, wm, wr | Front, middle, and rear track width, respectively                                                                                                       |

# Drag

This table summarizes the block implementation for the drag calculation.

| Calculation    | Description                                                                  |
|----------------|------------------------------------------------------------------------------|
|                | The block transforms the wind speeds from the inertial frame to the vehicle- |
| transformation | fixed frame.                                                                 |

| Calculation  | Description                                                                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | To determine a relative airspeed, the block subtracts the wind speed from the CG vehicle velocity. Using the relative airspeed, the block determines the drag forces. |
| Drag moments | Using the relative airspeed, the block determines the drag moments.                                                                                                   |

# **Lateral Corner Stiffness and Relaxation Dynamics**

To enable the mapped corner stiffness and relaxation length dynamic parameters, set **Axle forces** to External longitudinal force or External longitudinal velocity.

| Parameter Settings         |                                       | Description                                                                                                                                                                                                                                                               |
|----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mapped Corner<br>Stiffness | Include Relaxation<br>Length Dynamics |                                                                                                                                                                                                                                                                           |
| Off (default)              | On (default)                          | The block uses constant corner stiffness values.  The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel.                                              |
| 0n                         | On (default)                          | The block uses lookup tables that are functions of the corner stiffness data and slip angles.  The slip angles include the relaxation length dynamic settings. The relaxation length approximates an effective corner stiffness force that is a function of wheel travel. |
| Off (default)              | Off                                   | The block uses constant corner stiffness values.                                                                                                                                                                                                                          |

## **Ports**

#### Input

# $\label{eq:whlangf-ham} \textbf{WhlAngF}-\textbf{Front wheel steering angles}$

scalar | array

Front wheel steering angles,  $\delta_F$ , in rad.

| Vehicle Track Setting | Variable                                                                                                        | Signal Dimension       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| Single (bicycle)      | $\delta_F$                                                                                                      | Scalar - 1             |
| Dual                  | $\delta_F = [\delta_{fl} \ \delta_{fr}] \ \text{or} \ \begin{bmatrix} \delta_{fl} \\ \delta_{fr} \end{bmatrix}$ | Array - [1x2] or [2x1] |

## **Dependencies**

To enable this port, on the **Input signals** pane, select **Front wheel steering**.

# WhlAngM — Middle wheel steering angles

scalar | array

Middle wheel steering angles,  $\delta_M$ , in rad.

| Vehicle Track Setting | Variable                                                                                                          | Signal Dimension       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|
| Single (bicycle)      | $\delta_M$                                                                                                        | Scalar - 1             |
| Dual                  | $\delta_{M} = [\delta_{ml} \ \delta_{mr}] \ \text{or} \ \begin{bmatrix} \delta_{ml} \\ \delta_{mr} \end{bmatrix}$ | Array - [1x2] or [2x1] |

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Middle wheel steering**.

# WhlAngR — Rear wheel steering angles

scalar | array

Rear wheel steering angles,  $\delta_R$ , in rad.

| Vehicle Track Setting | Variable                                                                                                        | Signal Dimension       |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--|
| Single (bicycle)      | $\delta_R$                                                                                                      | Scalar - 1             |  |
| Dual                  | $\delta_R = [\delta_{rl} \ \delta_{rr}] \ \text{or} \ \begin{bmatrix} \delta_{rl} \\ \delta_{rr} \end{bmatrix}$ | Array - [1x2] or [2x1] |  |

## **Dependencies**

To enable this port, on the **Input signals** pane, select **Rear wheel steering**.

# xdotin — Longitudinal velocity

scalar

Vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

#### **Dependencies**

To enable this port, set **Axle forces** to External longitudinal velocity.

#### FwF — Total force on the front wheels

scalar | array

Force on the front wheels,  $Fw_F$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting | Description                                        |                                                                              | Signal<br>Dimension    |
|-----------------------------|------------------------|----------------------------------------------------|------------------------------------------------------------------------------|------------------------|
| Single<br>(bicycle)         | 3                      | Longitudinal force on the front wheel              | $FwF = Fx_f$                                                                 | Scalar - 1             |
|                             | External<br>forces     | Longitudinal and lateral forces on the front wheel | $FwF = [Fx_f \ Fy_f] \ \text{or} \begin{bmatrix} Fx_f \\ Fy_f \end{bmatrix}$ | Array - [1x2] or [2x1] |

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting             | Description                                         | Variable                                                                                 | Signal<br>Dimension    |
|-----------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
| Dual                        | External<br>longitudinal<br>forces | Longitudinal<br>force on the<br>front wheels        | $FwF = [F_{xfl} \ F_{xfr}] \text{ or } \begin{bmatrix} F_{xfl} \\ F_{xfr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
|                             | External forces                    | Longitudinal and lateral forces on the front wheels | $FwF = \begin{bmatrix} F_{xfl} & F_{xfr} \\ F_{yfl} & F_{yfr} \end{bmatrix}$             | Array - [2x2]          |

To enable this port, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

# FwM — Total force on the middle wheels

scalar|array

Force on the middle wheels,  $Fw_M$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting             | Description                                          | Variable                                                                                   | Signal<br>Dimension    |
|-----------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------|
| Single<br>(bicycle)         | External<br>longitudinal<br>forces | Longitudinal<br>force on the<br>middle wheel         | $FwM = Fx_r$                                                                               | Scalar - 1             |
|                             | External forces                    | Longitudinal and lateral forces on the middle wheel  | $FwM = [Fx_m \ Fy_m] \text{ or } $ $\begin{bmatrix} Fx_m \\ Fy_m \end{bmatrix}$            | Array - [1x2] or [2x1] |
| Dual                        | External<br>longitudinal<br>forces | Longitudinal<br>force on the<br>middle wheels        | $FwM = [F_{xml} \ F_{xmr}] \text{ or }$ $\begin{bmatrix} F_{xml} \\ F_{xmr} \end{bmatrix}$ | Array - [1x2] or [2x1] |
|                             | External forces                    | Longitudinal and lateral forces on the middle wheels | $FwM = \begin{bmatrix} F_{xml} & F_{xmr} \\ F_{yml} & F_{ymr} \end{bmatrix}$               | Array - [2x2]          |

## **Dependencies**

To enable this port, set **Axle forces** to one of these options:

• External longitudinal forces

#### • External forces

#### FwR — Total force on the rear wheels

scalar | array

Force on the rear wheels,  $Fw_R$ , along the vehicle-fixed axis, in N.

| Vehicle<br>Track<br>Setting | Axle Forces<br>Setting             | Description                                        | Variable                                                                                                 | Signal<br>Dimension    |
|-----------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|
| Single<br>(bicycle)         | External longitudinal forces       | Longitudinal<br>force on the rear<br>wheel         | $FwR = Fx_r$                                                                                             | Scalar - 1             |
|                             | External forces                    | Longitudinal and lateral forces on the rear wheel  | $FwR = \begin{bmatrix} Fx_r & Fy_r \end{bmatrix} \text{ or } \begin{bmatrix} Fx_r \\ Fy_r \end{bmatrix}$ | Array - [1x2] or [2x1] |
| Dual                        | External<br>longitudinal<br>forces | Longitudinal<br>force on the rear<br>wheels        | $FwR = [F_{xrl} \ F_{xrr}] \text{ or } \begin{bmatrix} F_{xrl} \\ F_{xrr} \end{bmatrix}$                 | Array - [1x2] or [2x1] |
|                             | External forces                    | Longitudinal and lateral forces on the rear wheels | $FwR = \begin{bmatrix} F_{xrl} & F_{xrr} \\ F_{yrl} & F_{yrr} \end{bmatrix}$                             | Array - [2x2]          |

#### **Dependencies**

To enable this port, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

#### FExt — External force on vehicle CG

array

External forces applied to the vehicle CG,  $F_{xext}$ ,  $F_{yext}$ ,  $F_{zext}$ , in vehicle-fixed frame, in N. The signal array dimensions are [1x3] or [3x1].

## Dependencies

To enable this port, on the **Input signals** pane, select **External forces**.

# MExt — External moment about vehicle CG

array

External moment about the vehicle CG,  $M_x$ ,  $M_y$ ,  $M_z$ , in the vehicle-fixed frame, in N·m. The signal array dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **External moments**.

## Fh — Hitch force on the body

array

Hitch force applied to the body at the hitch location,  $Fh_x$ ,  $Fh_y$ ,  $Fh_z$ , in the vehicle-fixed frame, in N. The signal array dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, under **Input signals**, select **Hitch forces**.

#### Mh — Hitch moment about body

array

Hitch moment at the hitch location,  $Mh_x$ ,  $Mh_y$ ,  $Mh_z$ , about the vehicle-fixed frame, in N·m. The signal array dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, under **Input signals**, select **Hitch moments**.

### WindXYZ — Wind speed

array

Wind speed,  $W_x$ ,  $W_y$ ,  $W_z$  along the inertial X-, Y-, and Z-axes, in m/s. The signal array dimensions are [1x3] or [3x1].

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **External wind**.

#### Mu — Tire friction coefficient

array

Tire friction coefficient,  $\mu$ , dimensionless.

| Vehicle Track Setting | Variable                                                                                               | Signal Dimension       |
|-----------------------|--------------------------------------------------------------------------------------------------------|------------------------|
| Single (bicycle)      | $Mu = [\mu_f \ \mu_m \ \mu_r] \text{ or } \begin{bmatrix} \mu_f \\ \mu_m \\ \mu_r \end{bmatrix}$       | Array - [1x3] or [3x1] |
| Dual                  | $Mu = \begin{bmatrix} \mu_{fl} & \mu_{fr} \\ \mu_{ml} & \mu_{mr} \\ \mu_{rl} & \mu_{rr} \end{bmatrix}$ | Array - [3x2]          |

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **External friction**.

# AirTemp — Ambient air temperature

scalar

Ambient air temperature, in K.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Air temperature**.

## X\_o — Initial longitudinal position

scalar

Initial vehicle CG displacement along the earth-fixed X-axis, in m.

#### **Dependencies**

To enable this port, on the Input signals pane, select Initial longitudinal position.

#### Y o — Initial lateral position

scalar

Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial lateral position**.

#### xdot\_o — Initial longitudinal position

scalar

Initial vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

#### **Dependencies**

To enable this port:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal forces
  - External forces
- 2 On the Input signals pane, select Initial longitudinal velocity

#### ydot\_o — Initial lateral position

scalar

Initial vehicle CG velocity along the vehicle-fixed y-axis, in m/s.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial lateral velocity**.

#### psi\_o — Initial yaw angle

scalar

Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial yaw angle**.

#### r\_o — Initial yaw rate

scalar

Vehicle angular velocity about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

#### **Dependencies**

To enable this port, on the **Input signals** pane, select **Initial yaw rate**.

# Output

# Info — Vehicle data

bus

Vehicle data, returned as a bus signal containing these block values.

| Signal   |         |            |       |          | Description                                                                      | Value    | Units |
|----------|---------|------------|-------|----------|----------------------------------------------------------------------------------|----------|-------|
| InertFrm | Cg      | Disp       | X     |          | Vehicle CG displacement along the earth-fixed $X$ -axis                          | Computed | m     |
|          |         |            | Y     |          | Vehicle CG displacement along the earth-fixed <i>Y</i> -axis                     | Computed | m     |
|          |         |            | Z     |          | Vehicle CG displacement along the earth-fixed Z-axis                             | 0        | m     |
|          |         | Vel        | Xdot  |          | Vehicle CG velocity along the earth-fixed <i>X</i> -axis                         | Computed | m/s   |
|          |         |            | Ydot  |          | Vehicle CG velocity along the earth-fixed <i>Y</i> -axis                         | Computed | m/s   |
|          |         |            | Zdot  |          | Vehicle CG velocity along the earth-fixed Z-axis                                 | 0        | m/s   |
|          |         | Ang        | phi   |          | Rotation of the vehicle-fixed frame about the earth-fixed <i>X</i> -axis (roll)  | Θ        | rad   |
|          |         |            | theta |          | Rotation of the vehicle-fixed frame about the earth-fixed <i>Y</i> -axis (pitch) | 0        | rad   |
|          |         |            | psi   |          | Rotation of the vehicle-fixed frame about the earth-fixed <i>Z</i> -axis (yaw)   | Computed | rad   |
|          | FrntAxl | rntAxl Lft | Disp  | Х        | Front left wheel displacement along the earth-fixed $X$ -axis                    | Computed | m     |
|          |         |            |       | Y        | Front left wheel displacement along the earth-fixed <i>Y</i> -axis               | Computed | m     |
|          |         |            |       | Z        | Front left wheel displacement along the earth-fixed Z-axis                       | 0        | m     |
|          |         | Ve         | Vel   | Xdo<br>t | Front left wheel velocity along the earth-fixed <i>X</i> -axis                   | Computed | m/s   |
|          |         |            |       | Ydo<br>t | Front left wheel velocity along the earth-fixed <i>Y</i> -axis                   | Computed | m/s   |

| Signal |         |          |      |          | Description                                                          | Value                                                       | Units    |   |
|--------|---------|----------|------|----------|----------------------------------------------------------------------|-------------------------------------------------------------|----------|---|
|        |         |          |      | Zdo<br>t | Front left wheel velocity along the earth-fixed $Z$ -axis            | Θ                                                           | m/s      |   |
|        |         | Rght     | Disp | X        | Front right wheel displacement along the earth-fixed <i>X</i> -axis  | Computed                                                    | m        |   |
|        |         |          |      | Y        | Front right wheel displacement along the earth-fixed <i>Y</i> -axis  | Computed                                                    | m        |   |
|        |         |          |      | Z        | Front right wheel displacement along the earth-fixed <i>Z</i> -axis  | 0                                                           | m        |   |
|        |         |          | Vel  | Xdo<br>t | Front right wheel velocity along the earth-fixed $X$ -axis           | Computed                                                    | m/s      |   |
|        |         |          |      | Ydo<br>t | Front right wheel velocity along the earth-fixed <i>Y</i> -axis      | Computed                                                    | m/s      |   |
|        |         |          |      | Zdo<br>t | Front right wheel velocity along the earth-fixed <i>Z</i> -axis      | 0                                                           | m/s      |   |
|        | MidlAxl | Lft Disp | Disp | Х        | Middle left wheel displacement along the earth-fixed <i>X</i> -axis  | Computed                                                    | m        |   |
|        |         |          |      |          | Y                                                                    | Middle left wheel displacement along the earth-fixed Y-axis | Computed | m |
|        |         |          |      | Z        | Middle left wheel displacement along the earth-fixed Z-axis          | 0                                                           | m        |   |
|        |         |          | Vel  | Xdo<br>t | Middle left wheel velocity along the earth-fixed $X$ -axis           | Computed                                                    | m/s      |   |
|        | Rght    |          |      | Ydo<br>t | Middle left wheel velocity along the earth-fixed <i>Y</i> -axis      | Computed                                                    | m/s      |   |
|        |         |          |      | Zdo<br>t | Middle left wheel velocity along the earth-fixed $Z$ -axis           | 0                                                           | m/s      |   |
|        |         | Rght     | Disp | Х        | Middle right wheel displacement along the earth-fixed <i>X</i> -axis | Computed                                                    | m        |   |
|        |         |          | Y    | Υ        | Middle right wheel displacement along the earth-fixed <i>Y</i> -axis | Computed                                                    | m        |   |

| Signal |         |      |      |          | Description                                                        | Value    | Units |
|--------|---------|------|------|----------|--------------------------------------------------------------------|----------|-------|
|        |         |      |      | Z        | Middle right wheel displacement along the earth-fixed Z-axis       | 0        | m     |
|        |         |      | Vel  | Xdo<br>t | Middle right wheel velocity along the earth-fixed X-axis           | Computed | m/s   |
|        |         |      |      | Ydo<br>t | Middle right wheel velocity along the earth-fixed Y-axis           | Computed | m/s   |
|        |         |      |      | Zdo<br>t | Middle right wheel velocity along the earth-fixed Z-axis           | 0        | m/s   |
|        | RearAxl | Lft  | Disp | Х        | Rear left wheel displacement along the earth-fixed $X$ -axis       | Computed | m     |
|        |         |      |      | Υ        | Rear left wheel displacement along the earth-fixed Y-axis          | Computed | m     |
|        |         |      |      | Z        | Rear left wheel displacement along the earth-fixed Z-axis          | 0        | m     |
|        |         |      | Vel  | Xdo<br>t | Rear left wheel velocity along the earth-fixed $X$ -axis           | Computed | m/s   |
|        |         |      |      | Ydo<br>t | Rear left wheel velocity along the earth-fixed <i>Y</i> -axis      | Computed | m/s   |
|        |         |      |      | Zdo<br>t | Rear left wheel velocity along the earth-fixed <i>Z</i> -axis      | Θ        | m/s   |
|        |         | Rght | Disp | Х        | Rear right wheel displacement along the earth-fixed <i>X</i> -axis | Computed | m     |
|        |         |      | -    | Υ        | Rear right wheel displacement along the earth-fixed <i>Y</i> -axis | Computed | m     |
|        |         |      |      | Z        | Rear right wheel displacement along the earth-fixed Z-axis         | 0        | m     |
|        |         | Vel  | Vel  | Xdo<br>t | Rear right wheel velocity along the earth-fixed <i>X</i> -axis     | Computed | m/s   |
|        |         |      |      | Ydo<br>t | Rear right wheel velocity along the earth-fixed <i>Y</i> -axis     | Computed | m/s   |

| Signal |      |        |      |          | Description                                                                   | Value    | Units |
|--------|------|--------|------|----------|-------------------------------------------------------------------------------|----------|-------|
|        |      |        |      | Zdo<br>t | Rear right wheel velocity along the earth-fixed $Z$ -axis                     | 0        | m/s   |
|        | Geom | Disp   | Х    |          | Vehicle chassis offset from axle plane along the earth-fixed <i>X</i> -axis   | Computed | m     |
|        |      |        | Υ    |          | Vehicle chassis offset from center plane along the earth-fixed <i>Y</i> -axis | Computed | m     |
|        |      |        | Z    |          | Vehicle chassis offset from axle plane along the earth-fixed Z-axis           | Computed | m     |
|        |      | Vel    | Xdot |          | Vehicle chassis offset velocity along the earth-fixed <i>X</i> -axis          | Computed | m/s   |
|        |      |        |      |          | Vehicle chassis offset velocity along the earth-fixed <i>Y</i> -axis          | Computed | m/s   |
|        |      |        | Zdot |          | Vehicle chassis offset velocity along the earth-fixed Z-axis                  | Computed | m/s   |
| BdyFrm | Cg   | Cg Vel | xdot |          | Vehicle CG velocity along the vehicle-fixed <i>x</i> -axis                    | Computed | m/s   |
|        |      |        | ydot |          | Vehicle CG velocity along the vehicle-fixed <i>y</i> -axis                    | Computed | m/s   |
|        |      |        | zdot |          | Vehicle CG velocity along the vehicle-fixed <i>z</i> -axis                    | Θ        | m/s   |
|        |      | Ang    | Beta |          | Body slip angle, $\beta$ $\beta = \frac{V_y}{V_x}$                            | Computed | rad   |
|        |      | AngVel | p    |          | Vehicle angular velocity about the vehicle-fixed x-axis (roll rate)           | 0        | rad/s |
|        |      |        | q    |          | Vehicle angular velocity about the vehicle-fixed <i>y</i> -axis (pitch rate)  | 0        | rad/s |
|        |      |        | r    |          | Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate)            | Computed | rad/s |
|        |      | Acc    | ax   |          | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis                | Computed | gn    |

| Signal |        |        |       | Description                                                           | Value    | Units |
|--------|--------|--------|-------|-----------------------------------------------------------------------|----------|-------|
|        |        |        | ay    | Vehicle CG acceleration along the vehicle-fixed y-axis                | Computed | gn    |
|        |        |        | az    | Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis        | 0        | gn    |
|        |        |        | xddot | Vehicle CG acceleration along the vehicle-fixed <i>x</i> -axis        | Computed | m/s^2 |
|        |        |        | yddot | Vehicle CG acceleration along the vehicle-fixed y-axis                | Computed | m/s^2 |
|        |        |        | zddot | Vehicle CG acceleration along the vehicle-fixed <i>z</i> -axis        | 0        | m/s^2 |
|        |        | AngAcc | pdot  | Vehicle angular acceleration about the vehicle-fixed x-axis           | 0        | rad/s |
|        |        |        | qdot  | Vehicle angular acceleration about the vehicle-fixed y-axis           | 0        | rad/s |
|        |        |        | rdot  | Vehicle angular acceleration about the vehicle-fixed z-axis           | Computed | rad/s |
|        | Forces | Body   | Fx    | Net force on vehicle CG along the vehicle-fixed <i>x</i> -axis        | Computed | N     |
|        |        |        | Fy    | Net force on vehicle CG along the vehicle-fixed <i>y</i> -axis        | Computed | N     |
|        |        |        | Fz    | Net force on vehicle CG along the vehicle-fixed <i>z</i> -axis        | 0        | N     |
|        |        | Ext    | Fx    | External force on vehicle CG along the vehicle-fixed x-axis           | Computed | N     |
|        |        |        | Fy    | External force on vehicle CG along the vehicle-fixed y-axis           | Computed | N     |
|        |        |        | Fz    | External force on vehicle CG along the vehicle-fixed z-axis           | Θ        | N     |
|        |        | Hitch  | Fx    | Hitch moment at the hitch location about vehicle-fixed <i>z</i> -axis | Computed | N     |

| Signal |         |      |    | Description                                                                              | Value    | Units |
|--------|---------|------|----|------------------------------------------------------------------------------------------|----------|-------|
|        |         | Fy   |    | Hitch force applied to body at the hitch location along the vehicle-fixed <i>y</i> -axis | Computed | N     |
|        |         | Fz   |    | Hitch force applied to body at the hitch location along the vehicle-fixed <i>z</i> -axis | Computed | N     |
|        | FrntAxl | Lft  | Fx | Longitudinal force on left<br>front wheel along the<br>vehicle-fixed x-axis              | Computed | N     |
|        |         |      | Fy | Lateral force on left front wheel along the vehicle-fixed <i>y</i> -axis                 | Computed | N     |
|        |         |      | Fz | Normal force on left front wheel along the vehicle-fixed <i>z</i> -axis                  | Computed | N     |
|        |         | Rght | Fx | Longitudinal force on right front wheel along the vehicle-fixed x-axis                   | Computed | N     |
|        |         |      | Fy | Lateral force on right front wheel along the vehicle-fixed <i>y</i> -axis                | Computed | N     |
|        |         |      | Fz | Normal force on right front wheel along the vehicle-fixed <i>z</i> -axis                 | Computed | N     |
|        | MidlAxl | Lft  | Fx | Longitudinal force on left<br>middle wheel along the<br>vehicle-fixed x-axis             | Computed | N     |
|        |         |      | Fy | Lateral force on left middle wheel along the vehicle-fixed <i>y</i> -axis                | Computed | N     |
|        |         |      | Fz | Normal force on left middle wheel along the vehicle-fixed z-axis                         | Computed | N     |
|        |         | Rght | Fx | Longitudinal force on right middle wheel along the vehicle-fixed <i>x</i> -axis          | Computed | N     |
|        |         | Fy   | Fy | Lateral force on right middle wheel along the vehicle-fixed <i>y</i> -axis               | Computed | N     |
|        |         |      | Fz | Normal force on right middle wheel along the vehicle-fixed z-axis                        | Computed | N     |

| Signal |         |               |                  |        | Description                                                                   | Value    | Units |
|--------|---------|---------------|------------------|--------|-------------------------------------------------------------------------------|----------|-------|
|        | RearAxl | Lft Fx        |                  | (      | Longitudinal force on left rear wheel along the vehicle-fixed <i>x</i> -axis  | Computed | N     |
|        |         |               | Fy               | /      | Lateral force on left rear wheel along the vehicle-fixed y-axis               | Computed | N     |
|        |         |               | Fz               | 2      | Normal force on left rear wheel along the vehicle-fixed z-axis                | Computed | N     |
|        |         | Rght          | F>               | (      | Longitudinal force on right rear wheel along the vehicle-fixed <i>x</i> -axis | Computed | N     |
|        |         |               | Fy               |        | Lateral force on right rear wheel along the vehicle-fixed <i>y</i> -axis      | Computed | N     |
|        |         |               |                  | 2      | Normal force on right rear wheel along the vehicle-fixed z-axis               | Computed | N     |
|        | Tires   | FrntTir       |                  |        | Front left tire force along the vehicle-fixed <i>x</i> -axis                  | Computed | N     |
|        |         |               |                  |        | Front left tire force along the vehicle-fixed <i>y</i> -axis                  | Computed | N     |
|        |         |               |                  | F<br>z | Front left tire force along the vehicle-fixed <i>z</i> -axis                  | Computed | N     |
|        |         |               | R<br>g<br>h<br>t |        | Front right tire force along the vehicle-fixed <i>x</i> -axis                 | Computed | N     |
|        |         |               |                  |        | Front right tire force along the vehicle-fixed <i>y</i> -axis                 | Computed | N     |
|        |         |               |                  |        | Front right tire force along the vehicle-fixed $z$ -axis                      | Computed | N     |
|        |         | RearTir<br>es | L<br>f           |        | Rear left tire force along the vehicle-fixed <i>x</i> -axis                   | Computed | N     |
|        |         |               | t                | F<br>y | Rear left tire force along the vehicle-fixed y-axis                           | Computed | N     |
|        |         |               |                  | F      | Rear left tire force along the vehicle-fixed z-axis                           | Computed | N     |
|        |         |               | R<br>g           | F<br>X | Rear right tire force along the vehicle-fixed <i>x</i> -axis                  | Computed | N     |
|        |         |               | h<br>t           | F<br>y | Rear right tire force along the vehicle-fixed <i>y</i> -axis                  | Computed | N     |

| Signal       |        |    | Description                                                          | Value    | Units |
|--------------|--------|----|----------------------------------------------------------------------|----------|-------|
|              |        | Fz | Rear right tire force along the vehicle-fixed <i>z</i> -axis         | Computed |       |
| Dr           | Drag   | Fx | Drag force on vehicle CG along the vehicle-fixed <i>x</i> -axis      | Computed | N     |
|              |        | Fy | Drag force on vehicle CG along the vehicle-fixed <i>y</i> -axis      | Computed | N     |
|              |        | Fz | Drag force on vehicle CG along the vehicle-fixed <i>z</i> -axis      | Computed | N     |
|              | Grvty  | Fx | Gravity force on vehicle CG along the vehicle-fixed <i>x</i> -axis   | Computed | N     |
| Moments Body |        | Fy | Gravity force on vehicle CG along the vehicle-fixed y-axis           | Computed | N     |
|              |        | Fz | Gravity force on vehicle CG along the vehicle-fixed <i>z</i> -axis   | Computed | N     |
|              | Body   | Mx | Body moment on vehicle CG about the vehicle-fixed <i>x</i> -axis     | Θ        | N·m   |
|              |        | Му | Body moment on vehicle CG about the vehicle-fixed y-axis             | Computed | N·m   |
|              |        | Mz | Body moment on vehicle CG about the vehicle-fixed z-axis             | 0        | N·m   |
|              | Drag   | Mx | Drag moment on vehicle CG about the vehicle-fixed <i>x</i> -axis     | 0        | N·m   |
| E            |        | Му | Drag moment on vehicle CG about the vehicle-fixed y-axis             | Computed | N·m   |
|              |        | Mz | Drag moment on vehicle CG about the vehicle-fixed z-axis             | 0        | N·m   |
|              | Ext Mx | Mx | External moment on vehicle CG about the vehicle-fixed <i>x</i> -axis | 0        | N·m   |
|              |        | Му | External moment on vehicle CG about the vehicle-fixed <i>y</i> -axis | Computed | N·m   |

| Signal |         |       |                                                                  |                                                                      | Description                                                           | Value    | Units |
|--------|---------|-------|------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------|-------|
|        |         |       | Mz                                                               |                                                                      | External moment on vehicle CG about the vehicle-fixed z-axis          | Θ        | N·m   |
|        |         | Hitch | Mx                                                               |                                                                      | Hitch moment at the hitch location about vehicle-fixed <i>x</i> -axis | 0        | N·m   |
|        |         |       | Му                                                               |                                                                      | Hitch moment at the hitch location about vehicle-fixed <i>y</i> -axis | Computed | N·m   |
|        |         |       | Mz                                                               |                                                                      | Hitch moment at the hitch location about vehicle-fixed <i>z</i> -axis | 0        | N·m   |
|        | FrntAxl | Lft   | Disp                                                             | х                                                                    | Front left wheel displacement along the vehicle-fixed <i>x</i> -axis  | Computed | m     |
|        |         |       | У                                                                | Front left wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed                                                              | m        |       |
|        |         |       | Z                                                                | Front left wheel displacement along the vehicle-fixed $z$ -axis      | Computed                                                              | m        |       |
|        | Vel     | Vel   | xdo<br>t                                                         | Front left wheel velocity along the vehicle-fixed <i>x</i> -axis     | Computed                                                              | m/s      |       |
|        |         |       | ydo<br>t                                                         | Front left wheel velocity along the vehicle-fixed <i>y</i> -axis     | Computed                                                              | m/s      |       |
|        |         |       |                                                                  | zdo<br>t                                                             | Front left wheel velocity along the vehicle-fixed <i>z</i> -axis      | 0        | m/s   |
|        |         | Rght  | Disp                                                             | Х                                                                    | Front right wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed | m     |
|        |         |       |                                                                  | у                                                                    | Front right wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed | m     |
|        |         | Z     | Front right wheel displacement along the vehicle-fixed $z$ -axis | Computed                                                             | m                                                                     |          |       |
|        |         | t     | xdo<br>t                                                         | Front right wheel velocity along the vehicle-fixed <i>x</i> -axis    | Computed                                                              | m/s      |       |
|        |         |       | ydo<br>t                                                         | Front right wheel velocity along the vehicle-fixed <i>y</i> -axis    | Computed                                                              | m/s      |       |

| Signal |         |       |          |                                                                    | Description                                                            | Value    | Units |
|--------|---------|-------|----------|--------------------------------------------------------------------|------------------------------------------------------------------------|----------|-------|
|        |         |       |          | zdo<br>t                                                           | Front right wheel velocity along the vehicle-fixed <i>z</i> -axis      | Θ        | m/s   |
|        |         | Steer | WhlAngFL | -                                                                  | Front left wheel steering angle                                        | Computed | rad   |
|        |         |       | WhlAngFF | ₹                                                                  | Front right wheel steering angle                                       | Computed | rad   |
|        | MidlAxl | Lft   | Disp     | x                                                                  | Middle left wheel displacement along the vehicle-fixed <i>x</i> -axis  | Computed | m     |
|        |         |       |          | У                                                                  | Middle left wheel displacement along the vehicle-fixed <i>y</i> -axis  | Computed | m     |
|        |         |       |          | Z                                                                  | Middle left wheel displacement along the vehicle-fixed z-axis          | Computed | m     |
|        | Rght    |       | xdo<br>t | Middle left wheel velocity along the vehicle-fixed <i>x</i> -axis  | Computed                                                               | m/s      |       |
|        |         |       |          | ydo<br>t                                                           | Middle left wheel velocity along the vehicle-fixed <i>y</i> -axis      | Computed | m/s   |
|        |         |       |          | zdo<br>t                                                           | Middle left wheel velocity along the vehicle-fixed z-axis              | 0        | m/s   |
|        |         | Rght  | t Disp   | х                                                                  | Middle right wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed | m     |
|        |         |       |          | у                                                                  | Middle right wheel displacement along the vehicle-fixed y-axis         | Computed | m     |
|        |         |       |          | Z                                                                  | Middle right wheel displacement along the vehicle-fixed z-axis         | Computed | m     |
|        |         | t     | xdo<br>t | Middle right wheel velocity along the vehicle-fixed x-axis         | Computed                                                               | m/s      |       |
|        |         |       | ydo<br>t | Middle right wheel velocity along the vehicle-fixed <i>y</i> -axis | Computed                                                               | m/s      |       |
|        |         |       | zdo<br>t | Middle right wheel velocity along the vehicle-fixed <i>z</i> -axis | Θ                                                                      | m/s      |       |

| Signal  |       |          |                                                                      | Description                                                          | Value    | Units |
|---------|-------|----------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------|-------|
|         | Steer | WhlAngRL | -                                                                    | Middle left wheel steering angle                                     | Computed | rad   |
|         |       | WhlAngRF | }                                                                    | Middle right wheel steering angle                                    | Computed | rad   |
| RearAxl | Lft   | Disp     | x                                                                    | Rear left wheel displacement along the vehicle-fixed <i>x</i> -axis  | Computed | m     |
|         |       |          | У                                                                    | Rear left wheel displacement along the vehicle-fixed <i>y</i> -axis  | Computed | m     |
|         |       |          | Z                                                                    | Rear left wheel displacement along the vehicle-fixed $z$ -axis       | Computed | m     |
|         |       | Vel      | xdo<br>t                                                             | Rear left wheel velocity along the vehicle-fixed <i>x</i> -axis      | Computed | m/s   |
| Rght    |       | ydo<br>t | Rear left wheel velocity along the vehicle-fixed <i>y</i> -axis      | Computed                                                             | m/s      |       |
|         |       |          | zdo<br>t                                                             | Rear left wheel velocity along the vehicle-fixed <i>z</i> -axis      | 0        | m/s   |
|         | Rght  | Disp     | х                                                                    | Rear right wheel displacement along the vehicle-fixed <i>x</i> -axis | Computed | m     |
|         |       | у        | Rear right wheel displacement along the vehicle-fixed <i>y</i> -axis | Computed                                                             | m        |       |
|         |       |          | Z                                                                    | Rear right wheel displacement along the vehicle-fixed $z$ -axis      | Computed | m     |
|         |       | Vel      | xdo<br>t                                                             | Rear right wheel velocity along the vehicle-fixed <i>x</i> -axis     | Computed | m/s   |
|         |       |          | ydo<br>t                                                             | Rear right wheel velocity along the vehicle-fixed <i>y</i> -axis     | Computed | m/s   |
|         |       | zdo<br>t | Rear right wheel velocity along the vehicle-fixed <i>z</i> -axis     | 0                                                                    | m/s      |       |
|         | Steer | WhlAngRL | -                                                                    | Rear left wheel steering angle                                       | Computed | rad   |
|         |       | WhlAngRR | }                                                                    | Rear right wheel steering angle                                      | Computed | rad   |

| Signal |           |          |                                                                        | Description                                                                     | Value    | Units |
|--------|-----------|----------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|-------|
|        | Pwr       | PwrExt   |                                                                        | Applied external power                                                          | Computed | W     |
|        |           | PwrHtch  |                                                                        | Hitch power                                                                     | Computed |       |
|        |           | Drag     |                                                                        | Power loss due to drag                                                          | Computed | W     |
|        | Geom Disp | Disp     | х                                                                      | Vehicle chassis offset from axle plane along the vehicle-fixed x-axis           | Input    | m     |
|        |           |          | У                                                                      | Vehicle chassis offset from center plane along the vehicle-fixed <i>y</i> -axis | Input    | m     |
|        |           |          | Z                                                                      | Vehicle chassis offset from axle plane along the earth-fixed z-axis             | Input    | m     |
|        | 1         | xdo<br>t | Vehicle chassis offset velocity along the vehicle-fixed <i>x</i> -axis | Computed                                                                        | m/s      |       |
|        |           | yo<br>t  | ydo<br>t                                                               | Vehicle chassis offset velocity along the vehicle-fixed <i>y</i> -axis          | Computed | m/s   |
|        |           | zdo<br>t | Vehicle chassis offset velocity along the vehicle-fixed $z$ -axis      | 0                                                                               | m/s      |       |
|        |           | Ang      | Bet<br>a                                                               | Body slip angle, $\beta$ $\beta = \frac{V_y}{V_x}$                              | Computed | rad   |

## **xdot** — **Vehicle longitudinal velocity**

scalar

Vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

## ydot — Vehicle lateral velocity

scalar

Vehicle CG velocity along the vehicle-fixed y-axis, in m/s.

## psi — Yaw

scalar

Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

#### r - Yaw rate

scalar

Vehicle angular velocity, r, about the vehicle-fixed z-axis (yaw rate), in rad/s.

## FzF — Normal force on front wheels

scalar | array

Normal force on the front wheels,  $Fz_F$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                                     | Variable                    | Signal Dimension |
|--------------------------|-------------------------------------------------|-----------------------------|------------------|
| Single<br>(bicycle)      | Normal force on front axle                      | $FzF = Fz_f$                | Scalar - 1       |
| Dual                     | Normal force on the right and left front wheels | $FzF = [Fz_{fl} \ Fz_{fr}]$ | Array - [1x2]    |

## FzM — Normal force on middle wheels

scalar | array

Normal force on the middle wheels,  $Fz_M$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                                      | Variable                    | Signal Dimension |
|--------------------------|--------------------------------------------------|-----------------------------|------------------|
| Single<br>(bicycle)      | Normal force on middle axle                      | $FzM = Fz_m$                | Scalar - 1       |
| Dual                     | Normal force on the right and left middle wheels | $FzM = [Fz_{ml} \ Fz_{rl}]$ | Array - [1x2]    |

# FzR — Normal force on rear wheels

scalar | array

Normal force on the rear wheels,  $Fz_R$ , along the vehicle-fixed z-axis, in N.

| Vehicle Track<br>Setting | Description                                    | Variable                    | Signal Dimension |
|--------------------------|------------------------------------------------|-----------------------------|------------------|
| Single (bicycle)         | Normal force on rear wheel                     | $FzR = Fz_r$                | Scalar - 1       |
| Dual                     | Normal force on the right and left rear wheels | $FzR = [Fz_{rl} \ Fz_{rr}]$ | Array - [1x2]    |

# **Parameters**

# **Options**

# **Vehicle track — Number of vehicle tracks**

Dual (default) | Single (bicycle)

Use the **Vehicle track** parameter to specify the number of tracks.

| Vehicle Track Setting | Implementation                                 |
|-----------------------|------------------------------------------------|
| Single (bicycle)      | Forces act along the center line of the axles. |
|                       | No lateral load transfer.                      |
| Dual                  | Forces act at the axle hard-point locations.   |

# Axle forces — Type of axle force

External longitudinal velocity (default) | External longitudinal forces | External forces

Use the **Axle forces** parameter to specify the type of force.

| Axle Forces Setting            | Implementation                                                                                                                                |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| External longitudinal velocity | The block assumes that the external longitudinal velocity is in a quasi-steady state, so the longitudinal acceleration is approximately zero. |
|                                | Because the motion is quasi-steady, the block calculates lateral forces using the tire slip angles and linear cornering stiffness.            |
|                                | Consider this setting when you want to:                                                                                                       |
|                                | Generate virtual sensor signal data.                                                                                                          |
|                                | <ul> <li>Conduct high-level software studies that are not impacted by<br/>driveline or nonlinear tire responses.</li> </ul>                   |
| External longitudinal forces   | The block uses the external longitudinal force to accelerate or brake the vehicle.                                                            |
|                                | The block calculates lateral forces using the tire slip angles and linear cornering stiffness.                                                |
|                                | Consider this setting when you want to:                                                                                                       |
|                                | <ul> <li>Account for changes in the longitudinal velocity on the lateral<br/>and yaw motion.</li> </ul>                                       |
|                                | <ul> <li>Specify the external longitudinal motion through a force instead<br/>of an external longitudinal velocity.</li> </ul>                |
|                                | <ul> <li>Connect the block to tractive actuators, wheels, brakes, and<br/>hitches.</li> </ul>                                                 |
| External forces                | • The block uses the external lateral and longitudinal forces to steer, accelerate, or brake the vehicle.                                     |
|                                | The block does not use the steering input to calculate vehicle motion.                                                                        |
|                                | Consider this setting when you need tire models with more accurate nonlinear combined lateral and longitudinal slip.                          |

## **Input Signals**

# Front wheel steering — WhlAngF input port

on (default) | off

Select to create input port WhlAngF.

# Middle wheel steering — WhlAngM input port

off (default) | on

Select to create input port WhlAngM.

# Rear wheel steering — WhlAngR input port

off (default) | on

Select to create input port WhlAngR.

## External wind — WindXYZ input port

off (default) | on

Select to create input port WindXYZ.

#### External friction — Mu input port

off (default) | on

Select to create input port Mu.

#### **Dependencies**

To enable this parameter, set **Axle forces** to External longitudinal forces or External forces.

#### External forces — FExt input port

off (default) | on

Select to create input port FExt.

#### External moments — MExt input port

off (default) | on

Select to create input port MExt.

#### Hitch forces — Fh input port

on (default) | off

Select to create input port Fh.

#### Hitch moments — Mh input port

on (default) | off

Specify to create input port Mh.

## Initial longitudinal position — X\_o input port

off (default) | on

Specify to create input port X o.

#### Initial yaw angle — psi\_o input port

off (default) | on

Specify to create input port psi o.

## Initial longitudinal velocity — xdot\_o input port

off (default) | on

Specify to create input port xdot\_o.

# **Dependencies**

To enable this parameter, set **Axle forces** to External longitudinal forces or External forces.

#### Initial yaw rate — r\_o input port

off (default) | on

Specify to create input port  $r_o$ .

# Initial lateral position — Y\_o input port

off (default) | on

Specify to create input port Y o.

# Air temperature — AirTemp input port

off (default) | on

Specify to create input port AirTemp.

# Initial lateral velocity — ydot\_o input port

off (default) | on

Specify to create input port ydot o.

#### Longitudinal

## Number of wheels on front axle, NF — Front wheel count

2 (default) | scalar

Number of wheels on the front axle,  $N_F$ , dimensionless.

# Number of wheels on middle axle, NM — Middle wheel count

2 (default) | scalar

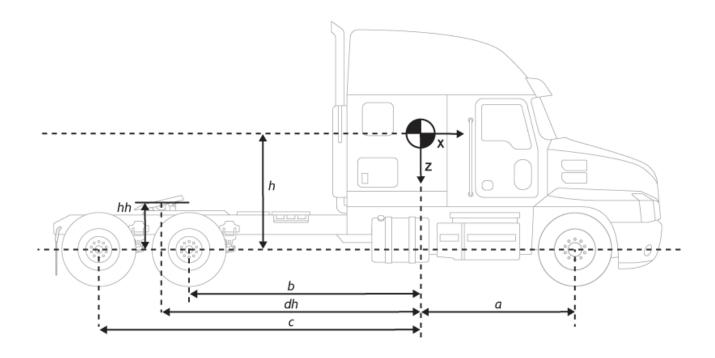
Number of wheels on the middle axle,  $N_M$ , dimensionless.

#### Number of wheels on rear axle, NR — Rear wheel count

2 (default) | scalar

Number of wheels on the rear axle,  $N_R$ , dimensionless.

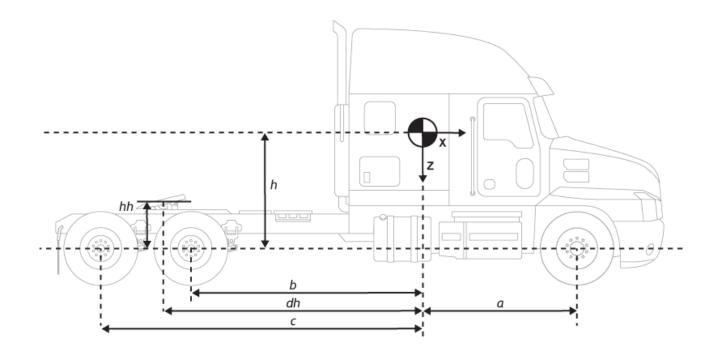
## **Vehicle mass, m — Vehicle mass**


47000 (default) | scalar

Vehicle mass, m, in kg.

# Longitudinal distance from center of mass to front axle, a — Distance from CM to front axle

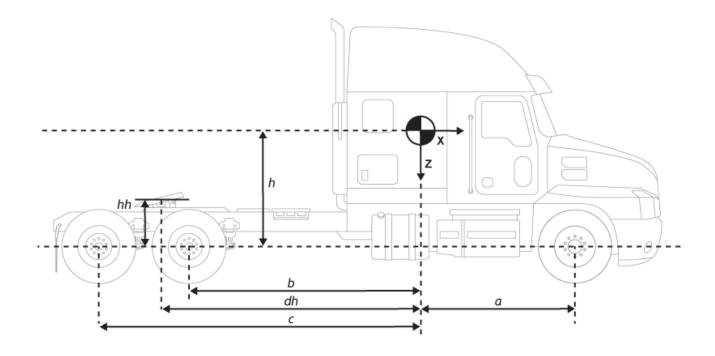
0.5 (default) | scalar


Distance from vehicle CM to front axle, a, in m.



# Longitudinal distance from center of mass to middle axle, $\ensuremath{\mathsf{b}}-\ensuremath{\mathsf{Distance}}$ from CM to middle axle

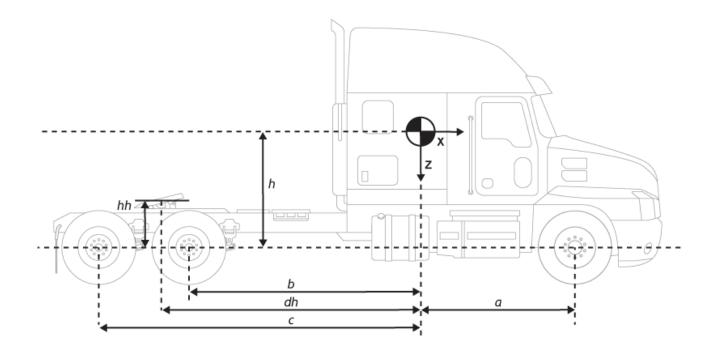
4.5 (default) | scalar


Distance from vehicle CM to middle axle, b, in m.



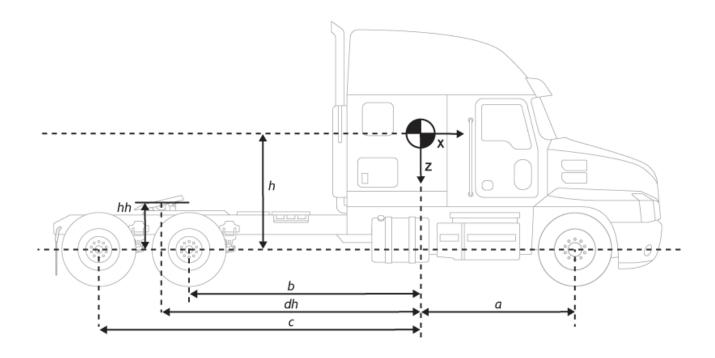
# Longitudinal distance from center of mass to rear axle, $c-\mbox{\rm Distance}$ from CM to rear axle

5.7 (default) | scalar


Distance from vehicle CM to rear axle, c, in m.



# Vertical distance from center of mass to axle plane, $h-\mbox{\rm Distance}$ from CM to axle plane

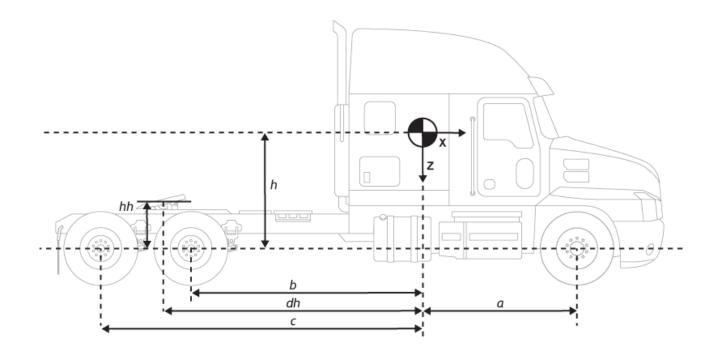

0.3 (default) | scalar

Vertical distance from vehicle CM to axle plane, h, in m.



Vertical distance from hitch to axle plane, hh — Distance from hitch to axle plane 0.5 (default)  $\mid$  scalar

Vertical distance from hitch to axle plane, hh, in m.




To enable this parameter, on the **Input signals** pane, select **Hitch forces** or **Hitch moments**.

# Longitudinal distance from center of mass to hitch, $\operatorname{dh}-\operatorname{Distance}$ from CM to hitch

5 (default) | scalar

Longitudinal distance from center of mass to hitch, dh, in m.



To enable this parameter, on the **Input signals** pane, select **Hitch forces** or **Hitch moments**.

# Initial inertial frame longitudinal position, $X_o - Initial longitudinal displacement$

0 (default) | scalar

Initial vehicle CG displacement along the earth-fixed *X*-axis, in m.

# Initial longitudinal velocity, xdot\_o — Initial longitudinal velocity 0 (default) | scalar

Initial vehicle CG velocity along the vehicle-fixed *x*-axis, in m/s.

#### **Dependencies**

To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

#### Lateral

# Mapped corner stiffness — Enable mapped corner stiffness off $(default) \mid on$

Enables mapped corner stiffness calculation.

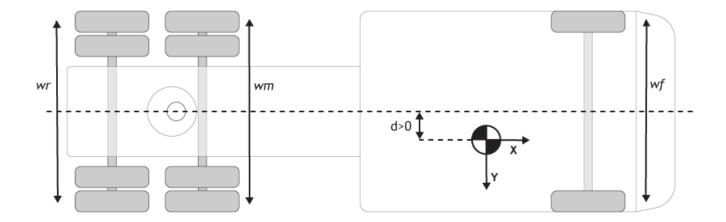
To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

# Include relaxation length dynamics — Enable relaxation length dynamics on $(default) \mid off$

Enables relaxation length dynamics.

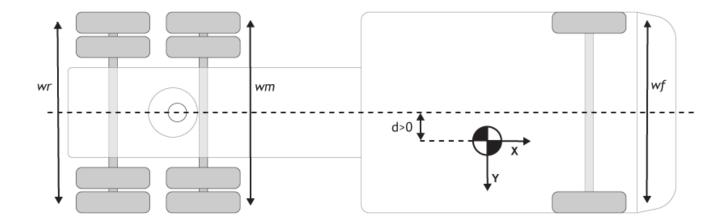
#### **Dependencies**


To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

# Lateral distance from geometric centerline to center of mass, $\mathbf{d}-\mathbf{Distance}$ from centerline to CM

0 (default) | scalar


Lateral distance from the geometric centerline to the center of mass, d, in m, along the vehicle-fixed y-axis. Positive values indicate that the vehicle CM is to the right of the geometric centerline. Negative values indicate that the vehicle CM is to the left of the geometric centerline.



# $\label{eq:track_state} \textbf{Track width, w-Front, middle, and rear track widths}$

[1.82,1.82,1.82] (default) | vector

Front, middle, and rear track widths, wf, wm, and, wr, respectively, in m. Dimensions are [1-by-3].



### **Dependencies**

To enable this parameter, set **Vehicle track** to Dual.

# Front axle tire corner stiffness, $Cy_f$ — Front tire corner stiffness $12e3 \mid scalar$

Front tire corner stiffness,  $Cy_f$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear **Mapped corner stiffness**.

# Middle axle tire corner stiffness, Cy\_m — Middle tire corner stiffness $11e3 \mid scalar$

Middle axle tire corner stiffness,  $Cy_m$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

# Rear axle tire corner stiffness, Cy\_r — Rear tire corner stiffness 11e3 | scalar

Rear axle tire corner stiffness,  $Cy_r$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear Mapped corner stiffness.

# Front tire(s) relaxation length, sigma\_f — Front tire relaxation length .1 (default) | scalar

Front tire relaxation length,  $\sigma_f$ , in m.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- **2** Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

# Middle tire(s) relaxation length, sigma\_m — Middle tire relaxation length .1 (default) | scalar

Middle tire relaxation length,  $\sigma_m$ , in m.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- **2** Do either of these:

- Select Mapped corner stiffness.
- Clear Mapped corner stiffness and select Include relaxation length dynamics.

# Rear tire(s) relaxation length, sigma\_r — Rear tire relaxation length .1 (default) | scalar

Rear tire relaxation length,  $\sigma_r$ , in m.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - · External longitudinal velocity
  - External longitudinal forces
- 2 Do either of these:
  - Select Mapped corner stiffness.
  - Clear Mapped corner stiffness and select Include relaxation length dynamics.

### Front axle slip angle breakpoints, alpha\_f\_brk — Breakpoints

[-.1 .1] (default) | vector

Front axle slip angle breakpoints,  $\alpha_{fbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

### Front axle tire corner data, Cy\_f\_data — Front axle tire corner data

[-9e3 9e3] (default) | vector

Front axle tire corner data,  $Cy_{fdata}$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

### Middle axle slip angle breakpoints, alpha\_m\_brk — Breakpoints

[-.1 .1] (default) | vector

Middle axle slip angle breakpoints,  $\alpha_{mbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

# Middle axle tire corner data, Cy\_m\_data — Middle axle tire corner data [-9e3 9e3] (default) | vector

Middle axle tire corner data,  $Cy_{mdata}$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

# Rear axle slip angle breakpoints, alpha\_r\_brk — Breakpoints [-.1 .1] (default) | vector

Rear axle slip angle breakpoints,  $\alpha_{rbrk}$ , in rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

# Rear axle tire corner data, Cy\_r\_data — Rear axle tire corner data [-9e3 9e3] (default) | vector

Rear axle tire corner data,  $Cy_{rdata}$ , in N/rad.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Select Mapped corner stiffness.

# Initial inertial frame lateral displacement, Y\_o — Initial lateral displacement 0 (default) | scalar

Initial vehicle CG displacement along the earth-fixed Y-axis, in m.

# Initial lateral velocity, ydot\_o — Initial lateral velocity 0 (default) | scalar

Initial vehicle CG velocity along the vehicle-fixed y-axis, in m/s.

#### Yaw

#### Yaw polar inertia, Izz — Inertia

4000 (default) | scalar

Yaw polar inertia, in kg\*m^2.

#### Initial yaw angle, psi\_o — Psi rotation

0 (default) | scalar

Rotation of the vehicle-fixed frame about earth-fixed *Z*-axis (yaw), in rad.

#### Initial yaw rate, r\_o — Yaw rate

0 (default) | scalar

Vehicle angular velocity about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

#### **Aerodynamic**

### Longitudinal drag area, Af — Effective vehicle cross-sectional area

2 (default) | scalar

Effective vehicle cross-sectional area,  $A_f$ , to calculate the aerodynamic drag force on the vehicle, in  $m^2$ .

### Longitudinal drag coefficient, Cd — Air drag coefficient

.3 (default) | scalar

Air drag coefficient,  $C_d$ . The value is dimensionless.

#### Longitudinal lift coefficient, Cl — Air lift coefficient

.1 (default) | scalar

Air lift coefficient,  $C_1$ . The value is dimensionless.

#### Longitudinal drag pitch moment, Cpm — Pitch drag

.1 (default) | scalar

Longitudinal drag pitch moment coefficient,  $C_{pm}$ . The value is dimensionless.

#### Relative wind angle vector, beta\_w — Wind angle

[0:0.01:0.3] (default) | vector

Relative wind angle vector,  $\beta_w$ , in rad.

#### Side force coefficient vector, Cs — Side force coefficient

[0:0.03:0.9] (default) | vector

Side force coefficient vector coefficient,  $C_s$ . The value is dimensionless.

# Yaw moment coefficient vector, Cym — Yaw moment drag [0:0.01:0.3] (default) | vector

Yaw moment coefficient vector coefficient,  $C_{vm}$ . The value is dimensionless.

#### **Environment**

#### Absolute air pressure, Pabs — Pressure

101325 (default) | scalar

Environmental absolute pressure,  $P_{abs}$ , in Pa.

### Air temperature, Tair — Temperature

273 (default) | scalar

Environmental absolute temperature, T, in K.

#### **Dependencies**

To enable this parameter, clear **Air temperature**.

#### **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, q, in m/s<sup>2</sup>.

### Nominal friction scaling factor, mu — Friction scale factor 1 (default) | scalar

2 (4014410) | 3 6 4 6 4 1

Nominal friction scale factor,  $\mu$ . The value is dimensionless.

#### **Dependencies**

To enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- 2 Clear External Friction.

#### **Simulation**

### Longitudinal velocity tolerance, xdot\_tol — Tolerance .01 (default) | scalar

Longitudinal velocity tolerance, in m/s.

#### Nominal normal force, Fznom — Normal force

5000 (default) | scalar

Nominal normal force, in N.

#### **Dependencies**

To enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

# Geometric longitudinal offset from axle plane, long0ff — Longitudinal offset $\theta$ (default) | scalar

Vehicle chassis offset from the axle plane along the vehicle-fixed x-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

# **Geometric lateral offset from center plane, latOff — Lateral offset** 0 (default) | scalar

Vehicle chassis offset from the center plane along the vehicle-fixed *y*-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

# Geometric vertical offset from axle plane, vert0ff — Vertical offset $\theta$ (default) | scalar

Vehicle chassis offset from the axle plane along the vehicle-fixed z-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independently of the vehicle CG.

# Wrap Euler angles, wrapAng — Wrap the Euler angles to the interval [-pi, pi] off (default) | on

Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of this interval, consider clearing the parameter if you want to:

- Track the total vehicle yaw rotation.
- Avoid discontinuities in the vehicle state estimators.

#### References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

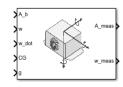
### **Extended Capabilities**

#### C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

#### See Also

Trailer Body 3DOF


#### Topics

"Coordinate Systems in Vehicle Dynamics Blockset"

#### Introduced in R2020a

### **Three-axis Inertial Measurement Unit**

Implement three-axis inertial measurement unit (IMU) **Library:** Vehicle Dynamics Blockset / Sensors



### **Description**

The Three-Axis Inertial Measurement Unit block implements an inertial measurement unit (IMU) containing a three-axis accelerometer and a three-axis gyroscope.

For a description of the equations and application of errors, see Three-axis Accelerometer and Three-axis Gyroscope.

#### Limitations

- Vibropendulous error, hysteresis affects, anisoelastic bias and anisoinertial bias are not accounted for in this block.
- This block is not intended to model the internal dynamics of different forms of the instrument.

#### **Ports**

#### Input

#### A\_b — Actual accelerations

three-element vector

Actual accelerations in body-fixed axes, specified as a three-element vector, in selected units.

Data Types: double

### w — Angular rates

three-element vector

Angular rates in body-fixed axes, specified as a three-element vector, in radians per second.

Data Types: double

#### w\_dot — Angular accelerations

three-element vector

Angular accelerations in body-fixed axes, specified as a three-element vector, in radians per second squared.

Data Types: double

#### CG — Location of center of gravity

three-element vector

Location of the center of gravity, specified as a three-element vector, in selected units.

Data Types: double

#### g — Gravity

three-element vector

Gravity in body axis, specified as a three-element vector, in selected units.

Data Types: double

#### Output

#### **A\_meas** — **Measured accelerations**

three-element vector

Measured accelerations from the accelerometer, specified as a three-element vector, in selected units.

Data Types: double

#### w\_meas — Measured angular rates

three-element vector

Measured angular rates from the gyroscope, specified as a three-element vector, in radians per second.

Data Types: double

#### **Parameters**

#### Main

#### Units — Units

Metric (MKS) (default) | English

Input and output units, specified as:

| Units        | Acceleration              | Length |
|--------------|---------------------------|--------|
| Metric (MKS) | Meters per second squared | Meters |
| English      | Feet per second squared   | Feet   |

#### **Programmatic Use**

**Block Parameter**: units **Type**: character vector

Values: 'Metric (MKS)'|'English'

Default: 'Metric (MKS)'

#### IMU location — IMU location

[0 0 0] (default) | three-element vector

The location of the IMU, which is also the accelerometer group location, from the vehicle center of gravity, along the vehicle-fixed axis. This measurement reference is the same for the center of gravity input. The units are in selected length units.

Programmatic Use Block Parameter: imu Type: character vector Values: three-element vector

**Default**: '[0 0 0]'

### Update rate — Update rate

0 (default) | real, double scalar

Update rate of the accelerometer and gyroscope, specified as a real, double scalar, in seconds. An update rate of 0 creates a continuous accelerometer and continuous gyroscope. If you select the **Noise on** parameter and the update rate is 0, the block updates the noise at a rate of 0.1.

#### **Tip** If you:

- Update this parameter value to 0 (continuous)
- Configure a fixed-step solver for the model

you must also select the **Automatically handle rate transition for data transfer** check box in the **Solver** pane. This check box enables the software to handle rate transitions correctly.

#### **Programmatic Use**

**Block Parameter**: a\_Ts **Type**: character vector **Values**: real, double scalar

Default: '0'

#### **Accelerometer**

### Second order dynamics for accelerometer — Second-order dynamics

on (default) | off

To apply second-order dynamics to acceleration readings, select this check box.

#### **Programmatic Use**

Block Parameter: dtype\_a Type: character vector Values: 'on' | 'off' Default: 'on'

#### Accelerometer natural frequency (rad/sec) — Accelerometer natural frequency

190 (default) | real, double scalar

Natural frequency of the accelerometer, specified as a real, double scalar, in radians per second.

### Programmatic Use

**Block Parameter**: w\_a **Type**: character vector **Values**: real, double scalar

Default: '190'

#### **Dependencies**

To enable this parameter, select **Second order dynamics for accelerometer**.

#### Accelerometer damping ratio — Accelerometer damping ratio

0.707 (default) | real, double scalar

Damping ratio of the accelerometer, specified as a real, double scalar, with no dimensions.

#### **Programmatic Use**

Block Parameter: z\_a Type: character vector Values: real, double scalar

Default: '0.707'

#### **Dependencies**

To enable this parameter, select **Second order dynamics for accelerometer**.

# Accelerometer scale factor and cross-coupling — Scale factor and cross coupling [1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix

Scale factor and cross-coupling, specified as a 3-by-3 matrix, to skew the accelerometer from body axes and to scale accelerations along body axes.

#### **Programmatic Use**

Block Parameter: a\_sf\_cc Type: character vector Values: 3-by-3 matrix

**Default**: '[1 0 0; 0 1 0; 0 0 1]'

#### Accelerometer measurement bias — Accelerometer measurement bias

[0 0 0] (default) | three-element vector

Long-term biases along the accelerometer axes, specified as a three-element vector, in selected acceleration units.

#### **Programmatic Use**

Block Parameter: a\_bias
Type: character vector
Values: three-element vector

Default: '[0 0 0]'

### Accelerometer upper and lower limits — Minimum and maximum values of acceleration

```
[-inf -inf inf inf inf] (default) | six-element vector
```

Three minimum values and three maximum values of acceleration in each of accelerometer axes, specified as a six-element vector, in selected acceleration units.

#### **Programmatic Use**

Block Parameter: a\_sat Type: character vector Values: six-element vector

Default: '[-inf -inf -inf inf inf]'

#### **Gyroscope**

#### Second-order dynamics for gyro — Gyroscope second-order dynamics

on (default) | off

To apply second-order dynamics to gyroscope readings, select this check box.

#### **Programmatic Use**

Block Parameter: dtype\_g
Type: character vector
Values: 'on' | 'off'

Default: 'on'

#### Gyro natural frequency (rad/sec) — Gyroscope natural frequency

190 (default) | real, double scalar

Natural frequency of the gyroscope, specified as a real, double scalar, in radians per second.

# Programmatic Use Block Parameter: w\_g Type: character vector

Values: real, double scalar
Default: '190'

Dependencies

To enable this parameter, select **Second-order dynamics for gyro**.

#### Gyro damping ratio — Gyroscope damping ratio

0.707 (default) | real, double scalar

Damping ratio of the gyroscope, specified as a real, double scale, with no dimensions.

#### **Programmatic Use**

Block Parameter: z\_g Type: character vector Values: real, double scalar

**Default**: '0.707'

#### **Dependencies**

To enable this parameter, select **Second-order dynamics for gyro**.

# **Gyro scale factors and cross-coupling — Gyroscope scale factors and cross-coupling** [1 0 0; 0 1 0; 0 0 1] (default) | 3-by-3 matrix

Gyroscope scale factors and cross-coupling, specified as a 3-by-3 matrix, to skew the gyroscope from body axes and to scale angular rates along body axes.

#### **Programmatic Use**

Block Parameter: g\_sf\_cc Type: character vector Values: 3-by-3 matrix

**Default**: '[1 0 0; 0 1 0; 0 0 1]'

#### **Gyro measurement bias — Gyroscope measurement bias**

[0 0 0] (default) | three-element vector

Long-term biases along the gyroscope axes, specified a three-element vector, in radians per second.

#### **Programmatic Use**

**Block Parameter**: g\_bias

**Type**: character vector **Values**: three-element vector

Default: '[0 0 0]'

#### G-sensitive bias — Maximum change in rates

[0 0 0] (default) | three-element vector

Maximum change in rates due to linear acceleration, specified as a three-element vector, in radians per second per q-unit.

#### **Programmatic Use**

Block Parameter: g\_sens Type: character vector Values: three-element vector Default: '[0 0 0]'

#### Gyro upper and lower limits — Minimum and maximum values of angular rates

[-inf -inf inf inf] (default) | six-element vector

Three minimum values and three maximum values of angular rates in each of the gyroscope axes, specified as a six-element vector, in radians per second.

#### **Programmatic Use**

Block Parameter: g\_sat Type: character vector Values: six-element vector

Default: '[-inf -inf -inf inf inf]'

#### Noise

#### Noise on — White noise

on (default) | off

To apply white noise to acceleration and gyroscope readings, select this check box.

#### **Programmatic Use**

Block Parameter: a\_rand Type: character vector Values: 'on' | 'off' Default: 'on'

#### Noise seeds — Noise seeds

[23093 23094 23095 23096 23097 23098] (default) | six-element vector

Scalar seeds for the Gaussian noise generator for each axis of the accelerometer and gyroscope, specified as a six-element vector.

#### **Programmatic Use**

Block Parameter: a\_seeds Type: character vector Values: six-element vector

**Default**: '[23093 23094 23095 23096 23097 23098]'

#### **Dependencies**

To enable this parameter, select **Noise on**.

#### Noise power — Noise power

[0.001 0.001 0.001 0.0001 0.0001] (default) | six-element vector

Height of the power spectral density (PSD) of the white noise for each axis of the accelerometer and gyroscope, specified as a six-element vector, in:

- (m/s<sup>2</sup>)/Hz for Metric (MKS)
- (ft/s<sup>2</sup>)/Hz for English

#### **Programmatic Use**

**Block Parameter**: a\_pow **Type**: character vector **Values**: six-element vector

Default: '[0.001 0.001 0.001 0.0001 0.0001 0.0001]'

#### **Dependencies**

To enable this parameter, select **Noise on**.

#### References

[1] Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA Education Series, 2000.

### **Extended Capabilities**

#### C/C++ Code Generation

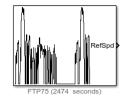
Generate C and C++ code using Simulink® Coder™.

#### See Also

Three-axis Accelerometer | Three-axis Gyroscope

#### Introduced in R2020a

# **Vehicle Scenario Blocks**


### **Drive Cycle Source**

Standard or specified longitudinal drive cycle

Library: Powertrain Blockset / Vehicle Scenario Builder

Vehicle Dynamics Blockset / Vehicle Scenarios / Drive Cycle

and Maneuvers



### Description

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:

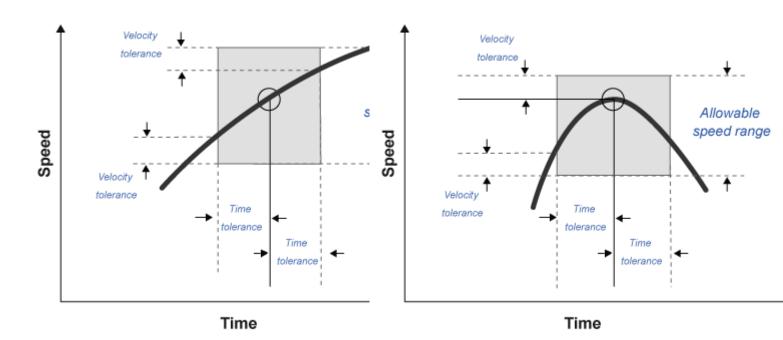
- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.
- Identify the faults within tolerances specified by standardized tests, including:
  - EPA dynamometer driving schedules<sup>1</sup>
  - Worldwide Harmonised Light Vehicle Test Procedure (WLTP) laboratory tests<sup>2</sup>

For the drive cycles, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To
  install additional drive cycles from a support package, see "Support Package For Maneuver and
  Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for
  example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.

| Goal                                                                              | Action                      |
|-----------------------------------------------------------------------------------|-----------------------------|
| Repeat the drive cycle if the simulation run time exceeds the drive cycle length. | Select Repeat cyclically.   |
| Output the acceleration, as calculated by Savitzky-Golay differentiation.         | Select Output acceleration. |


| Goal                                                                            | Action                                                                                                                                                                                |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Specify a sample period for discrete applications.                              | Specify a <b>Output sample period (0 for continuous), dt</b> parameter.                                                                                                               |  |  |  |
| Update the simulation run time so that it equals the length of the drive cycle. | Click <b>Update simulation time</b> . If a model configuration reference exists, the block does not enable this option.                                                               |  |  |  |
| Plot the drive cycle in a MATLAB® figure.                                       | Click <b>Plot drive cycle</b> .                                                                                                                                                       |  |  |  |
| Specify the drive cycle using                                                   | Click <b>Specify variable</b> . The block:                                                                                                                                            |  |  |  |
| a workspace variable.                                                           | Sets the <b>Drive cycle source</b> parameter to Workspace variable.                                                                                                                   |  |  |  |
|                                                                                 | Enables the <b>From workspace</b> parameter.                                                                                                                                          |  |  |  |
|                                                                                 | Specify the workspace variable so that it contains time, velocity, and, optionally, the gear shift schedule.                                                                          |  |  |  |
| Specify the drive cycle using                                                   | Click <b>Select file</b> . The block:                                                                                                                                                 |  |  |  |
| a file.                                                                         | • Sets the <b>Drive cycle source</b> parameter to .mat, .xls, .xlsx or .txt file.                                                                                                     |  |  |  |
|                                                                                 | Enables the <b>Drive cycle source file</b> parameter.                                                                                                                                 |  |  |  |
|                                                                                 | Specify a file that contains time, velocity, and, optionally, the gear shift schedule.                                                                                                |  |  |  |
| Output drive cycle gear.                                                        | Specify a drive cycle that contains a gear shift schedule. You can use:                                                                                                               |  |  |  |
|                                                                                 | A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.                                                                 |  |  |  |
|                                                                                 | Workspace variables.                                                                                                                                                                  |  |  |  |
|                                                                                 | • .mat, .xls, .xlsx, or .txt files.                                                                                                                                                   |  |  |  |
|                                                                                 | Click Output gear shift data.                                                                                                                                                         |  |  |  |
| Install additional drive cycles from a support package.                         | Click <b>Install additional drive cycles</b> . The block enables the parameter if you can install additional drive cycles from a support package.                                     |  |  |  |
| Identify drive cycle faults within tolerances specified by standardized tests.  | On the <b>Fault Tracking</b> tab, use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. |  |  |  |

### **Fault and Failure Tracking**

On the  $Fault\ Tracking\$ tab, use the parameters to specify the fault tolerances. If the vehicle speed or time is not within the allowable range, the block sets a fault condition.

| Parameter                                                                                 | Description                                                                                                                                    | Setting                   |                         |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|--|--|
|                                                                                           |                                                                                                                                                | EPA Standard <sup>1</sup> | WLTP Tests <sup>2</sup> |  |  |
| Speed tolerance                                                                           | Speed tolerance<br>above the highest<br>point and below the<br>lowest point of the<br>drive cycle speed<br>trace within the time<br>tolerance. | 2.0 mph                   | 2.0 km/h                |  |  |
| Time tolerance                                                                            | Time that the block uses to determine the speed tolerance.                                                                                     | 1.0 s                     | 1.0 s                   |  |  |
| Maximum number of faults                                                                  | Maximum number of faults during the drive cycle.                                                                                               | Not specified             | 10                      |  |  |
| Maximum single fault time                                                                 | Maximum fault duration.                                                                                                                        | 2.0 s                     | 1.0 s                   |  |  |
| Maximum total fault<br>timeMaximum<br>accumulated time<br>spent under fault<br>condition. |                                                                                                                                                | Not specified             | Not specified           |  |  |

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.



### **Ports**

#### Input

#### VelFdbk — Vehicle longitudinal speed

scalar

Longitudinal vehicle speed.

#### **Dependencies**

To enable this port, on the **Fault Tracking** tab, select **Enable fault tracking**. Set the **Velocity feedback units, inUnit** parameter to the **VelFdbk** input port signal units.

#### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal          |               | Description                                                                                                                                          |  |  |  |
|-----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reference Speed |               | Vehicle reference speed                                                                                                                              |  |  |  |
| Reference Accel |               | Vehicle reference acceleration                                                                                                                       |  |  |  |
| Gear            |               | Vehicle gear                                                                                                                                         |  |  |  |
| Fault           | UpprBnd       | Upper bound of allowable vehicle speed range.                                                                                                        |  |  |  |
|                 | LowerBnd      | Lower bound of allowable vehicle speed range.                                                                                                        |  |  |  |
|                 | Fault         | Boolean value indicating fault condition:                                                                                                            |  |  |  |
|                 |               | • 1 — Fault                                                                                                                                          |  |  |  |
|                 |               | • 0 — No fault                                                                                                                                       |  |  |  |
|                 |               | If the vehicle speed is not within the allowable speed range, the block sets a fault condition.                                                      |  |  |  |
|                 | FaultCnt      | Number of faults.                                                                                                                                    |  |  |  |
|                 | CumFaultTime  | Cumulative time spent in fault condition.                                                                                                            |  |  |  |
|                 | SnglFaultTime | Tim spent in a single fault.                                                                                                                         |  |  |  |
|                 | Fail          | Boolean value indicating fault failure:                                                                                                              |  |  |  |
|                 |               | • 1 — Failure                                                                                                                                        |  |  |  |
|                 |               | • 0 — No failure                                                                                                                                     |  |  |  |
|                 |               | If the fault conditions exceed the maximum number of faults, maximum single fault time, or maximum total fault time, the block sets a fault failure. |  |  |  |

#### **Dependencies**

To enable this port, on the **Fault Tracking** tab, select **Enable fault tracking**.

#### RefSpd — Vehicle reference speed

scalar

Vehicle reference speed, in units that you specify. To specify the units, use the **Output velocity units** parameter.

#### RefAcc — Vehicle reference acceleration

scalar

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

#### **Dependencies**

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

#### Gear — Vehicle gear

scalar

#### **Dependencies**

To enable this port:

- **1** Specify a drive cycle that contains a gear shift schedule. You can use:
  - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
  - Workspace variables.
  - .mat, .xls, .xlsx, or .txt files.
- 2 Select **Output gear shift** data.

#### **Parameters**

#### **Cycle Setup**

#### Setup

#### Drive cycle source — Select the drive cycle source

FTP75  $(default) \mid Wide \ Open \ Throttle \ (WOT) \mid Workspace \ variable \mid .mat, .xls, .xlsx or .txt file$ 

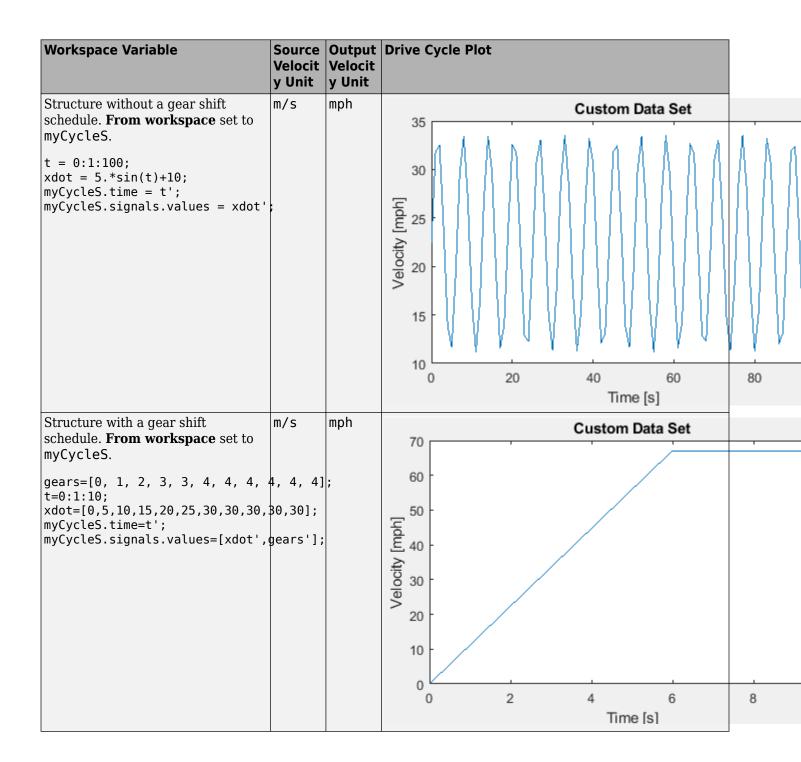
- FTP75 Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Support Package For Maneuver and Drive Cycle Data".
- Wide Open Throttle (WOT) Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file Specify a file that contains time, speed and, optionally, gear data in column format.

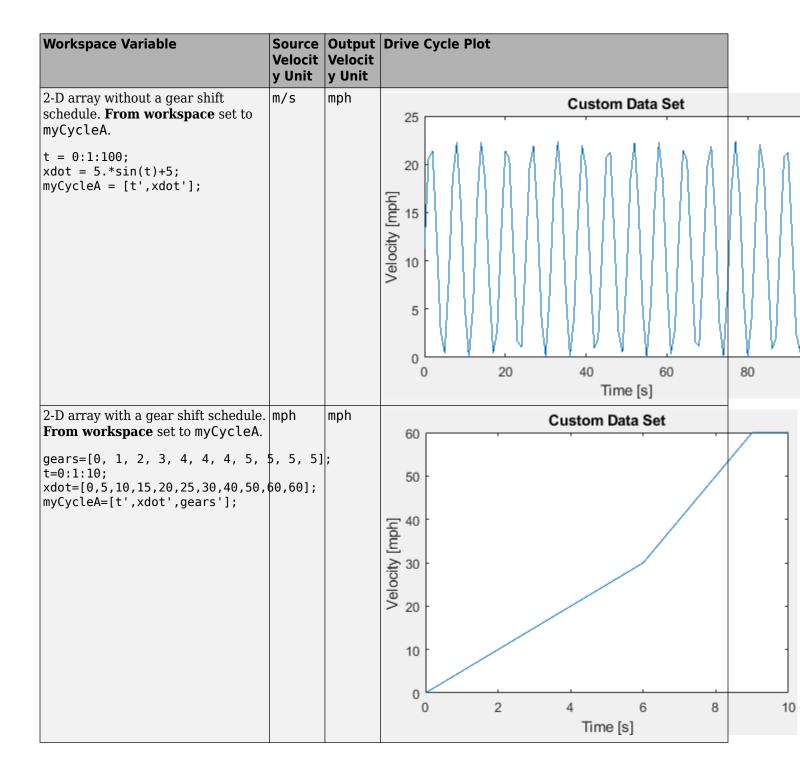
Once you have installed additional cycles, you can use set\_param to set the drive cycle. For example, to use drive cycle US06:

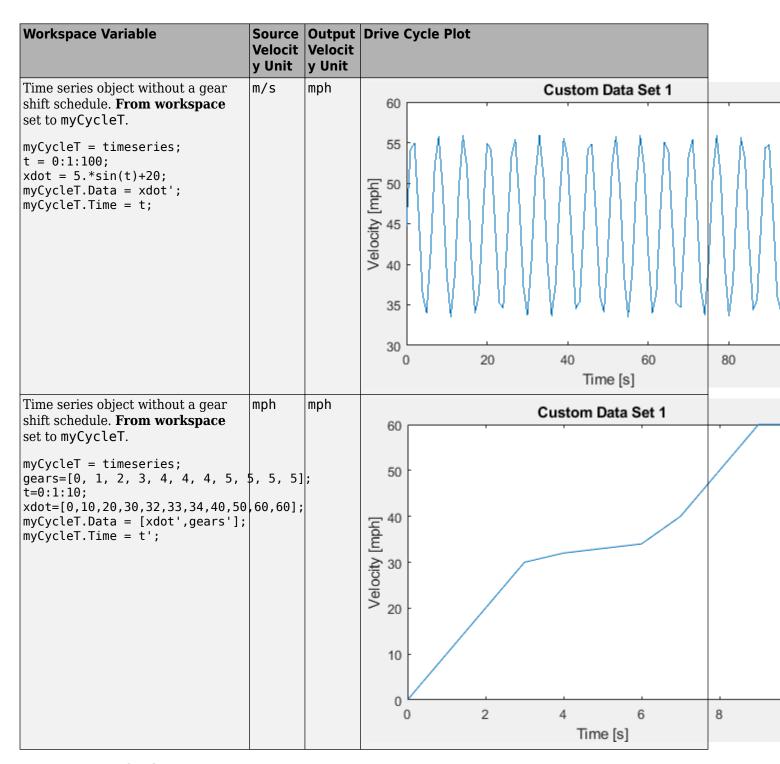
set\_param([gcs '/Drive Cycle Source'],'cycleVar','US06')

#### **Dependencies**

The table summarizes the parameter dependencies.


| <b>Drive Cycle Source</b>      | Enables Parameter                                                   |
|--------------------------------|---------------------------------------------------------------------|
| Wide Open Throttle (WOT)       | Start time, t_wot1                                                  |
|                                | Initial reference speed, xdot_woto                                  |
|                                | Nominal reference speed, xdot_wot1                                  |
|                                | Time to start deceleration, wot2                                    |
|                                | Final reference speed, xdot_wot2                                    |
|                                | WOT simulation time, t_wotend                                       |
|                                | Source velocity units                                               |
| Workspace variable             | From workspace                                                      |
|                                | Source velocity units                                               |
|                                | Output gear shift data, if drive cycle includes gear shift schedule |
| .mat, .xls, .xlsx or .txt file | Drive cycle source file                                             |
|                                | Source velocity units                                               |
|                                | Output gear shift data, if drive cycle includes gear shift schedule |


#### From workspace — Workspace


variable

Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the **Source velocity units** parameter field.

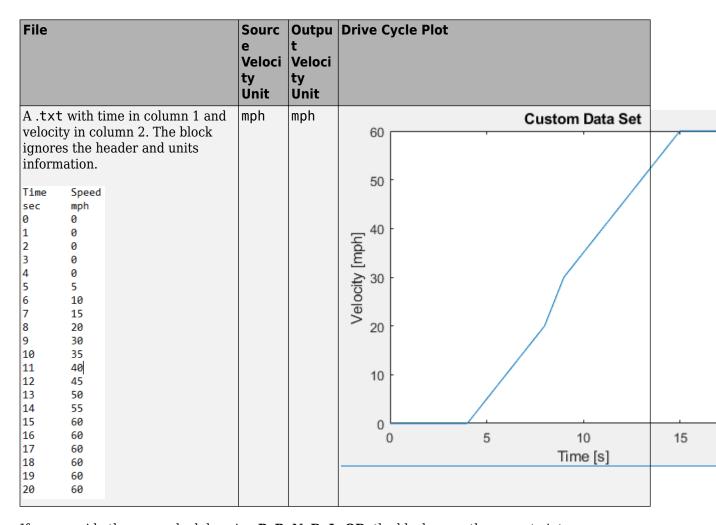
A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.







#### **Dependencies**


To enable this parameter, select Workspace variable from **Drive cycle source**.

# Drive cycle source file — File name .mat, .xls, .xlsx or .txt

File containing monotonically increasing time, velocity, and, optionally, gear in column or commaseparated format. The block ignores units in the file. Enter units for velocity in the **Source velocity units** parameter field.

| File        |  |                                 | е   | Outpu<br>t<br>Veloci<br>ty<br>Unit | Drive                                        | Cycle Plot |   |           |            |   |  |
|-------------|--|---------------------------------|-----|------------------------------------|----------------------------------------------|------------|---|-----------|------------|---|--|
| colum<br>B. |  | ile with time in city in column | mph | mph                                | 50<br>40<br>[udu] Nelocity [mbh]<br>20<br>10 | _          |   | Custom    | Data Set   |   |  |
|             |  |                                 |     |                                    | 0                                            | 0          | 1 | 2<br>Time | 3<br>e [s] | 4 |  |

| Fil | e        |           |                        |       | е   | t   | Drive (        | Drive Cycle Plot |   |  |  |
|-----|----------|-----------|------------------------|-------|-----|-----|----------------|------------------|---|--|--|
|     |          |           | lle with t<br>in colum |       | mph | mph | 50             | Custom Data Set  |   |  |  |
|     |          |           | C. The                 |       |     |     | 50             |                  |   |  |  |
| •   | Ignores  | the unit  | ts in the              | file. |     |     |                | / /              |   |  |  |
| •   | Conver   | ts the ge | ar infori              |       |     |     | 40             |                  |   |  |  |
|     | to integ | jers:     |                        |       |     |     |                | /                |   |  |  |
|     | • N to   | 0 0       |                        |       |     |     | 년 30           |                  |   |  |  |
|     | • D to   | 2         |                        |       |     |     | Velocity [mph] | /                |   |  |  |
| 4   | Α        | В         | С                      |       |     |     | ocity          | /                |   |  |  |
| 1   | sec      | mph       | gear                   |       |     |     | <u>ə</u> 20    | · /              |   |  |  |
| 2   | 0.5      | 0         | N<br>N                 |       |     |     | >              |                  |   |  |  |
| 3   | 0.5      | 0         | N                      |       |     |     |                |                  |   |  |  |
| 5   | 1.5      | 0         | N                      |       |     |     | 10             |                  |   |  |  |
| 6   | 2.0      | 1         | D                      |       |     |     | 10             | [ /              |   |  |  |
| 7   | 2.5      | 5         | D                      |       |     |     |                |                  |   |  |  |
| 8   | 3        | 10        | D                      |       |     |     |                |                  |   |  |  |
| 9   | 3.5      | 20        | D                      |       |     |     | 0              |                  | - |  |  |
| 10  | 4        | 30        | D                      |       |     |     | (              | 2 4 6            | 8 |  |  |
| 11  | 4.5      | 40        | D                      |       |     |     |                | Time [s]         |   |  |  |
| 12  | 5        | 50        | D                      |       |     |     |                |                  |   |  |  |



If you provide the gear schedule using P, R, N, D, L, OD, the block maps the gears to integers.

| Gear | Integer                                    |
|------|--------------------------------------------|
| P    | 80                                         |
| R    | -1                                         |
| N    | 0                                          |
| L    | 1                                          |
| D    | 2                                          |
| OD   | Next integer after highest specified gear. |

For example, the block converts the gear schedule P P N L D 3 4 5 6 5 4 5 6 7 0D 7 to 80 80 0 1 2 3 4 5 6 5 4 5 6 7 8 7.

#### **Dependencies**

To enable this parameter, select .mat, .xls, .xlsx or .txt file from **Drive cycle source**.

### $\label{eq:Repeat_cyclically} \textbf{Repeat_cycle} \ \textbf{Repeat_cycle} \\ \textbf{Repeat_cyclically} \ \textbf{--} \ \textbf{Repeat_drive_cycle} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--} \\ \textbf{--} \ \textbf{--$

off (default) | on

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

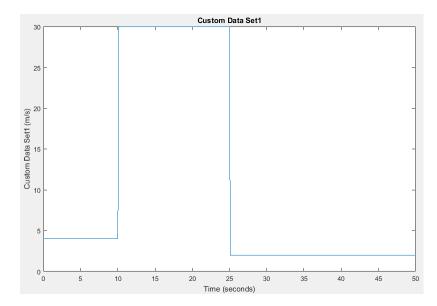
### **Output acceleration — Output the acceleration** off (default)

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a secondorder polynomial with a three-sample point filter.

#### **Dependencies**

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

# Output gear shift data — Output the gear off (default) | on


#### **Dependencies**

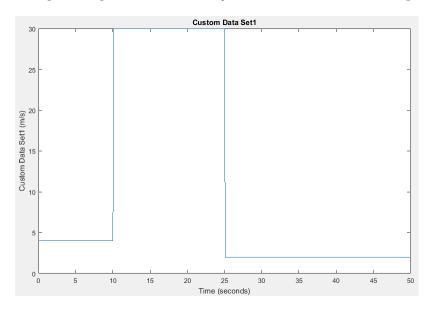
- Specify a drive cycle that contains a gear shift schedule. You can use:
  - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
  - · Workspace variables.
  - .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port **Gear**.

#### WOT

### **Start time, t\_wot1 — Drive cycle start time** 5 (default) | scalar

Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s.




#### **Dependencies**

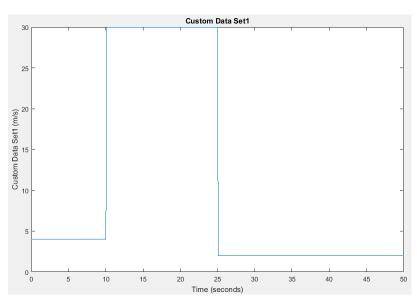
To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

### Initial reference speed, xdot\_woto — Speed

0 (default) | scalar

Initial reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with an initial reference speed of 4 m/s.




#### **Dependencies**

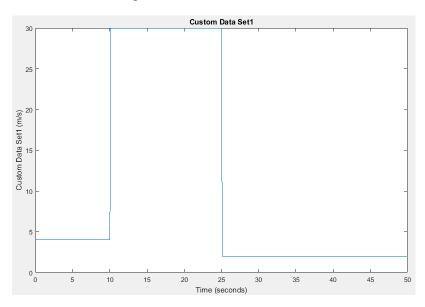
To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

### Nominal reference speed, xdot\_wot1 — Speed

30 (default) | scalar

Nominal reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a nominal reference speed of 30 m/s.



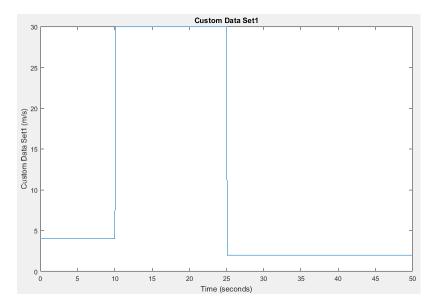

#### **Dependencies**

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

#### Time to start deceleration, wot2 — Time

20 (default) | scalar

Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at  $25 \ s$ .

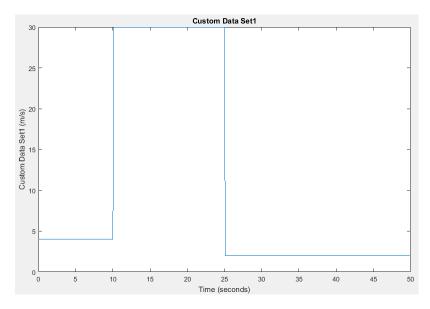



#### **Dependencies**

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

# Final reference speed, xdot\_wot2 — Speed 0 (default) | scalar

Final reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a final reference speed of 2 m/s.




#### **Dependencies**

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

# **WOT simulation time**, **t\_wotend** — **Time** 30 (default) | scalar

Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of  $50\ s$ .



#### **Dependencies**

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

#### **Units and Sample Period**

#### Source velocity units — Specify velocity units

m/s (default)

Input velocity units.

#### **Dependencies**

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

#### Output velocity units - Specify velocity units

m/s (default)

Output velocity units.

#### Output acceleration units — Specify acceleration units

m/s^2 (default)

Specify the output acceleration units.

#### **Dependencies**

To enable this parameter, select **Output acceleration**.

### Output sample period (0) for continuous — Sample rate

0 (default) | scalar

Sample rate. Set to  $\theta$  for continuous sample period. For a discrete period, specify a non-zero rate.

#### **Fault Tracking**

#### **Fault Settings**

#### Enable fault tracking — Enable fault tracking

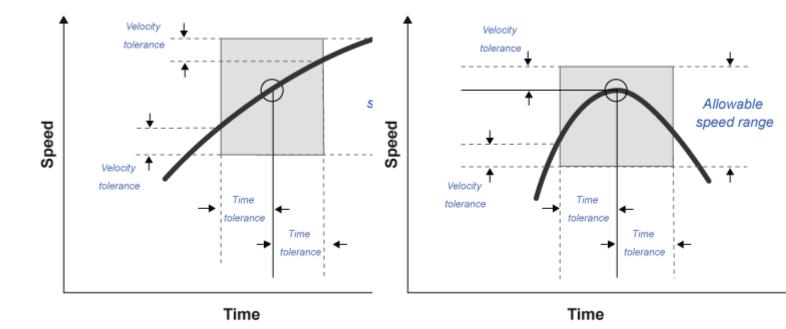
off (default) | on

Select this parameter to enable drive cycle fault tracking. Use the parameters to specify the fault tolerances. If the vehicle speed is not within the allowable speed range, the block sets a fault condition.

#### **Dependencies**

Selecting this parameter enables these parameters:

- Speed tolerance, velBnd
- Speed tolerance units, velBndUnit
- Velocity feedback units, inUnit
- · Time tolerance, timeBnd


#### Speed tolerance, velBnd — Drive cycle speed tolerance

2.0 (default) | scalar

The speed tolerance above the highest point and below the lowest point of the drive cycle speed trace within the time tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the tolerances specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules 2.0
- WLTP tests 2.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.



#### **Dependencies**

To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

# Speed tolerance units, velBndUnit — Set units mph (default)

Speed tolerance units. For the units specified by the standardized tests, use these units:

- EPA dynamometer driving schedules m/s
- WLTP tests km/h

#### **Dependencies**

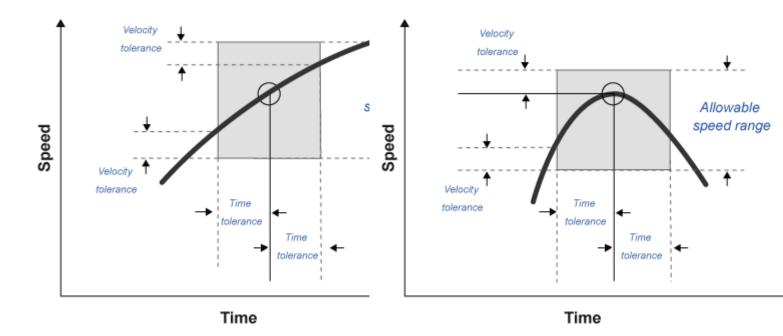
To enable this parameter, on the Fault Tracking tab, select Enable fault tracking.

# **Velocity feedback units, inUnit — Set velocity feedback units** m/s (default)

Velocity feedback units. Set the value to the VelFdbk input port signal units.

#### **Dependencies**

To enable this parameter, on the **Fault Tracking** tab, select **Enable fault tracking**.


#### Time tolerance, timeBnd — Time tolerance

1.0 (default) | scalar

Time that the block uses to determine the speed tolerance. If the vehicle speed is not within the allowable speed range, the block sets a fault condition. For the time tolerances specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules 1.0
- WLTP tests 1.0

These figures illustrate how the block uses the velocity and time tolerances to determine the allowable speed range.



#### **Dependencies**

To enable this parameter, on the **Fault Tracking** tab, select **Enable fault tracking**.

#### **Failure Settings**

### **Enable failure tracking — Enable failure tracking** off (default) | on

Select this parameter to enable drive cycle failure tracking.

#### **Dependencies**

To enable this parameter, select **Enable fault tracking**. Selecting **Enable failure tracking** parameter enables these parameters:

- Stop simulation when trace fails, stopSim
- Maximum number of faults, maxFaultCnt

- · Maximum single fault time, maxFaultTime
- · Maximum total fault time, maxTotFaultTime

# **Maximum number of faults, maxFaultCnt — Maximum number of faults** 10 (default) | scalar

Maximum number of faults during the drive cycle. For the number specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules *Not specified*
- WLTP tests 10

If the number of faults exceeds the maximum number of faults, the block sets a fault failure.

#### **Dependencies**

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

# $\label{lem:maxFaultTime} \textbf{Maximum single fault time, maxFaultTime - Maximum duration of single fault} \\ 2.0 \ (default) \ | \ scalar$

Maximum duration of single fault, in s. For the time specified by the standardized tests, use these settings:

- EPA dynamometer driving schedules 2.0
- WLTP tests 1.0

If the fault duration exceeds the maximum single fault time, the block sets a fault failure.

#### **Dependencies**

To enable this parameter, on the **Fault Tracking** tab, select **Enable failure tracking**.

# Maximum total fault time, maxTotFaultTime — Maximum total fault time 15.0 (default) | scalar

Maximum accumulated time spent under fault condition, in s.

If the accumulated time spent under fault condition exceeds the maximum total fault time, the block sets a fault failure.

#### **Dependencies**

To enable this parameter, on the Fault Tracking tab, select Enable failure tracking.

#### **Simulation Trace**

# **Display simulation trace — Display velocity trace** off (default) | on

Select this parameter to display a velocity trace window. Selecting this parameter can slow the simulation time.

#### **Dependencies**

Selecting this parameter enables these parameters:

- Simulation trace update rate, dtTrace
- Simulation trace display window, traceWindow

#### Simulation trace update rate, dtTrace — Trace update rate

1 (default) | scalar

Simulation trace update rate, in s. Set to 0 for continuous sample period. For a discrete period, specify a non-zero rate.

#### **Dependencies**

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.

# Simulation trace display window, traceWindow — Trace window update rate 10 (default) | scalar

Simulation trace window update rate, in s.

#### **Dependencies**

To enable this parameter, on the Fault Tracking tab, select Display simulation trace.

#### References

- [1] Environmental Protection Agency (EPA). *EPA urban dynamometer driving schedule*. 40 CFR 86.115-78, July 1, 2001.
- [2] European Union Commission. "Speed trace tolerances". *European Union Commission Regulation*. 32017R1151, Sec 1.2.6.6, June 1, 2017.

### **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder  $^{\scriptscriptstyle\mathsf{TM}}.$ 

#### See Also

Lateral Driver | Longitudinal Driver | Predictive Driver

#### **Topics**

"Support Package For Maneuver and Drive Cycle Data"
"Time Series Objects and Collections" (MATLAB)

#### Introduced in R2017a

# **Longitudinal Driver**

Longitudinal speed-tracking controller

Library: Powertrain Blockset / Vehicle Scenario Builder

Vehicle Dynamics Blockset / Vehicle Scenarios / Driver



# **Description**

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1. You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

#### **Configurations**

#### **External Actions**

Use the **External Actions** parameters to create input ports for signals that can disable, hold, or override the closed-loop acceleration or deceleration commands. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

| Goal                                                | External Action Parameter | Input Ports   | Data Type |
|-----------------------------------------------------|---------------------------|---------------|-----------|
| Override the accelerator                            | Accelerator               | EnablAccelOvr | Boolean   |
| command with an input acceleration command.         | override                  | Accel0vrCmd   | double    |
| Hold the acceleration command at the current value. | Accelerator<br>hold       | AccelHld      | Boolean   |
| Disable the acceleration command.                   | Accelerator disable       | AccelZero     | Boolean   |
| Override the decelerator                            | Decelerator               | EnablDecelOvr | Boolean   |
| command with an input deceleration command.         | override                  | Decel0vrCmd   | double    |
| Hold the decelerator command at current value.      | Decelerator<br>hold       | DecelHld      | Boolean   |
| Disable the decelerator command.                    | Decelerator<br>disable    | DecelZero     | Boolean   |

#### Controller

Use the **Control type, cntrlType** parameter to specify one of these control options.

| Setting      | Block Implementation                                                                                                                                                                                                                                                                                                  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PI           | Proportional-integral (PI) control with tracking windup and feed-forward gains.                                                                                                                                                                                                                                       |  |  |
| Scheduled PI | PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.                                                                                                                                                                                                                       |  |  |
| Predictive   | Optimal single-point preview (look ahead) control model developed by C. (MacAdam <sup>1, 2, 3</sup> . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam mod the block: |  |  |
|              | Represents the dynamics as a linear single track (bicycle) vehicle                                                                                                                                                                                                                                                    |  |  |
|              | • Minimizes the previewed error signal at a single point $T^*$ seconds ahead in time                                                                                                                                                                                                                                  |  |  |
|              | Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms                                                                                                                                                                                                                                     |  |  |

# Shift

Use the **Shift type**, **shftType** parameter to specify one of these shift options.

| Setting                    | Block Implementation                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                       | No transmission. Block outputs a constant gear of 1.                                                                                                                                                                                                                                                                                                                    |
|                            | Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.                                                                                                                                                                       |
| Reverse, Neutral,<br>Drive | Block uses a Stateflow <sup>®</sup> chart to model reverse, neutral, and drive gear shift scheduling.                                                                                                                                                                                                                                                                   |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral. |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |

| Setting   | Block Implementation                                                                                                                                                                                                                                                                        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheduled | Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.                                                                                                                                                                                            |
|           | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the: |
|           | Initial gear                                                                                                                                                                                                                                                                                |
|           | Upshift and downshift accelerator pedal positions                                                                                                                                                                                                                                           |
|           | Upshift and downshift velocity                                                                                                                                                                                                                                                              |
|           | Timing for shifting and engaging forward and reverse from neutral                                                                                                                                                                                                                           |
|           | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                  |
| External  | Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.                                                                                                                                  |
|           | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                  |

# **Gear Signal**

Use the **Output gear signal** parameter to create the **GearCmd** output port. The **GearCmd** signal contains the integer value of the commanded vehicle gear.

| Gear    | Integer     |  |  |
|---------|-------------|--|--|
| Park    | 80          |  |  |
| Reverse | -1          |  |  |
| Neutral | 0           |  |  |
| Drive   | 1           |  |  |
| Gear    | Gear number |  |  |

# **Controller: PI Speed-Tracking**

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.

| Setting | Equation                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PI      | $y = \frac{K_{ff}}{v_{nom}}v_{ref} + \frac{K_{p}e_{ref}}{v_{nom}} + \int \left(\frac{K_{i}e_{ref}}{v_{nom}} + K_{aw}e_{out}\right)dt + K_{g}\theta$ |

| Setting      | Equation                                                                                                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheduled PI | $y = \frac{K_{ff}(v)}{v_{nom}}v_{ref} + \frac{K_p(v)e_{ref}}{v_{nom}} + \int \left(\frac{K_i(v)e_{ref}}{v_{nom}} + K_{aw}e_{out}\right)e_{ref}dt + K_g(v)\theta$ |

where:

$$\begin{aligned} e_{ref} &= v_{ref} - v \\ e_{out} &= y_{sat} - y \\ y_{sat} &= \begin{cases} -1 & y < -1 \\ y & -1 \le y \le 1 \\ 1 & 1 < y \end{cases} \end{aligned}$$

The velocity error low-pass filter uses this transfer function.

$$H(s) = \frac{1}{\tau_{err}s + 1} \quad \text{for} \quad \tau_{err} > 0$$

To calculate the acceleration and braking commands, the block uses these equations.

$$y_{acc} = \begin{cases} 0 & y_{sat} < 0 \\ y_{sat} & 0 \le y_{sat} \le 1 \\ 1 & 1 < y_{sat} \end{cases}$$
$$y_{dec} = \begin{cases} 0 & y_{sat} > 0 \\ -y_{sat} & -1 \le y_{sat} \le 0 \\ 1 & y_{sat} < -1 \end{cases}$$

The equations use these variables.

| $v_{nom}$           | Nominal vehicle speed                                    |  |  |
|---------------------|----------------------------------------------------------|--|--|
| $K_p$               | Proportional gain                                        |  |  |
| $K_i$               | Integral gain                                            |  |  |
| $K_{aw}$            | Anti-windup gain                                         |  |  |
| $K_{ff}$            | Velocity feed-forward gain                               |  |  |
| $K_g$               | Grade feed-forward gain                                  |  |  |
| $\theta$            | Grade angle                                              |  |  |
| $\tau_{err}$        | Error filter time constant                               |  |  |
| У                   | Nominal control output magnitude                         |  |  |
| $y_{sat}$           | Saturated control output magnitude                       |  |  |
| $e_{\it ref}$       | Velocity error                                           |  |  |
| $e_{out}$           | Difference between saturated and nominal control outputs |  |  |
| $\mathcal{Y}_{acc}$ | Acceleration signal                                      |  |  |
| $y_{dec}$           | Braking signal                                           |  |  |
| ν                   | Velocity feedback signal                                 |  |  |

Reference velocity signal

#### **Controller: Predictive Speed-Tracking**

If you set the **Control type, cntrlType** parameter to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam<sup>1, 2, 3</sup>. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- · Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T\* seconds ahead in time
- · Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

#### **Vehicle Dynamics**

 $v_{ref}$ 

For longitudinal motion, the block implements these linear dynamics.

$$x_1 = v$$

$$\dot{x}_1 = x_2 = \frac{K_{pt}}{m} - g\sin(\gamma) + F_r x_1$$

In matrix notation:

$$\dot{x} = Fx + g\bar{u}$$

where:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 1 \\ \frac{F_r}{m} & 0 \end{bmatrix}$$

$$g = \begin{bmatrix} 0 \\ \frac{K_{pt}}{m} \end{bmatrix}$$

$$\bar{u} = u - \frac{m^2}{K_{pt}} g \sin(\gamma)$$

The block uses this equation for the rolling resistance.

$$F_r = -\left[\tanh(x_1)(\frac{a_r}{x_1} + c_r x_1) + b_r\right]$$

The single-point model assumes a minimum previewed error signal at a single point  $T^*$  seconds ahead in time.  $a^*$  is the driver ability to predict the future vehicle response based on the current steering control input.  $b^*$  is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

6-27

$$a^* = (T^*)m^T \left[ I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{(n+1)!} \right] ge$$

$$b^* = m^T \left[ I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{n!} \right]$$

where:

$$m^T = [1 \ 1]$$

The equations use these variables.

a, b Forward and rearward tire location, respectively

m Vehicle mass

I Vehicle rotational inertia

*a*\*, *b*\* Driver prediction scalar and vector gain, respectively

x Predicted vehicle state vector

v Longitudinal velocity

**F** System matrix

 $K_{pt}$  Tractive force and brake limit

γ Grade angle

 g
 Control coefficient vector

 g
 Gravitational constant

 T\*
 Preview time window

 $f(t+T^*)$  Previewed path input T\* seconds ahead

U Forward vehicle velocity

**m**<sup>T</sup> Constant observer vector; provides vehicle lateral position

 $F_r$  Rolling resistance

 $a_r$  Static rolling and driveline resistance  $b_r$  Linear rolling and driveline resistance

 $c_r$  Aerodynamic rolling and driveline resistance

#### **Optimization**

The single-point model implemented by the block finds the steering command that minimizes a local performance index, I, over the current preview interval, (t, t+T).

$$J = \frac{1}{T} \int_{0}^{t+T} [f(\eta) - y(\eta)]^2 d\eta$$

To minimize *J* with respect to the steering command, this condition must be met.

$$\frac{dJ}{du} = 0$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error  $T^*$  seconds ahead<sup>1, 2, 3</sup>.

$$u^o(t)=u(t)+\frac{e(t+T^*)}{a^*}$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$T^* = \frac{L}{U}$$

The equations use these variables.

| $T^*$          | Preview time window                               |
|----------------|---------------------------------------------------|
| $f(t+T^*)$     | Previewed path input $T^*$ sec ahead              |
| $y(t+T^*)$     | Previewed plant output $T^*$ sec ahead            |
| $e(t+T^*)$     | Previewed error signal $T^*$ sec ahead            |
| $u(t), u^o(t)$ | Steer angle and optimal steer angle, respectively |
| L              | Preview distance                                  |
| J              | Performance index                                 |
| U              | Forward (longitudinal) vehicle velocity           |
|                |                                                   |

#### **Driver Lag**

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$H(s) = e^{-s\tau}$$

The equations use these variables.

| τ              | Driver transport delay                            |
|----------------|---------------------------------------------------|
| $y(t+T^*)$     | Previewed plant output $T^*$ sec ahead            |
| $e(t+T^*)$     | Previewed error signal $T^*$ sec ahead            |
| $u(t), u^o(t)$ | Steer angle and optimal steer angle, respectively |
| I              | Performance index                                 |

# **Ports**

# Input

# **VelRef** — **Reference vehicle velocity**

scalar

Reference velocity,  $v_{ref}$ , in m/s.

# EnblAccelOvr — Enable acceleration command override

scalar

Enable acceleration command override.

To enable this port, select **Acceleration override**.

Data Types: Boolean

#### AccelOvrCmd — Acceleration override command

scalar

Acceleration override command, normalized from 0 through 1.

#### **Dependencies**

To enable this port, select **Acceleration override**.

Data Types: double

#### AccelHld — Acceleration hold

scalar

Boolean signal that holds the acceleration command at the current value.

#### **Dependencies**

To enable this port, select **Acceleration hold**.

Data Types: Boolean

#### AccelZero — Disable acceleration command

scalar

Disable acceleration command.

#### **Dependencies**

To enable this port, select **Acceleration disable**.

Data Types: Boolean

#### **EnblDecelOvr** — **Enable deceleration command override**

scalar

Enable deceleration command override.

# **Dependencies**

To enable this port, select **Deceleration override**.

Data Types: Boolean

#### DecelOvrCmd — Deceleration override command

scalar

Deceleration override command, normalized from 0 through 1.

#### **Dependencies**

To enable this port, select **Deceleration override**.

Data Types: double

#### DecelHld — Deceleration hold

scalar

Boolean signal that holds the deceleration command at the current value.

#### **Dependencies**

To enable this port, select **Deceleration hold**.

Data Types: Boolean

# **DecelZero** — **Disable deceleration command**

scalar

Disable deceleration command.

#### **Dependencies**

To enable this port, select **Deceleration disable**.

Data Types: Boolean

# ExtGear — Gear

scalar

| Gear    | Integer     |  |  |
|---------|-------------|--|--|
| Park    | 80          |  |  |
| Reverse | -1          |  |  |
| Neutral | 0           |  |  |
| Drive   | 1           |  |  |
| Gear    | Gear number |  |  |

#### **Dependencies**

To enable this port, set **Shift type**, **shftType** to External.

# VelFdbk — Longitudinal vehicle velocity

scalar

Longitudinal vehicle velocity, U, in the vehicle-fixed frame, in m/s.

# **Grade** — Road grade angle

scalar

Road grade angle,  $\theta$  or  $\gamma$ , in deg.

# Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal                  |                                                | Variable                        | Description                                                         |
|-------------------------|------------------------------------------------|---------------------------------|---------------------------------------------------------------------|
| Accel                   |                                                | <b>y</b> <sub>acc</sub>         | Commanded vehicle acceleration, normalized from 0 through 1         |
| Decel                   |                                                | <b>Y</b> dec                    | Commanded vehicle deceleration, normalized from 0 through 1         |
| Gear                    |                                                |                                 | Integer value of commanded gear                                     |
| Clutch                  |                                                |                                 | Clutch command                                                      |
| Err                     |                                                | $e_{ref}$                       | Difference in reference vehicle speed and vehicle speed             |
| ErrSqrSum               |                                                | $\int\limits_0^t e_{ref}{}^2dt$ | Integrated square of error                                          |
| ErrMax                  |                                                | $\max(e_{ref}(t))$              | Maximum error during simulation                                     |
| ErrMin                  |                                                | $\min(e_{ref}(t))$              | Minimum error during simulation                                     |
| ExtActions EnblAccelOvr |                                                |                                 | Override the accelerator command with an input acceleration command |
|                         | Accel0vrCmd                                    |                                 | Input accelerator override command                                  |
|                         | AccelHld                                       |                                 | Hold the acceleration command at the current value                  |
|                         | AccelZero                                      |                                 | Disable the acceleration command                                    |
|                         | EnblDecelOvr  DecelOvrCmd  DecelHld  DecelZero |                                 | Override the decelerator command with an input deceleration command |
|                         |                                                |                                 | Input deceleration override command                                 |
|                         |                                                |                                 | Hold the decelerator command at current value                       |
|                         |                                                |                                 | Disable the decelerator command                                     |

# **AccelCmd** — Commanded vehicle acceleration

scalar

Commanded vehicle acceleration,  $y_{acc}$ , normalized from 0 through 1.

# **DecelCmd** — Commanded vehicle deceleration

scalar

Commanded vehicle deceleration,  $y_{dec}$ , normalized from 0 through 1.

# **GearCmd** — **Commanded vehicle gear**

scalar

Integer value of commanded vehicle gear.

| Gear    | Integer |
|---------|---------|
| Park    | 80      |
| Reverse | -1      |

| Gear    | Integer     |
|---------|-------------|
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

To enable this port, select **Output gear signal**.

## **Parameters**

#### **External Actions**

# Accelerator override — Override acceleration command

off (default) | on

Select to override the acceleration command with an input acceleration command.

#### **Dependencies**

Selecting this parameter creates the EnblAccelOvr and AccelOvrCmd input ports.

# Accelerator hold — Hold acceleration command

off (default) | on

Select to hold the acceleration command.

#### **Dependencies**

Selecting this parameter creates the AccelHld input port.

#### Accelerator disable — Disable acceleration command

off (default) | on

Select to disable the acceleration command.

#### **Dependencies**

Selecting this parameter creates the AccelZero input port.

#### Decelerator override — Override deceleration command

off (default) | on

Select to override the deceleration command with an input deceleration command.

#### **Dependencies**

Selecting this parameter creates the EnblDecelOvr and DecelOvrCmd input ports.

# Decelerator hold — Hold deceleration command

off (default) | on

Select to hold the deceleration command.

Selecting this parameter creates the DecelHld input port.

# **Decelerator disable — Disable deceleration command** off (default) | on

Select to disable the deceleration command.

#### **Dependencies**

Selecting this parameter creates the DecelZero input port.

# Configuration

# Control type, cntrlType — Longitudinal control

PI (default) | Scheduled PI | Predictive

Type of longitudinal control.

| Setting      | Block Implementation                                                                                                                                                                                                                                                                                                     |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PI           | Proportional-integral (PI) control with tracking windup and feed-forward gains.                                                                                                                                                                                                                                          |  |
| Scheduled PI | PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.                                                                                                                                                                                                                          |  |
| Predictive   | Optimal single-point preview (look ahead) control model developed by C. C. MacAdam <sup>1, 2, 3</sup> . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam mode the block: |  |
|              | Represents the dynamics as a linear single track (bicycle) vehicle                                                                                                                                                                                                                                                       |  |
|              | • Minimizes the previewed error signal at a single point $T^*$ seconds ahead in time                                                                                                                                                                                                                                     |  |
|              | Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms                                                                                                                                                                                                                                        |  |

# Shift type, shftType — Shift type

None (default) | Reverse, Neutral, Drive | Scheduled | External

Shift type.

| Setting | Block Implementation                                                                                                             |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------|--|
| None    | No transmission. Block outputs a constant gear of 1.  Use this setting to minimize the number of parameters you need to generate |  |
|         | acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion.           |  |

| Setting                    | Block Implementation                                                                                                                                                                                                                                                                                                                                           |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reverse, Neutral,<br>Drive | Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling.                                                                                                                                                                                                                                                                       |  |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift the vehicle up into drive or down into reverse or neutral. |  |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                     |  |
| Scheduled                  | Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.                                                                                                                                                                                                                                                               |  |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:                                                                    |  |
|                            | Initial gear                                                                                                                                                                                                                                                                                                                                                   |  |
|                            | Upshift and downshift accelerator pedal positions                                                                                                                                                                                                                                                                                                              |  |
|                            | Upshift and downshift velocity                                                                                                                                                                                                                                                                                                                                 |  |
|                            | Timing for shifting and engaging forward and reverse from neutral                                                                                                                                                                                                                                                                                              |  |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                     |  |
| External                   | Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.                                                                                                                                                                                                     |  |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                     |  |

# Reference and feedback units, velUnits — Velocity units m/s (default)

Vehicle velocity reference and feedback units.

# **Dependencies**

If you set **Control type, cntrlType** control type to Scheduled or Scheduled PI, the block uses the **Reference and feedback units, velUnits** for the **Nominal speed, vnom** parameter dimension.

If you set **Shift Type, shftType** to **Scheduled**, the block uses the **Longitudinal velocity units, velUnits** for these parameter dimensions:

• Upshift velocity data table, upShftTbl

# · Downshift velocity data table, dwnShftTbl

# Output gear signal — Create GearCmd output port off (default) $\mid$ on

Specify to create output port GearCmd.

#### Control

#### Longitudinal

#### Proportional gain, Kp — Gain

10 (default) | scalar

Proportional gain,  $K_n$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI.

# Integral gain, Ki — Gain

5 (default) | scalar

Proportional gain,  $K_i$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI.

# Velocity feed-forward, Kff — Gain

.1 (default) | scalar

Velocity feed-forward gain,  $K_{ff}$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI.

#### Grade feed-forward, Kg — Gain

0 (default) | scalar

Grade feed-forward gain,  $K_a$ , in 1/deg.

# **Dependencies**

To create this parameter, set **Control type** to PI.

# Velocity gain breakpoints, VehVelVec — Breakpoints

[0 100] (default) | vector

Velocity gain breakpoints, VehVelVec, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

# Velocity feed-forward gain values, KffVec — Gain

[.1 .1] (default) | vector

Velocity feed-forward gain values, *KffVec*, as a function of vehicle velocity, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

#### Proportional gain values, KpVec — Gain

[10 10] (default) | vector

Proportional gain values, *KpVec*, as a function of vehicle velocity, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

## Integral gain values, KiVec — Gain

[5 5] (default) | vector

Integral gain values, *KiVec*, as a function of vehicle velocity, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

# Grade feed-forward values, KgVec — Grade gain

[0 0] (default) | vector

Grade feed-forward values, *KgVec*, as a function of vehicle velocity, in 1/deg.

### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

# Nominal speed, vnom — Nominal vehicle speed

5 (default) | scalar

Nominal vehicle speed,  $v_{nom}$ , in units specified by the **Reference and feedback units**, **velUnits** parameter. The block uses the nominal speed to normalize the controller gains.

#### **Dependencies**

To create this parameter, set **Control type** to PI or Scheduled PI.

#### Anti-windup, Kaw — Gain

1 (default) | scalar

Anti-windup gain,  $K_{aw}$ , dimensionless.

# **Dependencies**

To create this parameter, set **Control type** to PI or Scheduled PI.

#### Error filter time constant, tauerr — Filter

.01 (default) | scalar

Error filter time constant,  $\tau_{err}$ , in s. To disable the filter, enter 0.

To create this parameter, set **Control type** to PI or Scheduled PI.

#### **Predictive**

# Vehicle mass, m — Mass

1500 (default) | scalar

Vehicle mass, m, in kg.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

# Effective vehicle total tractive force, Kp — Tractive force

3000 (default) | scalar

Effective vehicle total tractive force,  $K_p$ , in N.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

#### Driver response time, tau — Tau

.1 (default) | scalar

Driver response time,  $\tau$ , in s.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

#### Preview distance, L — Distance

2 (default) | scalar

Driver preview distance, L, in m.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

### Rolling resistance coefficient, aR — Resistance

200 (default) | scalar

Static rolling and driveline resistance coefficient,  $a_R$ , in N. Block uses the parameter to estimate the constant acceleration or braking effort.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

# Rolling and driveline resistance coefficient, bR-Resistance

2.5 (default) | scalar

Rolling and driveline resistance coefficient,  $b_R$ , in N·s/m. Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

# Aerodynamic drag coefficient, cR — Drag

.5 (default) | scalar

Aerodynamic drag coefficient,  $c_R$ , in N·s^2/m^2. Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

# Gravitational constant, g — Gravitational constant

9.81 (default) | scalar

Gravitational constant, g, in m/s^2.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

#### Shift

#### Reverse, Neutral, Drive

#### Initial gear, GearInit — Initial gear

0 (default) | scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

| Gear    | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

# **Dependencies**

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear, GearInit** parameter value can be only -1, 0, or 1.

#### Time required to shift, tShift — Time

.1 (default) | scalar

Time required to shift, tShift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive.

#### Scheduled

# Initial gear, GearInit — Initial gear

0 (default) | scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

|         | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear**, **GearInit** parameter value can be only -1, 0, or 1.

# Up and down shift accelerator pedal positions, pdlVec — Pedal position breakpoints

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Upshift velocity data table, upShftTbl — Table [m-by-n] array

Upshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the upshift velocity for the neutral gear.

# **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# **Downshift velocity data table, dwnShftTbl — Table** [m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the downshift velocity for the neutral gear.

### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Time required to shift, tClutch — Time .5 (default) | scalar

Time required to shift,  $t_{Clutch}$ , in s.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Time required to engage reverse from neutral, tRev — Time .5 (default) | scalar

Time required to engage reverse from neutral,  $t_{Rev}$ , in s.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Time required to engage park from neutral, tPark — Time 120 (default) | scalar

Time required to engage park from neutral,  $t_{Park}$ , in s.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

#### References

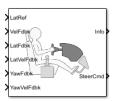
- [1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". *Journal of Dynamic Systems, Measurement, and Control*. Vol. 102, Number 3, Sept. 1980.
- [2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". *IEEE Transactions on Systems, Man, and Cybernetics*. Vol. 11, Issue 6, June 1981.
- [3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

# **Extended Capabilities**

#### C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

# See Also


Drive Cycle Source | Lateral Driver | Predictive Driver

Introduced in R2017a

# **Lateral Driver**

Lateral path-tracking controller

Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Driver



# **Description**

The Lateral Driver block implements an optimal single point preview (look ahead) control model to generate normalized steering commands that track a lateral reference displacement. The normalized steering commands can vary between -1 to 1. To model the dynamics, the block uses a linear single track (bicycle) model. Use the Lateral Driver block to:

- Close the loop between a predefined path and actual vehicle motion.
- Generate steering commands that track predefined paths. You can connect the Predictive Driver block output to steering block inputs.

Also, you can specify a tire wheel angle saturation limit using the **Tire wheel angle limit, theta** parameter.

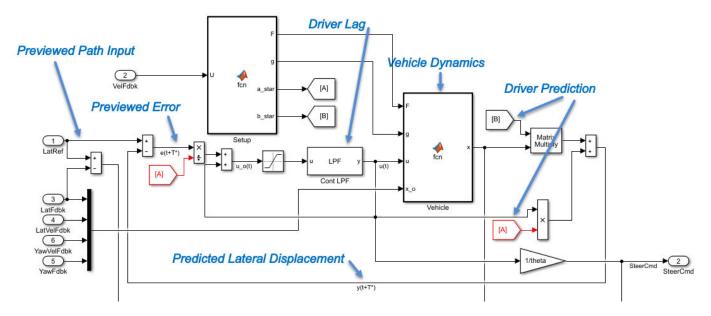
#### **External Actions**

Use the **External Actions** parameters to create input ports for signals that can disable, hold, or override the closed-loop steering command. The block uses this priority order for the input commands: disable (highest), hold, override. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

| Goal                                            | External Action Parameter | Input Ports  | Data Type |
|-------------------------------------------------|---------------------------|--------------|-----------|
| Override the steering command                   | Steering                  | EnblSteer0vr | Boolean   |
| with an input steering command.                 | override                  | Steer0vrCmd  | double    |
| Hold the steering command at the current value. | Steering hold             | SteerHld     | Boolean   |
| Disable the steering command.                   | Steering<br>disable       | SteerZero    | Boolean   |

Use the **Output handwheel angle** parameter to specify the units for the steering ports.


| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                | SteerOvrCmd — Input |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

# **Lateral Path-Tracking Controller**

The Lateral Driver block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam<sup>1, 2, 3</sup>. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T\* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

This figure illustrates the block implementation of the single-point version of the driver model.



#### **Vehicle Dynamics**

For lateral and yaw motion, the block implements these linear dynamic equations.

$$\begin{split} \dot{y} &= v + U\psi \\ \dot{v} &= \left[ -\frac{2(C_{\alpha F} + C_{\alpha R})}{mU} \right] v + \left[ \frac{2(bC_{\alpha R} - aC_{\alpha F})}{mU} - U \right] r + \left( \frac{2C_{\alpha F}}{m} \right) \delta_F \\ \dot{r} &= \left[ \frac{2(bC_{\alpha R} - aC_{\alpha F})}{IU} \right] v + \left[ -\frac{2\left( a^2C_{\alpha F} + b^2C_{\alpha R} \right)}{IU} \right] r + \left( \frac{2aC_{\alpha F}}{I} \right) \delta_F \\ \dot{\psi} &= r \end{split}$$

In matrix notation:

$$\dot{x} = Fx + g\delta_F$$

where:

$$x = \begin{bmatrix} y \\ v \\ r \\ \psi \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 1 & 0 & U \\ 0 & -2\frac{C_{\alpha F} + C_{\alpha R}}{mU} & 2\frac{bC_{\alpha R} - aC_{\alpha F}}{mU} - U & 0 \\ 0 & 2\frac{bC_{\alpha R} - aC_{\alpha F}}{IU} & -2\frac{a^2C_{\alpha F} + b^2C_{\alpha R}}{IU} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$x = \begin{bmatrix} 0 \\ \frac{2C_{\alpha F}}{m} \\ \frac{2aC_{\alpha F}}{I} \\ 0 \end{bmatrix}$$

The single-point model assumes a minimum previewed error signal at a single point T\* seconds ahead in time. a\* is the driver ability to predict the future vehicle response based on the current steering control input. b\* is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

$$a^* = T^* m^T \left[ I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{(n+1)!} \right] g$$

$$b^* = m^T \left[ I + \sum_{n=1}^{\infty} \frac{F^n (T^*)^n}{n!} \right]$$
where:

$$m^T = [1 \ 0 \ 0 \ 0]$$

The equations use these variables.

a, b Forward and rearward tire location, respectively Vehicle mass m Ι Vehicle rotational inertia Front tire cornering coefficient  $C_{\alpha F}$  $C_{\alpha R}$ Rear tire cornering coefficient a\*, **b**\* Driver prediction scalar and vector gain, respectively Predicted vehicle state vector X ν Lateral velocity Yaw rate Ψ Front wheel heading angle Lateral displacement ν F System matrix  $\delta$ ,  $\delta_F$ Steer angle and front axle steer angle, respectively Control coefficient vector U Forward (longitudinal) vehicle velocity

Previewed path input T\* seconds ahead

Preview time window

Forward vehicle velocity

#### **Optimization**

 $T^*$ 

U

 $m^T$ 

 $f(t+T^*)$ 

The single-point model implemented by the block finds the steering command that minimizes a local performance index, I, over the current preview interval, (t, t+T).

Constant observer vector; provides vehicle lateral position

$$J = \frac{1}{T} \int_{t}^{t+T} [f(\eta) - y(\eta)]^2 d\eta$$

To minimize J with respect to the steering command, this condition must be met.

$$\frac{dJ}{du} = 0$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error  $T^*$  seconds ahead<sup>1, 2, 3</sup>.

$$u^o(t) = u(t) + \frac{e(t+T^*)}{a^*}$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$T^* = \frac{L}{U}$$

The equations use these variables.

| $T^*$          | Preview time window                               |
|----------------|---------------------------------------------------|
| $f(t+T^*)$     | Previewed path input $T^*$ sec ahead              |
| $y(t+T^*)$     | Previewed plant output $T^*$ sec ahead            |
| $e(t+T^*)$     | Previewed error signal $T^*$ sec ahead            |
| $u(t), u^o(t)$ | Steer angle and optimal steer angle, respectively |
| L              | Preview distance                                  |
| J              | Performance index                                 |
| U              | Forward (longitudinal) vehicle velocity           |
|                |                                                   |

#### **Driver Lag**

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$H(s) = e^{-s\tau}$$

The equations use these variables.

| τ              | Driver transport delay                            |
|----------------|---------------------------------------------------|
| $y(t+T^*)$     | Previewed plant output $T^*$ sec ahead            |
| $e(t+T^*)$     | Previewed error signal T* sec ahead               |
| $u(t), u^o(t)$ | Steer angle and optimal steer angle, respectively |
| I              | Performance index                                 |

#### **Ports**

#### Input

# ${\bf LatRef-Lateral\ displacement\ reference}$

scalar

Lateral center of mass (CM) displacement reference, in the inertial reference frame, in m.

#### EnblSteerOvr — Enable steering command override

scalar

Enable steering command override.

#### **Dependencies**

To enable this port, select **Steering override**.

Data Types: Boolean

#### SteerOvrCmd — Steering override command

scalar

Steering override command.

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                |                     |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

#### **Dependencies**

To enable this port, select **Steering override**.

Data Types: double

#### SteerHld — Steering hold

scalar

Boolean signal that holds the steering command at the current value.

# **Dependencies**

To enable this port, select **Steering hold**.

Data Types: Boolean

# SteerZero — Disable steering command

scalar

Disable steering command.

#### **Dependencies**

To enable this port, select **Steering disable**.

Data Types: Boolean

# VelFdbk — Longitudinal vehicle velocity

scalar

Longitudinal vehicle velocity, *U*, in the vehicle-fixed frame, in m/s.

#### LatFdbk — Lateral displacement

scalar

Lateral CM displacement,  $y_o$ , in the inertial reference frame, in m.

# LatVelFdbk — Lateral vehicle velocity

scalar

Lateral vehicle velocity,  $v_o$ , in the vehicle-fixed frame, in m/s.

# YawFdbk — Vehicle yaw angle

scalar

Vehicle yaw angle,  $\Psi_o$ , in the inertial reference frame, in rad.

# YawVelFdbk — Yaw rate

scalar

Yaw rate,  $r_o$ , in the vehicle-fixed frame, in rad/s.

# Output

# Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal               |             | Variable                        | Description                                                       |  |
|----------------------|-------------|---------------------------------|-------------------------------------------------------------------|--|
| Predicted            | У           | У                               | Predicted lateral displacement, in the vehicle-fixed frame.       |  |
|                      | ydot        | ν                               | Predicted lateral velocity, in the vehicle-fixed frame.           |  |
|                      | psi         | Ψ                               | Predicted front wheel heading angle.                              |  |
|                      | r           | r                               | Predicted yaw rate, in the vehicle-fixed frame.                   |  |
| SteerCmd             | •           | $\delta_F$                      | Commanded steer angle.                                            |  |
| Err                  |             | $e_{ref}$                       | Difference in reference vehicle position and vehicle position.    |  |
| ErrSqrSum            |             | $\int\limits_0^t e_{ref}{}^2dt$ | Integrated square of error.                                       |  |
| ErrMax               |             | $\max(e_{ref}(t))$              | Maximum error during simulation.                                  |  |
| ErrMin               |             | $\min(e_{ref}(t))$              | Minimum error during simulation.                                  |  |
| ExtActions EnblSteer |             | vr                              | Override the steering command with an input deceleration command. |  |
|                      | SteerOvrCmd |                                 | Input steering override command                                   |  |
|                      | SteerHld    |                                 | Hold the steering command at the current value                    |  |
|                      | SteerZero   |                                 | Disable the steering command                                      |  |

# SteerCmd — Steer angle command

scalar

Commanded steer angle,  $\delta_F$ .

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                |                     |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

# **Parameters**

#### Configuration

# Steering override — Override steering command

off (default) | on

Select to override the steering command with an input steering command.

### **Dependencies**

Selecting this parameter creates the EnblSteerOvr and SteerOvrCmd input ports.

# Steering hold — Hold steering command

off (default) | on

Select to hold the steering command.

# **Dependencies**

Selecting this parameter creates the SteerHld input port.

# 

off (default) | on

Select to disable the steering command.

# **Dependencies**

Selecting this parameter creates the SteerZero input port.

# **Output handwheel angle — Steering port units in rad** off (default) | on

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                | SteerOvrCmd — Input |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

To create the SteerOvrCmd input port, select **Steering override**.

#### **Reference Control**

#### **Predictive**

# Forward location of tire, a — Along vehicle longitudinal axis

1.41 (default) | scalar

Forward location of tire, *a*, in m. Distance from vehicle cg to forward tire location, along vehicle longitudinal axis.

# Rearward location of tire, $\mathbf{b}-\mathbf{Along}$ vehicle longitudinal axis

1.41 (default) | scalar

Rearward location of tire, b, in m. Absolute value of distance from vehicle cg to rearward tire location, along vehicle longitudinal axis.

#### **Vehicle mass, m — Mass**

2016 (default) | scalar

Vehicle mass, m, in kg.

# Vehicle rotational inertia, I — Inertia about yaw axis

4013 (default) | scalar

Vehicle rotational inertia, I, about the vehicle yaw axis, in N·m·s<sup>2</sup>.

# Front tire cornering coefficient, $Cy_f - Coefficient$

25266 (default) | scalar

Cornering stiffness coefficient,  $C_{\alpha F}$ , in N/rad.

# Rear tire cornering coefficient, $Cy_r - Coefficient$

70933 (default) | scalar

Cornering stiffness coefficient,  $C_{\alpha R}$ , in N/rad.

# Tire wheel angle limit, theta — Angle limit

45\*pi/180 (default) | scalar

Tire wheel angle limit,  $\theta$ , in rad.

# Nominal steering ratio, Ksteer — Steering ratio

18 (default) | scalar

Steering ratio,  $K_{steer}$ . The value has no dimension.

#### **Dependencies**

To enable this parameter, select **Output handwheel angle**.

# Driver response time, tau — Response time

0.1 (default) | scalar

Driver response time,  $\tau$ , in s.

#### Preview distance, L — Distance

3 (default) | scalar

Driver preview distance, L, in m. Used to determine the preview time window,  $T^*$ .

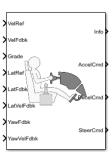
### References

- [1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". *Journal of Dynamic Systems, Measurement, and Control.* 102(3), Sept 1980.
- [2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". *IEEE Transactions on Systems, Man, and Cybernetics*. Volume 11, Issue 6, June 1981.
- [3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. The University of Michigan Transportation Research Institute. December, 1988.

# **Extended Capabilities**

#### **C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.


#### See Also

Longitudinal Driver | Predictive Driver

#### Introduced in R2018a

# **Predictive Driver**

Predictive driver controller to track longitudinal speed and lateral path **Library:** Vehicle Dynamics Blockset / Vehicle Scenarios / Driver



# **Description**

The Predictive Driver block implements a controller that generates normalized steering, acceleration, and braking commands to track longitudinal velocity and a lateral reference displacement. The normalized commands can vary between -1 to 1. The controller uses a single-track (bicycle) model for optimal single-point preview control.

# **Configurations**

#### **External Actions**

Use the **External Actions** parameters to create input ports for signals that you can use to simulate standard test maneuvers. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

| Goal                                                          | External Action Parameter | Input Ports   | Data Type |
|---------------------------------------------------------------|---------------------------|---------------|-----------|
| Override the accelerator                                      | Accelerator               | EnablAccel0vr | Boolean   |
| command with an input acceleration command.                   | override                  | Accel0vrCmd   | double    |
| Hold the acceleration command at the current value.           | Accelerator<br>hold       | AccelHld      | Boolean   |
| Disable the acceleration command.                             | Accelerator disable       | AccelZero     | Boolean   |
| Override the decelerator                                      | Decelerator               | EnablDecelOvr | Boolean   |
| command with an input deceleration command.                   | override                  | DecelOvrCmd   | double    |
| Hold the decelerator command at current value.                | Decelerator<br>hold       | DecelHld      | Boolean   |
| Disable the decelerator command.                              | Decelerator disable       | DecelZero     | Boolean   |
| Override the steering command with an input steering command. | Steering<br>override      | EnblSteerOvr  | Boolean   |

| Goal                                            | External Action Parameter | Input Ports | Data Type |
|-------------------------------------------------|---------------------------|-------------|-----------|
|                                                 |                           | Steer0vrCmd | double    |
| Hold the steering command at the current value. | Steering hold             | SteerHld    | Boolean   |
| Disable the steering command.                   | Steering<br>disable       | SteerZero   | Boolean   |

# Controller

Use the **Longitudinal control type, cntrlType** parameter to specify one of these control options.

| Setting      | Block Implementation                                                                                                                                                                                                                                                                                                       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI           | Proportional-integral (PI) control with tracking windup and feed-forward gains.                                                                                                                                                                                                                                            |
| Scheduled PI | PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.                                                                                                                                                                                                                            |
| Predictive   | Optimal single-point preview (look ahead) control model developed by C. C. MacAdam <sup>1, 2, 3</sup> . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block: |
|              | Represents the dynamics as a linear single track (bicycle) vehicle                                                                                                                                                                                                                                                         |
|              | • Minimizes the previewed error signal at a single point $T^*$ seconds ahead in time                                                                                                                                                                                                                                       |
|              | Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms                                                                                                                                                                                                                                          |

# Shift

Use the **Shift type**, **ShftType** parameter to specify one of these shift options.

| Setting | Block Implementation                                                                                                                                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None    | No transmission. Block outputs a constant gear of 1.                                                                                                                                              |
|         | Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion. |

| Setting                    | Block Implementation                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reverse, Neutral,<br>Drive | Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling.                                                                                                                                                                                                                                                                                |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral. |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |
| Scheduled                  | Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.                                                                                                                                                                                                                                                                        |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:                                                                             |
|                            | Initial gear                                                                                                                                                                                                                                                                                                                                                            |
|                            | Upshift and downshift accelerator pedal positions                                                                                                                                                                                                                                                                                                                       |
|                            | Upshift and downshift velocity                                                                                                                                                                                                                                                                                                                                          |
|                            | Timing for shifting and engaging forward and reverse from neutral                                                                                                                                                                                                                                                                                                       |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |
| External                   | Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.                                                                                                                                                                                                              |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |

# **Gear Signal**

Use the **Output gear signal** parameter to create the **GearCmd** output port. The **GearCmd** signal contains the integer value of the commanded vehicle gear.

| Gear    | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | Θ           |
| Drive   | 1           |
| Gear    | Gear number |

#### **Output Handwheel Angle**

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                |                     |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

# **Controller: PI Speed-Tracking**

If you set the control type to PI or Scheduled PI, the block implements proportional-integral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.

| Setting      | Equation                                                                                                                                                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI           | $y = \frac{K_{ff}}{v_{nom}}v_{ref} + \frac{K_{p}e_{ref}}{v_{nom}} + \int \left(\frac{K_{i}e_{ref}}{v_{nom}} + K_{aw}e_{out}\right)dt + K_{g}\theta$              |
| Scheduled PI | $y = \frac{K_{ff}(v)}{v_{nom}}v_{ref} + \frac{K_p(v)e_{ref}}{v_{nom}} + \int \left(\frac{K_i(v)e_{ref}}{v_{nom}} + K_{aw}e_{out}\right)e_{ref}dt + K_g(v)\theta$ |

where:

$$\begin{aligned} e_{ref} &= v_{ref} - v \\ e_{out} &= y_{sat} - y \\ y_{sat} &= \begin{cases} -1 & y < -1 \\ y & -1 \le y \le 1 \\ 1 & 1 < y \end{cases} \end{aligned}$$

The velocity error low-pass filter uses this transfer function.

$$H(s) = \frac{1}{\tau_{err}s + 1} \quad \text{for} \quad \tau_{err} > 0$$

To calculate the acceleration and braking commands, the block uses these equations.

$$y_{acc} = \begin{cases} 0 & y_{sat} < 0 \\ y_{sat} & 0 \le y_{sat} \le 1 \\ 1 & 1 < y_{sat} \end{cases}$$
$$y_{dec} = \begin{cases} 0 & y_{sat} > 0 \\ -y_{sat} & -1 \le y_{sat} \le 0 \\ 1 & y_{sat} < -1 \end{cases}$$

The equations use these variables.

 $\nu_{nom}$ 

| HOIH                |                                                          |
|---------------------|----------------------------------------------------------|
| $K_p$               | Proportional gain                                        |
| $K_i$               | Integral gain                                            |
| $K_{aw}$            | Anti-windup gain                                         |
| $K_{ff}$            | Velocity feed-forward gain                               |
| $K_g$               | Grade feed-forward gain                                  |
| $\theta$            | Grade angle                                              |
| $	au_{err}$         | Error filter time constant                               |
| У                   | Nominal control output magnitude                         |
| $\mathcal{Y}_{sat}$ | Saturated control output magnitude                       |
| $e_{ref}$           | Velocity error                                           |
| $e_{out}$           | Difference between saturated and nominal control outputs |
| $y_{acc}$           | Acceleration signal                                      |

Nominal vehicle speed

 $y_{acc}$  Acceleration signal  $y_{dec}$  Braking signal

 $egin{array}{lll} oldsymbol{v} & & ext{Velocity feedback signal} \ oldsymbol{v}_{ref} & & ext{Reference velocity signal} \ \end{array}$ 

### **Controller: Predictive Speed-Tracking**

If you set the control type to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam<sup>1, 2, 3</sup>. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point  $T^*$  seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

#### **Vehicle Dynamics**

For lateral and yaw motion, the block implements these linear dynamic equations.

$$\begin{split} x_1 &= U \\ \dot{x}_1 &= x_2 = \frac{K_{pt}}{m} + vr - g \mathrm{sin}(\gamma) + F_r x_1 \\ \dot{y} &= v + U \psi \\ \dot{v} &= \left[ -\frac{2(C_{\alpha F} + C_{\alpha R})}{mU} \right] v + \left[ \frac{2(bC_{\alpha R} - aC_{\alpha F})}{mU} - U \right] r + \left( \frac{2C_{\alpha F}}{m} \right) \delta_F \\ \dot{r} &= \left[ \frac{2(bC_{\alpha R} - aC_{\alpha F})}{IU} \right] v + \left[ -\frac{2\left(a^2C_{\alpha F} + b^2C_{\alpha R}\right)}{IU} \right] r + \left( \frac{2aC_{\alpha F}}{I} \right) \delta_F \\ \dot{\psi} &= r \end{split}$$

In matrix notation:

$$\dot{x} = Fx + gu$$

where:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ y \\ v \\ r \\ \psi \end{bmatrix}$$

$$F = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{F_r}{m} & 0 & 0 & 0 & v & 0 \\ 0 & 0 & 0 & 1 & 0 & U \\ 0 & 0 & 0 & -\frac{2(C_{\alpha F} + C_{\alpha R})}{mU} & \frac{2(bC_{\alpha R} - aC_{\alpha F})}{mU} - U & 0 \\ 0 & 0 & 0 & \frac{2(bC_{\alpha R} - aC_{\alpha F})}{IU} & -\frac{2(a^2C_{\alpha F} + b^2C_{\alpha R})}{IU} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$g = \begin{bmatrix} 0 & 0 \\ \frac{K_{pt}}{m} & 0 \\ 0 & 0 \\ 0 & \frac{2C_{\alpha F}}{m} \\ 0 & \frac{2aC_{\alpha F}}{I} \\ 0 & 0 \end{bmatrix}$$

$$u = \left[ \begin{array}{c} \overline{u} \\ \delta_F \end{array} \right]$$

$$\bar{u} = u - \frac{m^2}{K_{pt}} g \sin(\gamma)$$

The single-point model assumes a minimum previewed error signal at a single point  $T^*$  seconds ahead in time.  $a^*$  is the driver ability to predict the future vehicle response based on the current steering control input.  $b^*$  is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

$$a^* = (T^*)m^T[I + \sum_{n=1}^{\infty} \frac{F^n(T^*)^n}{(n+1)!}]g$$

$$b^* = m^T[I + \sum_{n=1}^{\infty} \frac{F^n(T^*)^n}{n!}]$$

$$m^T = [1 \ 1 \ 1 \ 0 \ 0 \ 0]$$

The equations use these variables.

| a, b                  | Forward and rearward tire location, respectively            |
|-----------------------|-------------------------------------------------------------|
| m                     | Vehicle mass                                                |
| I                     | Vehicle rotational inertia                                  |
| $C_{lpha F}$          | Front tire cornering coefficient                            |
| $C_{lpha R}$          | Rear tire cornering coefficient                             |
| a*, <b>b</b> *        | Driver prediction scalar and vector gain, respectively      |
| X                     | Predicted vehicle state vector                              |
| ν                     | Lateral velocity                                            |
| r                     | Yaw rate                                                    |
| Ψ                     | Front wheel heading angle                                   |
| У                     | Lateral displacement                                        |
| F                     | System matrix                                               |
| $\delta$ , $\delta_F$ | Steer angle and front axle steer angle, respectively        |
| γ                     | Grade angle                                                 |
| $\boldsymbol{g}$      | Control coefficient vector                                  |
| U                     | Forward (longitudinal) vehicle velocity                     |
| $T^*$                 | Preview time window                                         |
| $f(t+T^*)$            | Previewed path input T* seconds ahead                       |
| u                     | Tractive force                                              |
| $m^T$                 | Constant observer vector; provides vehicle lateral position |
| $a_r$                 | Static rolling and driveline resistance                     |
| $b_r$                 | Linear rolling and driveline resistance                     |
| $c_r$                 | Aerodynamic rolling and driveline resistance                |

Rolling resistance

#### **Optimization**

 $F_r$ 

The single-point model implemented by the block finds the steering command that minimizes a local performance index, J, over the current preview interval, (t, t+T).

$$J = \frac{1}{T} \int_{}^{t+T} [f(\eta) - y(\eta)]^2 d\eta$$

To minimize *J* with respect to the steering command, this condition must be met.

$$\frac{dJ}{du} = 0$$

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error  $T^*$  seconds ahead<sup>1, 2, 3</sup>.

$$u^o(t) = u(t) + \frac{e(t+T^*)}{a^*}$$

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

$$T^* = \frac{L}{U}$$

The equations use these variables.

| <i>T</i> *       | Preview time window                               |
|------------------|---------------------------------------------------|
| $f(t+T^*)$       | Previewed path input $T^*$ sec ahead              |
| $y(t+T^*)$       | Previewed plant output $T^*$ sec ahead            |
| $e(t+T^*)$       | Previewed error signal T* sec ahead               |
| $u(t), u^{o}(t)$ | Steer angle and optimal steer angle, respectively |
| L                | Preview distance                                  |
| J                | Performance index                                 |
| U                | Forward (longitudinal) vehicle velocity           |

#### **Driver Lag**

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

$$H(s) = e^{-s\tau}$$

The equations use these variables.

| τ              | Driver transport delay                            |
|----------------|---------------------------------------------------|
| $y(t+T^*)$     | Previewed plant output $T^*$ sec ahead            |
| $e(t+T^*)$     | Previewed error signal $T^*$ sec ahead            |
| $u(t), u^o(t)$ | Steer angle and optimal steer angle, respectively |
| J              | Performance index                                 |

## **Ports**

### Input

#### **VelRef** — **Reference vehicle velocity**

scalar

Reference velocity,  $v_{ref}$ , in m/s.

## LatRef — Lateral displacement reference

scalar

Lateral center of mass (CM) displacement reference, in the inertial reference frame, in m.

#### **EnblSteerOvr** — **Enable steering command override**

scalar

Enable steering command override.

#### **Dependencies**

To enable this port, select **Steering override**.

Data Types: Boolean

## SteerOvrCmd — Steering override command

scalar

Steering override command.

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                | _                   |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

#### **Dependencies**

To enable this port, select **Steering override**.

Data Types: double

### SteerHld — Steering hold

scalar

Boolean signal that holds the steering command at the current value.

#### **Dependencies**

To enable this port, select **Steering hold**.

Data Types: Boolean

## SteerZero — Disable steering command

scalar

Disable steering command.

#### **Dependencies**

To enable this port, select **Steering disable**.

Data Types: Boolean

#### EnblAccelOvr — Enable acceleration command override

scalar

Enable acceleration command override.

#### **Dependencies**

To enable this port, select **Acceleration override**.

Data Types: Boolean

#### AccelOvrCmd — Acceleration override command

scalar

Acceleration override command, normalized from 0 through 1.

#### **Dependencies**

To enable this port, select **Acceleration override**.

Data Types: double

#### AccelHld — Acceleration hold

scalar

Boolean signal that holds the acceleration command at the current value.

## **Dependencies**

To enable this port, select **Acceleration hold**.

Data Types: Boolean

### AccelZero — Disable acceleration command

scalar

Disable acceleration command.

#### **Dependencies**

To enable this port, select **Acceleration disable**.

Data Types: Boolean

## EnblDecelOvr — Enable deceleration command override

scalar

Enable deceleration command override.

#### **Dependencies**

To enable this port, select **Deceleration override**.

Data Types: Boolean

#### DecelOvrCmd — Deceleration override command

scalar

Deceleration override command, normalized from 0 through 1.

#### **Dependencies**

To enable this port, select **Deceleration override**.

Data Types: double

#### DecelHld — Deceleration hold

scalar

Boolean signal that holds the deceleration command at the current value.

## **Dependencies**

To enable this port, select **Deceleration hold**.

Data Types: Boolean

#### DecelZero — Disable deceleration command

scalar

Disable deceleration command.

#### **Dependencies**

To enable this port, select **Deceleration disable**.

Data Types: Boolean

#### ExtGear - Gear

scalar

| Gear    | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

### **Dependencies**

To enable this port, set **Shift type**, **shftType** to External.

## **Grade** — Road grade angle

scalar

Road grade angle,  $\gamma$ , in deg.

#### VelFdbk — Longitudinal vehicle velocity

scalar

Longitudinal vehicle velocity, *U*, in the vehicle-fixed frame, in m/s.

## **LatFdbk** — **Lateral displacement**

scalar

Lateral CM displacement,  $y_o$ , in the inertial reference frame, in m.

## LatVelFdbk — Lateral vehicle velocity

scalar

Lateral vehicle velocity,  $v_o$ , in the vehicle-fixed frame, in m/s.

## YawFdbk — Vehicle yaw angle

scalar

Vehicle yaw angle,  $\Psi_{o}$ , in the inertial reference frame, in rad.

#### YawVelFdbk — Yaw rate

scalar

Yaw rate,  $r_o$ , in the vehicle-fixed frame, in rad/s.

## **Output**

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal Varia |        | Variable  | Description                        |                                                                |
|--------------|--------|-----------|------------------------------------|----------------------------------------------------------------|
| Steer        |        |           | $\delta_F$                         | Commanded steer angle, normalized from 0 through 1             |
| Accel        |        | Accel     |                                    | Commanded vehicle acceleration, normalized from 0 through 1    |
| Decel        | Decel  |           | <b>y</b> <sub>dec</sub>            | Commanded vehicle deceleration, normalized from 0 through 1    |
| Gear         | Gear   |           | •                                  | Integer value of commanded gear                                |
| Clutch       |        |           | Clutch command                     |                                                                |
| Err          | LatErr | Err       | $e_{ref}$                          | Difference in reference vehicle position and vehicle position. |
|              |        | ErrSqrSum | $\int\limits_{0}^{t}e_{ref}^{2}dt$ | Integrated square of error.                                    |

| Signal      | ignal Variable                     |           | Variable                      | Description                                                         |
|-------------|------------------------------------|-----------|-------------------------------|---------------------------------------------------------------------|
|             |                                    | ErrMax    | $\max(e_{ref}(t))$            | Maximum error during simulation.                                    |
|             |                                    | ErrMin    | $\min(e_{ref}(t))$            | Minimum error during simulation.                                    |
|             | LngErr                             | Err       | $e_{ref}$                     | Difference in reference vehicle speed and vehicle speed             |
|             |                                    | ErrSqrSum | $\int_{0}^{t} e_{ref}^{2} dt$ | Integrated square of error                                          |
|             |                                    | ErrMax    | $\max(e_{ref}(t))$            | Maximum error during simulation                                     |
|             |                                    | ErrMin    | $\min(e_{ref}(t))$            | Minimum error during simulation                                     |
| ExtAct ions | t EnblSteerOvr                     |           |                               | Override the steering command with an input deceleration command    |
|             | SteerOvrCmd                        |           |                               | Input steering override command                                     |
|             | SteerHld                           |           |                               | Hold the steering command at the current value                      |
|             | SteerZero                          |           |                               | Disable the steering command                                        |
|             | EnblAccelOvr                       |           |                               | Override the accelerator command with an input acceleration command |
|             | Accel0vrCmd                        |           |                               | Input accelerator override command                                  |
|             | AccelHld                           |           |                               | Hold the acceleration command at the current value                  |
|             | AccelZero EnblDecelOvr DecelOvrCmd |           |                               | Disable the acceleration command                                    |
|             |                                    |           |                               | Override the decelerator command with an input deceleration command |
|             |                                    |           |                               | Input deceleration override command                                 |
|             | DecelHld                           |           |                               | Hold the decelerator command at current value                       |
|             | DecelZero                          |           |                               | Disable the decelerator command                                     |

## **SteerCmd** — **Steer angle command**

scalar

Commanded steer angle,  $\delta_{\it F}$ .

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting | Block Implementation                                                                                                                                                                       | Port              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|         | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output |
|         | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                |                   |

| Setting | Block Implementation                                                  | Port                |
|---------|-----------------------------------------------------------------------|---------------------|
| on      | Commanded steer angle in rad.                                         | SteerCmd — Output   |
|         | Overrides the steering command with an input steering command in rad. | SteerOvrCmd — Input |

## **AccelCmd** — Commanded vehicle acceleration

scalar

Commanded vehicle acceleration,  $y_{acc}$ , normalized from 0 through 1.

#### **DecelCmd** — Commanded vehicle deceleration

scalar

Commanded vehicle deceleration,  $y_{dec}$ , normalized from 0 through 1.

## **GearCmd** — **Commanded vehicle gear**

scalar

Integer value of commanded vehicle gear.

|         | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

#### **Dependencies**

To enable this port, select **Output gear signal**.

#### **Parameters**

#### Configuration

#### **External Actions**

#### Accelerator override — Override acceleration command

off (default) | on

Select to override the acceleration command with an input acceleration command.

#### **Dependencies**

Selecting this parameter creates the EnblAccelOvr and AccelOvrCmd input ports.

#### Accelerator hold — Hold acceleration command

off (default) | on

Select to hold the acceleration command.

#### **Dependencies**

Selecting this parameter creates the AccelHld input port.

## Accelerator disable — Disable acceleration command off (default) | on

Select to disable the acceleration command.

#### **Dependencies**

Selecting this parameter creates the AccelZero input port.

# **Decelerator override — Override deceleration command** off (default) | on

Select to override the deceleration command with an input deceleration command.

#### **Dependencies**

Selecting this parameter creates the EnblDecelOvr and DecelOvrCmd input ports.

# **Decelerator hold — Hold deceleration command** off (default) | on

Select to hold the deceleration command.

#### **Dependencies**

Selecting this parameter creates the DecelHld input port.

## **Decelerator disable — Disable deceleration command** off (default) | on

Select to disable the deceleration command.

### **Dependencies**

Selecting this parameter creates the DecelZero input port.

# Steering override — Override steering command off (default) | on

Select to override the steering command with an input steering command.

#### **Dependencies**

Selecting this parameter creates the EnblSteerOvr and SteerOvrCmd input ports.

# **Steering hold — Hold steering command** off (default) | on

Select to hold the steering command.

#### **Dependencies**

Selecting this parameter creates the SteerHld input port.

## Steering disable — Disable steering command

off (default) | on

Select to disable the steering command.

## **Dependencies**

Selecting this parameter creates the SteerZero input port.

#### **Control and Shift**

## Longitudinal control type, cntrlType — Longitudinal control

PI (default) | Scheduled PI | Predictive

Type of longitudinal control.

| Setting      | Block Implementation                                                                                                                                                                                                                                                                                                   |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PI           | Proportional-integral (PI) control with tracking windup and feed-forward gains.                                                                                                                                                                                                                                        |  |  |
| Scheduled PI | PI control with tracking windup and feed-forward gains that are a function of vehicle velocity.                                                                                                                                                                                                                        |  |  |
| Predictive   | Optimal single-point preview (look ahead) control model developed by C. MacAdam <sup>1, 2, 3</sup> . The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model the block: |  |  |
|              | Represents the dynamics as a linear single track (bicycle) vehicle                                                                                                                                                                                                                                                     |  |  |
|              | • Minimizes the previewed error signal at a single point $T^*$ seconds ahead in time                                                                                                                                                                                                                                   |  |  |
|              | Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms                                                                                                                                                                                                                                      |  |  |

## Shift type, shftType — Shift type

None (default) | Reverse, Neutral, Drive | Scheduled | External

## Shift type.

| Setting | Block Implementation                                                                                                                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | No transmission. Block outputs a constant gear of 1.  Use this setting to minimize the number of parameters you need to generate acceleration and braking commands to track forward vehicle motion. This setting does not allow reverse vehicle motion. |
|         | setting does not anow reverse veintle motion.                                                                                                                                                                                                           |

| Setting                    | Block Implementation                                                                                                                                                                                                                                                                                                                                                    |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reverse, Neutral,<br>Drive | Block uses a Stateflow chart to model reverse, neutral, and drive gear shift scheduling.                                                                                                                                                                                                                                                                                |  |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using simple reverse, neutral, and drive gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses the initial gear and time required to shift to shift the vehicle up into drive or down into reverse or neutral. |  |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |  |
| Scheduled                  | Block uses a Stateflow chart to model reverse, neutral, park, and N-speed gear shift scheduling.                                                                                                                                                                                                                                                                        |  |
|                            | Use this setting to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, park, and N-speed gear shift scheduling. Depending on the vehicle state and vehicle velocity feedback, the block uses these parameters to determine the:                                                                             |  |
|                            | • Initial gear                                                                                                                                                                                                                                                                                                                                                          |  |
|                            | Upshift and downshift accelerator pedal positions                                                                                                                                                                                                                                                                                                                       |  |
|                            | Upshift and downshift velocity                                                                                                                                                                                                                                                                                                                                          |  |
|                            | Timing for shifting and engaging forward and reverse from neutral                                                                                                                                                                                                                                                                                                       |  |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |  |
| External                   | Block uses the input gear, vehicle state, and velocity feedback to generate acceleration and braking commands to track forward and reverse vehicle motion.                                                                                                                                                                                                              |  |
|                            | For neutral gears, the block uses braking commands to control the vehicle speed. For reverse gears, the block uses an acceleration command to generate torque and a brake command to reduce vehicle speed.                                                                                                                                                              |  |

# **Longitudinal velocity units, velUnits — Velocity units** m/s (default)

Vehicle velocity reference and feedback units.

## **Dependencies**

If you set **Longitudinal control type, CntrlType** control type to Scheduled or Scheduled PI, the block uses the **Longitudinal velocity units, velUnits** for the **Nominal speed, vnom** parameter dimension.

If you set **Shift Type**, **shftType** to **Scheduled**, the block uses the **Longitudinal velocity units**, **velUnits** for these parameter dimensions:

Upshift velocity data table, upShftTbl

## Downshift velocity data table, dwnShftTbl

# Output gear signal — Create GearCmd output port off (default) $\mid$ on

Specify to create output port GearCmd.

# Output handwheel angle — Steering port units in rad off $(default) \mid on$

Use the **Output handwheel angle** parameter to specify the units for the steering ports.

| Setting       | Block Implementation                                                                                                                                                                       | Port                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| off (default) | Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit <b>Tire wheel angle limit</b> , <b>theta</b> parameter to normalize the command. | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command normalized from -1 through 1.                                                                                                |                     |
| on            | Commanded steer angle in rad.                                                                                                                                                              | SteerCmd — Output   |
|               | Overrides the steering command with an input steering command in rad.                                                                                                                      | SteerOvrCmd — Input |

#### **Dependencies**

To create the SteerOvrCmd input port, select **Steering override**.

#### **Reference Control**

#### Longitudinal

## Proportional gain, Kp — Gain

10 (default) | scalar

Proportional gain,  $K_p$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI.

#### Integral gain, Ki — Gain

5 (default) | scalar

Proportional gain,  $K_i$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI.

## Velocity feed-forward, Kff — Gain

.1 (default) | scalar

Velocity feed-forward gain,  $K_{ff}$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI.

#### Grade feed-forward, Kg — Gain

0 (default) | scalar

Grade feed-forward gain,  $K_a$ , in 1/deg.

### **Dependencies**

To create this parameter, set **Control type** to PI.

## Velocity gain breakpoints, VehVelVec — Breakpoints

[0 100] (default) | vector

Velocity gain breakpoints, VehVelVec, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to Scheduled PI.

#### Velocity feed-forward gain values, KffVec — Gain

[.1 .1] (default) | vector

Velocity feed-forward gain values, KffVec, as a function of vehicle velocity, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to Scheduled PI.

## Proportional gain values, KpVec — Gain

[10 10] (default) | vector

Proportional gain values, KpVec, as a function of vehicle velocity, dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

#### Integral gain values, KiVec — Gain

[5 5] (default) | vector

Integral gain values, *KiVec*, as a function of vehicle velocity, dimensionless.

### **Dependencies**

To create this parameter, set **Control type** to **Scheduled PI**.

#### Grade feed-forward values, KgVec — Grade gain

[0 0] (default) | vector

Grade feed-forward values, *KgVec*, as a function of vehicle velocity, in 1/deg.

#### **Dependencies**

To create this parameter, set **Control type** to Scheduled PI.

## Nominal speed, vnom — Nominal vehicle speed

5 (default) | scalar

Nominal vehicle speed,  $v_{nom}$ , in units specified by the **Reference and feedback units**, **velUnits** parameter. The block uses the nominal speed to normalize the controller gains.

#### **Dependencies**

To create this parameter, set **Control type** to PI or Scheduled PI.

#### Anti-windup, Kaw — Gain

1 (default) | scalar

Anti-windup gain,  $K_{aw}$ , dimensionless.

#### **Dependencies**

To create this parameter, set **Control type** to PI or Scheduled PI.

### Error filter time constant, tauerr - Filter

.01 (default) | scalar

Error filter time constant,  $\tau_{err}$ , in s. To disable the filter, enter 0.

#### **Dependencies**

To create this parameter, set **Control type** to PI or Scheduled PI.

#### **Predictive**

#### Forward location of tire, a — Along vehicle longitudinal axis

1.41 (default) | scalar

Forward location of tire, *a*, in m. Distance from vehicle cg to forward tire location, along vehicle longitudinal axis.

## Rearward location of tire, b — Along vehicle longitudinal axis

1.41 (default) | scalar

Rearward location of tire, *b*, in m. Absolute value of distance from vehicle cg to rearward tire location, along vehicle longitudinal axis.

#### **Vehicle mass, m — Mass**

2016 (default) | scalar

Vehicle mass, m, in kg.

## Vehicle rotational inertia, I — Inertia about yaw axis

4013 (default) | scalar

Vehicle rotational inertia, I, about the vehicle yaw axis, in N·m·s<sup>2</sup>.

## Front tire cornering coefficient, Cy\_f — Coefficient

25266 (default) | scalar

Cornering stiffness coefficient,  $C_{\alpha F}$ , in N/rad.

## Rear tire cornering coefficient, Cy\_r — Coefficient

70933 (default) | scalar

Cornering stiffness coefficient,  $C_{\alpha R}$ , in N/rad.

#### Tire wheel angle limit, theta — Angle limit

45\*pi/180 (default) | scalar

Tire wheel angle limit,  $\theta$ , in rad.

### Nominal steering ratio, Ksteer — Steering ratio

18 (default) | scalar

Steering ratio,  $K_{steer}$ . The value has no dimension.

#### **Dependencies**

To enable this parameter, select **Output handwheel angle**.

## Driver response time, tau — Response time

0.1 (default) | scalar

Driver response time,  $\tau$ , in s.

#### Preview distance, L — Distance

3 (default) | scalar

Driver preview distance, L, in m. Used to determine the preview time window,  $T^*$ .

#### Effective vehicle total tractive force, Kp — Tractive force

3000 (default) | scalar

Effective vehicle total tractive force,  $K_p$ , in N.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

#### Rolling resistance coefficient, aR — Resistance

200 (default) | scalar

Static rolling and driveline resistance coefficient,  $a_R$ , in N. Block uses the parameter to estimate the constant acceleration or braking effort.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

## Rolling and driveline resistance coefficient, bR-Resistance

2.5 (default) | scalar

Rolling and driveline resistance coefficient,  $b_R$ , in N·s/m. Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

## Aerodynamic drag coefficient, cR — Drag

.5 (default) | scalar

Aerodynamic drag coefficient,  $c_R$ , in N·s^2/m^2. Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

#### Gravitational constant, g — Gravitational constant

9.81 (default) | scalar

Gravitational constant, g, in m/s^2.

#### **Dependencies**

To create this parameter, set **Longitudinal control type**, **cntrlType** to Predictive.

#### Shift

#### Reverse, Neutral, Drive

#### Initial gear, GearInit — Initial gear

0 (default) | scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

| Gear    | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear**, **GearInit** parameter value can be only -1, 0, or 1.

## Time required to shift, tShift — Time

.1 (default) | scalar

Time required to shift, *tShift*, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive.

#### **Scheduled**

## Initial gear, GearInit — Initial gear

0 (default) | scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.

| Gear    | Integer     |
|---------|-------------|
| Park    | 80          |
| Reverse | -1          |
| Neutral | 0           |
| Drive   | 1           |
| Gear    | Gear number |

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the **Initial Gear**, **GearInit** parameter value can be only -1, 0, or 1.

# Up and down shift accelerator pedal positions, pdlVec — Pedal position breakpoints

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Upshift velocity data table, upShftTbl — Table [m-by-n] array

Upshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units**, **velUnits** parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the upshift velocity for the neutral gear.

## **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# **Downshift velocity data table, dwnShftTbl — Table** [m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the **Reference and feedback units, velUnits** parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1.

The array dimensions are m pedal positions by n gears. The first column of data, when n equals 1, is the downshift velocity for the neutral gear.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Time required to shift, tClutch — Time .5 (default) | scalar

Time required to shift,  $t_{Clutch}$ , in s.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Time required to engage reverse from neutral, tRev — Time .5 (default) | scalar

Time required to engage reverse from neutral,  $t_{Rev}$ , in s.

#### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

# Time required to engage park from neutral, tPark — Time 120 (default) | scalar

Time required to engage park from neutral,  $t_{Park}$ , in s.

### **Dependencies**

To create this parameter, set **Shift type**, **shftType** to **Scheduled**.

## References

- [1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". *Journal of Dynamic Systems, Measurement, and Control*. Vol. 102, Number 3, Sept. 1980.
- [2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving". *IEEE Transactions on Systems, Man, and Cybernetics*. Vol. 11, Issue 6, June 1981.
- [3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

## **Extended Capabilities**

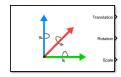
#### C/C++ Code Generation

Generate C and C++ code using Simulink® Coder™.

## See Also

Lateral Driver | Longitudinal Driver

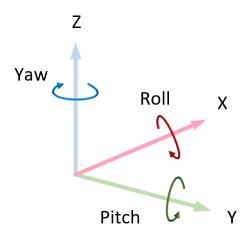
## Introduced in R2018a


# **3D Simulation Blocks**

## **Simulation 3D Actor Transform Get**

Get actor translation, rotation, scale

**Library:** Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /


Sim3D Core



## **Description**

The Simulation 3D Actor Transform Get block provides the actor translation, rotation, and scale for the Simulation environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world coordinate system.



| Axis | Description                                                                 |
|------|-----------------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                            |
|      | Roll — Right-handed rotation about <i>X</i> -axis                           |
| Y    | Extends to the right of the vehicle, initially parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                                  |
| Z    | Extends upwards                                                             |
|      | Yaw — Left-handed rotation about Z-axis                                     |

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

**Tip** Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Actor Transform Get block. That way, the Unreal Engine® 3D visualization environment prepares the data before the Simulation 3D Actor Transform Get block receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:

- Simulation 3D Scene Configuration 0
- Simulation 3D Actor Transform Get -1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

## **Ports**

#### **Output**

#### Translation — Actor translation

array

Actor translation, in m. Array dimensions are number of parts per actor-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) Vehicle displacement along world X-, Y, and Z- axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) Actor
  displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
  Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

- Dimensions are [5x3].
- Contains translation information according to the axle and wheel locations, relative to vehicle.

$$Translation = \begin{bmatrix} X_V & Y_V & Z_V \\ X_{FL} & Y_{FL} & Z_{FL} \\ X_{FR} & Y_{FR} & Z_{FR} \\ X_{RL} & Y_{RL} & Z_{RL} \\ X_{RR} & Y_{RR} & Z_{RR} \end{bmatrix}$$

| Translation                 | Array Element    |
|-----------------------------|------------------|
| Vehicle, $X_{\nu}$          | Translation(1,1) |
| Vehicle, $Y_{\nu}$          | Translation(1,2) |
| Vehicle, $Z_{\nu}$          | Translation(1,3) |
| Front left wheel, $X_{FL}$  | Translation(2,1) |
| Front left wheel, $Y_{FL}$  | Translation(2,2) |
| Front left wheel, $Z_{FL}$  | Translation(2,3) |
| Front right wheel, $X_{FR}$ | Translation(3,1) |
| Front right wheel, $Y_{FR}$ | Translation(3,2) |
| Front right wheel, $Z_{FR}$ | Translation(3,3) |
| Rear left wheel, $X_{RL}$   | Translation(4,1) |
| Rear left wheel, $Y_{RL}$   | Translation(4,2) |
| Rear left wheel, $Z_{RL}$   | Translation(4,3) |
| Rear right wheel, $X_{RR}$  | Translation(5,1) |

| Translation                | Array Element    |
|----------------------------|------------------|
| Rear right wheel, $Y_{RR}$ | Translation(5,2) |
| Rear right wheel, $Z_{RR}$ | Translation(5,3) |

#### Rotation — Actor rotation

array

Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actor-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) Vehicle rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) Actor rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal::

- Dimensions are [5x3].
- · Contains rotation information according to the axle and wheel locations.

$$Rotation = \begin{bmatrix} Pitch_{v} & Roll_{v} & Yaw_{v} \\ Pitch_{FL} & Roll_{FL} & Yaw_{FL} \\ Pitch_{FR} & Roll_{FR} & Yaw_{FR} \\ Pitch_{RL} & Roll_{RL} & Yaw_{RL} \\ Pitch_{RR} & Roll_{RR} & Yaw_{RR} \end{bmatrix}$$

| Rotation                              | Array Element |
|---------------------------------------|---------------|
| Vehicle, Pitch <sub>v</sub>           | Rotation(1,1) |
| Vehicle, Roll <sub>v</sub>            | Rotation(1,2) |
| Vehicle, Yaw <sub>v</sub>             | Rotation(1,3) |
| Front left wheel, Pitch <sub>FL</sub> | Rotation(2,1) |
| Front left wheel, $Roll_{FL}$         | Rotation(2,2) |
| Front left wheel, $Yaw_{FL}$          | Rotation(2,3) |
| Front right wheel, $Pitch_{FR}$       | Rotation(3,1) |
| Front right wheel, $Roll_{FR}$        | Rotation(3,2) |
| Front right wheel, Yaw <sub>FR</sub>  | Rotation(3,3) |
| Rear left wheel, $Pitch_{RL}$         | Rotation(4,1) |
| Rear left wheel, $Roll_{RL}$          | Rotation(4,2) |
| Rear left wheel, Yaw <sub>RL</sub>    | Rotation(4,3) |
| Rear right wheel, $Pitch_{RR}$        | Rotation(5,1) |
| Rear right wheel, $Roll_{RR}$         | Rotation(5,2) |
| Rear right wheel, $Yaw_{RR}$          | Rotation(5,3) |

## Scale — Actor scale

array

Actor scale. Array dimensions are number of number of parts per actor-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) Vehicle scale along world X-, Y-, and Z- axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) Actor scale along world X-, Y-, and Z-axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

- Dimensions are [5x3].
- Contains scale information according to the axle and wheel locations.

$$Scale = \begin{bmatrix} X_{Vscale} & Y_{Vscale} & Z_{Vscale} \\ X_{FLscale} & Y_{FLscale} & Z_{FLscale} \\ X_{FRscale} & Y_{FRscale} & Z_{FRscale} \\ X_{RLscale} & Y_{RLscale} & Z_{RLscale} \\ X_{RRscale} & Y_{RRscale} & Z_{RRscale} \end{bmatrix}$$

| Scale                               | Array Element |
|-------------------------------------|---------------|
| Vehicle, $X_{\nu_{scale}}$          | Scale(1,1)    |
| Vehicle, $Y_{v_{scale}}$            | Scale(1,2)    |
| Vehicle, $Z_{v_{scale}}$            | Scale(1,3)    |
| Front left wheel, $X_{FL_{scale}}$  | Scale(2,1)    |
| Front left wheel, $Y_{FL_{scale}}$  | Scale(2,2)    |
| Front left wheel, $Z_{FL_{scale}}$  | Scale(2,3)    |
| Front right wheel, $X_{FR_{scale}}$ | Scale(3,1)    |
| Front right wheel, $Y_{FR_{scale}}$ | Scale(3,2)    |
| Front right wheel, $Z_{FR_{scale}}$ | Scale(3,3)    |
| Rear left wheel, $X_{RL_{scale}}$   | Scale(4,1)    |
| Rear left wheel, $Y_{RL_{scale}}$   | Scale(4,2)    |
| Rear left wheel, $Z_{RL_{scale}}$   | Scale(4,3)    |
| Rear right wheel, $X_{RR_{scale}}$  | Scale(5,1)    |
| Rear right wheel, $Y_{RR_{scale}}$  | Scale(5,2)    |
| Rear right wheel, $Z_{RR_{scale}}$  | Scale(5,3)    |

## **Parameters**

## Tag for actor in 3D scene, ActorTag — Name

SimulinkActor1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same **Tag for actor in 3D scene**, **ActorTag** parameter.

## Number of parts per actor to get, NumberOfParts — Name 1 (default) | scalar

Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same **Tag for actor in 3D scene**, **ActorTag** parameter.

## Sample time — Sample time

-1 (default) | scalar

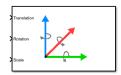
Sample time,  $T_s$ . The graphics frame rate is the inverse of the sample time.

#### See Also

Simulation 3D Actor Transform Set | Simulation 3D Camera Get | Simulation 3D Scene Configuration | Vehicle Terrain Sensor

#### **Topics**

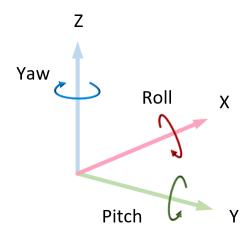
- "Coordinate Systems in Vehicle Dynamics Blockset"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "3D Visualization Engine Requirements"


#### Introduced in R2018a

## **Simulation 3D Actor Transform Set**

Set actor translation, rotation, scale

Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /


Sim3D Core



## **Description**

The Simulation 3D Actor Transform Set block sets the actor translation, rotation, and scale in the 3D visualization environment.

The block uses a vehicle-fixed coordinate system that is initially aligned with the inertial world coordinate system.



| Axis | Description                                                                 |
|------|-----------------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                            |
|      | Roll — Right-handed rotation about X-axis                                   |
| Y    | Extends to the right of the vehicle, initially parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                                  |
| Z    | Extends upwards                                                             |
|      | Yaw — Left-handed rotation about Z-axis                                     |

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

**Tip** Verify that the Simulation 3D Actor Transform Set block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Actor Transform Set prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution

order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:

- Simulation 3D Scene Configuration 0
- Simulation 3D Actor Transform Set - 1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

#### **Ports**

#### Input

#### **Translation** — **Actor translation**

array

Actor translation, in m. Array dimensions are number of parts per actor-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) Vehicle displacement along world *X*-, *Y*, and *Z* axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) Actor
  displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-,
  Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Translation signal:

- Dimensions are [5x3].
- Contains translation information according to the axle and wheel locations, relative to vehicle.

$$Translation = \begin{bmatrix} X_V & Y_V & Z_V \\ X_{FL} & Y_{FL} & Z_{FL} \\ X_{FR} & Y_{FR} & Z_{FR} \\ X_{RL} & Y_{RL} & Z_{RL} \\ X_{RR} & Y_{RR} & Z_{RR} \end{bmatrix}$$

| Translation                 | Array Element    |
|-----------------------------|------------------|
| Vehicle, $X_{\nu}$          | Translation(1,1) |
| Vehicle, $Y_{\nu}$          | Translation(1,2) |
| Vehicle, $Z_{\nu}$          | Translation(1,3) |
| Front left wheel, $X_{FL}$  | Translation(2,1) |
| Front left wheel, $Y_{FL}$  | Translation(2,2) |
| Front left wheel, $Z_{FL}$  | Translation(2,3) |
| Front right wheel, $X_{FR}$ | Translation(3,1) |
| Front right wheel, $Y_{FR}$ | Translation(3,2) |
| Front right wheel, $Z_{FR}$ | Translation(3,3) |
| Rear left wheel, $X_{RL}$   | Translation(4,1) |
| Rear left wheel, $Y_{RL}$   | Translation(4,2) |

| Translation                | Array Element    |  |
|----------------------------|------------------|--|
| Rear left wheel, $Z_{RL}$  | Translation(4,3) |  |
| Rear right wheel, $X_{RR}$ | Translation(5,1) |  |
| Rear right wheel, $Y_{RR}$ | Translation(5,2) |  |
| Rear right wheel, $Z_{RR}$ | Translation(5,3) |  |

#### Rotation — Actor rotation

array

Actor rotation across a [-pi/2, pi/2] range, in rad. Array dimensions are number of parts per actorby-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) Vehicle rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) Actor rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Rotation signal::

- Dimensions are [5x3].
- Contains rotation information according to the axle and wheel locations.

$$Rotation = \begin{bmatrix} Pitch_{v} & Roll_{v} & Yaw_{v} \\ Pitch_{FL} & Roll_{FL} & Yaw_{FL} \\ Pitch_{FR} & Roll_{FR} & Yaw_{FR} \\ Pitch_{RL} & Roll_{RL} & Yaw_{RL} \\ Pitch_{RR} & Roll_{RR} & Yaw_{RR} \end{bmatrix}$$

| Rotation                               | Array Element |
|----------------------------------------|---------------|
| Vehicle, Pitch <sub>v</sub>            | Rotation(1,1) |
| Vehicle, Roll <sub>v</sub>             | Rotation(1,2) |
| Vehicle, Yaw <sub>v</sub>              | Rotation(1,3) |
| Front left wheel, $Pitch_{FL}$         | Rotation(2,1) |
| Front left wheel, $Roll_{FL}$          | Rotation(2,2) |
| Front left wheel, $Yaw_{FL}$           | Rotation(2,3) |
| Front right wheel, Pitch <sub>FR</sub> | Rotation(3,1) |
| Front right wheel, $Roll_{FR}$         | Rotation(3,2) |
| Front right wheel, Yaw <sub>FR</sub>   | Rotation(3,3) |
| Rear left wheel, Pitch <sub>RL</sub>   | Rotation(4,1) |
| Rear left wheel, $Roll_{RL}$           | Rotation(4,2) |
| Rear left wheel, Yaw <sub>RL</sub>     | Rotation(4,3) |
| Rear right wheel, $Pitch_{RR}$         | Rotation(5,1) |
| Rear right wheel, $Roll_{RR}$          | Rotation(5,2) |

| Rotation                            | Array Element |
|-------------------------------------|---------------|
| Rear right wheel, Yaw <sub>RR</sub> | Rotation(5,3) |

#### Scale — Actor scale

array

Actor scale. Array dimensions are number of number of parts per actor-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) Vehicle scale along world X-, Y-, and Z- axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) Actor scale along world X-, Y-, and Z-axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The Scale signal:

- Dimensions are [5x3].
- Contains scale information according to the axle and wheel locations.

$$Scale = \begin{bmatrix} X_{Vscale} & Y_{Vscale} & Z_{Vscale} \\ X_{FLscale} & Y_{FLscale} & Z_{FLscale} \\ X_{FRscale} & Y_{FRscale} & Z_{FRscale} \\ X_{RLscale} & Y_{RLscale} & Z_{RLscale} \\ X_{RRscale} & Y_{RRscale} & Z_{RRscale} \end{bmatrix}$$

| Scale                                         | Array Element |
|-----------------------------------------------|---------------|
| Vehicle, $X_{ u_{scale}}$                     | Scale(1,1)    |
| Vehicle, $Y_{v_{scale}}$                      | Scale(1,2)    |
| Vehicle, $Z_{v_{scale}}$                      | Scale(1,3)    |
| Front left wheel, $X_{FL_{scale}}$            | Scale(2,1)    |
| Front left wheel, $Y_{FL_{scale}}$            | Scale(2,2)    |
| ront left wheel, $Z_{FL_{scale}}$ Scale(2,3)  |               |
| Front right wheel, $X_{FR_{scale}}$           | Scale(3,1)    |
| Front right wheel, $Y_{FR_{scale}}$           | Scale(3,2)    |
| Front right wheel, $Z_{FR_{scale}}$           | Scale(3,3)    |
| Rear left wheel, $X_{RL_{scale}}$ Scale (4,1) |               |
| ear left wheel, $Y_{RL_{scale}}$ Scale(4,2)   |               |
| Rear left wheel, $Z_{RL_{scale}}$             | Scale(4,3)    |
| Rear right wheel, $X_{RR_{scale}}$            | Scale(5,1)    |
| Rear right wheel, $Y_{RR_{scale}}$            | Scale(5,2)    |
| Rear right wheel, $Z_{RR_{scale}}$            | Scale(5,3)    |

## **Parameters**

#### **Actor Setup**

## Tag for actor in 3D scene, ActorTag — Name

SimulinkActor1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same **Tag for actor in 3D scene**, **ActorTag** parameter.

# Number of parts per actor to set, NumberOfParts — Name 1 (default) | scalar

Number of parts per actor. Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor. Typically, a vehicle actor with a body and four wheels has 5 parts.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same **Tag for actor in 3D scene**, **ActorTag** parameter.

#### **Initial Values**

# Initial array values to translate actor per part, Translation — Actor initial position

[0 0 0] (default) | array

Actor initial position, along world *X*-, *Y*-, and *Z*- axes, in m.

Array dimensions are number of parts per actor-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) Vehicle displacement along world X-, Y, and Z- axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) Actor displacement relative to vehicle, in vehicle-fixed coordinate system initially aligned with world X-, Y, and Z- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

- Dimensions are [5x3].
- Contains translation information according to the axle and wheel locations, relative to vehicle.

$$Translation = \begin{bmatrix} X_v & Y_v & Z_v \\ X_{FL} & Y_{FL} & Z_{FL} \\ X_{FR} & Y_{FR} & Z_{FR} \\ X_{RL} & Y_{RL} & Z_{RL} \\ X_{RR} & Y_{RR} & Z_{RR} \end{bmatrix}$$

| Translation                 | Array Element    |  |
|-----------------------------|------------------|--|
| Vehicle, $X_{\nu}$          | Translation(1,1) |  |
| Vehicle, $Y_{\nu}$          | Translation(1,2) |  |
| Vehicle, $Z_{\nu}$          | Translation(1,3) |  |
| Front left wheel, $X_{FL}$  | Translation(2,1) |  |
| Front left wheel, $Y_{FL}$  | Translation(2,2) |  |
| Front left wheel, $Z_{FL}$  | Translation(2,3) |  |
| Front right wheel, $X_{FR}$ | Translation(3,1) |  |
| Front right wheel, $Y_{FR}$ | Translation(3,2) |  |
| Front right wheel, $Z_{FR}$ | Translation(3,3) |  |
| Rear left wheel, $X_{RL}$   | Translation(4,1) |  |
| Rear left wheel, $Y_{RL}$   | Translation(4,2) |  |
| Rear left wheel, $Z_{RL}$   | Translation(4,3) |  |
| Rear right wheel, $X_{RR}$  | Translation(5,1) |  |
| Rear right wheel, $Y_{RR}$  | Translation(5,2) |  |
| Rear right wheel, $Z_{RR}$  | Translation(5,3) |  |

# Initial array values to rotate actor per part, Rotation — Actor initial rotation [0 0 0] (default) | array

Actor initial rotation about world X-, Y-, and Z- axes across a [-pi/2, pi/2] range, in rad.

Array dimensions are number of parts per actor-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) Vehicle rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) Actor rotation about vehicle-fixed pitch, roll, and yaw Y-, Z-, and X- axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

- Dimensions are [5x3].
- · Contains rotation information according to the axle and wheel locations.

$$Rotation = \begin{bmatrix} Pitch_{v} & Roll_{v} & Yaw_{v} \\ Pitch_{FL} & Roll_{FL} & Yaw_{FL} \\ Pitch_{FR} & Roll_{FR} & Yaw_{FR} \\ Pitch_{RL} & Roll_{RL} & Yaw_{RL} \\ Pitch_{RR} & Roll_{RR} & Yaw_{RR} \end{bmatrix}$$

| Rotation                             | Array Element |  |
|--------------------------------------|---------------|--|
| Vehicle, $Pitch_{\nu}$ Rotation(1,1) |               |  |
| Vehicle, $Roll_{v}$ Rotation(1,2)    |               |  |
| Vehicle, Yaw <sub>v</sub>            | Rotation(1,3) |  |

| Rotation                               | Array Element |
|----------------------------------------|---------------|
| Front left wheel, $Pitch_{FL}$         | Rotation(2,1) |
| Front left wheel, $Roll_{FL}$          | Rotation(2,2) |
| Front left wheel, $Yaw_{FL}$           | Rotation(2,3) |
| Front right wheel, Pitch <sub>FR</sub> | Rotation(3,1) |
| Front right wheel, $Roll_{FR}$         | Rotation(3,2) |
| Front right wheel, Yaw <sub>FR</sub>   | Rotation(3,3) |
| Rear left wheel, $Pitch_{RL}$          | Rotation(4,1) |
| Rear left wheel, $Roll_{RL}$           | Rotation(4,2) |
| Rear left wheel, $Yaw_{RL}$            | Rotation(4,3) |
| Rear right wheel, Pitch <sub>RR</sub>  | Rotation(5,1) |
| Rear right wheel, Roll <sub>RR</sub>   | Rotation(5,2) |
| Rear right wheel, $Yaw_{RR}$           | Rotation(5,3) |

# Initial array values to scale actor per part, Scale — Actor initial scale [1 1 1] (default) | array

Actor initial scale.

Array dimensions are number of number of parts per actor-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) Vehicle scale along world X-, Y, and Z- axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) Actor scale along world X-, Y, and Z-axes, respectively.

For example, consider a vehicle actor with a vehicle body and four wheels. The parameter:

- Dimensions are [5x3].
- Contains scale information according to the axle and wheel locations.

$$Scale = \begin{bmatrix} X_{V_{scale}} & Y_{V_{scale}} & Z_{V_{scale}} \\ X_{FL_{scale}} & Y_{FL_{scale}} & Z_{FL_{scale}} \\ X_{FR_{scale}} & Y_{FR_{scale}} & Z_{FR_{scale}} \\ X_{RL_{scale}} & Y_{RL_{scale}} & Z_{RL_{scale}} \\ X_{RR_{scale}} & Y_{RR_{scale}} & Z_{RR_{scale}} \end{bmatrix}$$

| Scale                              | Array Element | Scale Axis           |
|------------------------------------|---------------|----------------------|
| Vehicle, $X_{ u_{scale}}$          | Scale(1,1)    | World X-axis         |
| Vehicle, $Y_{\nu_{scale}}$         | Scale(1,2)    | World Y-axis         |
| Vehicle, $Z_{ u_{scale}}$          | Scale(1,3)    | World Z-axis         |
| Front left wheel, $X_{FL_{scale}}$ | Scale(2,1)    | World X-axis         |
| Front left wheel, $Y_{FL_{scale}}$ | Scale(2,2)    | World <i>Y</i> -axis |

| Scale                               | Array Element | Scale Axis   |
|-------------------------------------|---------------|--------------|
| Front left wheel, $Z_{FL_{scale}}$  | Scale(2,3)    | World Z-axis |
| Front right wheel, $X_{FR_{scale}}$ | Scale(3,1)    | World X-axis |
| Front right wheel, $Y_{FR_{scale}}$ | Scale(3,2)    | World Y-axis |
| Front right wheel, $Z_{FR_{scale}}$ | Scale(3,3)    | World Z-axis |
| Rear left wheel, $X_{RL_{scale}}$   | Scale(4,1)    | World X-axis |
| Rear left wheel, $Y_{RL_{scale}}$   | Scale(4,2)    | World Y-axis |
| Rear left wheel, $Z_{RL_{scale}}$   | Scale(4,3)    | World Z-axis |
| Rear right wheel, $X_{RR_{scale}}$  | Scale(5,1)    | World X-axis |
| Rear right wheel, $Y_{RR_{scale}}$  | Scale(5,2)    | World Y-axis |
| Rear right wheel, $Z_{RR_{scale}}$  | Scale(5,3)    | World Z-axis |

## Sample time — Sample time

-1 (default) | scalar

Sample time,  $T_s$ . The graphics frame rate is the inverse of the sample time.

## **See Also**

Simulation 3D Actor Transform Get | Simulation 3D Camera Get | Simulation 3D Scene Configuration | Vehicle Terrain Sensor

## **Topics**

- "Coordinate Systems in Vehicle Dynamics Blockset"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "3D Visualization Engine Requirements"

#### Introduced in R2018a

## **Simulation 3D Camera Get**

Camera image

Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core



## **Description**

The Simulation 3D Camera Get block provides an interface to an ideal camera in the 3D visualization environment. The image output is a red, green, and blue (RGB) array.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block. To use this sensor, ensure that the Simulation 3D Scene Configuration block is in your model.

**Tip** Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Camera Get block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Camera Get block receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:

- Simulation 3D Scene Configuration 0
- Simulation 3D Camera Get -1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

#### **Ports**

#### **Output**

#### Image — 3D output camera image

*m*-by-*n*-by-3 array of RGB triplet values

3D output camera image, returned as an m-by-n-by-3 array of RGB triplet values. m is the vertical resolution of the image, and n is the horizontal resolution of the image.

Data Types: int8 | uint8

#### **Parameters**

#### Mounting

## Sensor identifier — Number to identify unique sensor

0 (default) | positive integer

Unique sensor identifier, specified as a positive integer. This number is used to identify a specific sensor. The sensor identifier distinguishes between sensors in a multi-sensor system.

Example: 2

## Vehicle name — Name of a vehicle

Scene Origin (default) | character vector

Vehicle name. Block provides a list of vehicles in the model. If you select Scene Origin, the block places a sensor at the scene origin.

Example: SimulinkVehicle1

## **Vehicle mounting location — Sensor mounting location**

Origin (default) | Front bumper | Rear bumper | Right mirror | Left mirror | Rearview mirror | Hood center | Roof center

Sensor mounting location.

- When Vehicle name is Scene Origin, the block mounts the sensor to the origin of the scene, and Mounting location can be set to Origin only. During simulation, the sensor remains stationary.
- When **Vehicle name** is the name of a vehicle (for example, SimulinkVehicle1) the block mounts the sensor to one of the predefined mounting locations described in the table. During simulation, the sensor travels with the vehicle.

| Vehicle Mounting Location | Description                                                                                                         | Orientation Relative to<br>Vehicle Origin [Roll, Pitch,<br>Yaw] (deg) |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Origin                    | Forward-facing sensor mounted to the vehicle origin, which is on the ground, at the geometric center of the vehicle | [0, 0, 0]                                                             |

| Vehicle Mounting Location | Description                                                  | Orientation Relative to<br>Vehicle Origin [Roll, Pitch,<br>Yaw] (deg) |
|---------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|
| Front bumper              | Forward-facing sensor mounted to the front bumper            | [0, 0, 0]                                                             |
| Rear bumper               | Backward-facing sensor mounted to the rear bumper            | [0, 0, 180]                                                           |
| Right mirror              | Downward-facing sensor mounted to the right side-view mirror | [0, -90, 0]                                                           |

| Vehicle Mounting Location | Description                                                              | Orientation Relative to<br>Vehicle Origin [Roll, Pitch,<br>Yaw] (deg) |
|---------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Left mirror               | Downward-facing sensor mounted to the left side-view mirror              | [0, -90, 0]                                                           |
| Rearview mirror           | Forward-facing sensor mounted to the rearview mirror, inside the vehicle | [0, 0, 0]                                                             |
| Hood center               | Forward-facing sensor mounted to the center of the hood                  | [0, 0, 0]                                                             |

| Vehicle Mounting Location | Description                                             | Orientation Relative to<br>Vehicle Origin [Roll, Pitch,<br>Yaw] (deg) |
|---------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|
| Roof center               | Forward-facing sensor mounted to the center of the roof | [0, 0, 0]                                                             |

The (X, Y, Z) location of the sensor relative to the vehicle depends on the vehicle type. To specify the vehicle type, use the **Type** parameter of the Simulation 3D Scene Configuration block to which you are mounting. The tables show the X, Y, and Z locations of sensors in the vehicle coordinate system. In this coordinate system:

- The *X*-axis points forward from the vehicle.
- The *Y*-axis points to the left of the vehicle, as viewed when facing forward.
- The *Z*-axis points up from the ground.
- Roll, pitch, and yaw are clockwise-positive when looking in the positive direction of the *X*-axis, *Y*-axis, and *Z*-axis, respectively. When looking at a vehicle from the top down, then the yaw angle (that is, the orientation angle) is counterclockwise-positive, because you are looking in the negative direction of the axis.

**Box Truck — Sensor Locations Relative to Vehicle Origin** 

| Mounting Location | X (m) | Y (m) | Z (m) |
|-------------------|-------|-------|-------|
| Front bumper      | 5.10  | 0     | 0.60  |
| Rear bumper       | -5    | 0     | 0.60  |
| Right mirror      | 2.90  | 1.60  | 2.10  |
| Left mirror       | 2.90  | -1.60 | 2.10  |
| Rearview mirror   | 2.60  | 0.20  | 2.60  |
| Hood center       | 3.80  | 0     | 2.10  |
| Roof center       | 1.30  | 0     | 4.20  |

## **Hatchback** — Sensor Locations Relative to Vehicle Origin

| Mounting Location | X (m) | Y (m) | Z (m) |
|-------------------|-------|-------|-------|
| Front bumper      | 1.93  | 0     | 0.51  |
| Rear bumper       | -1.93 | 0     | 0.51  |
| Right mirror      | 0.43  | -0.84 | 1.01  |
| Left mirror       | 0.43  | 0.84  | 1.01  |
| Rearview mirror   | 0.32  | 0     | 1.27  |
| Hood center       | 1.44  | 0     | 1.01  |
| Roof center       | 0     | 0     | 1.57  |

## Muscle Car — Sensor Locations Relative to Vehicle Origin

| <b>Mounting Location</b> | X (m) | Y (m) | Z (m) |
|--------------------------|-------|-------|-------|
| Front bumper             | 2.47  | 0     | 0.45  |
| Rear bumper              | -2.47 | 0     | 0.45  |
| Right mirror             | 0.43  | -1.08 | 1.01  |
| Left mirror              | 0.43  | 1.08  | 1.01  |
| Rearview mirror          | 0.32  | 0     | 1.20  |
| Hood center              | 1.28  | 0     | 1.14  |
| Roof center              | -0.25 | 0     | 1.58  |

## **Sedan — Sensor Locations Relative to Vehicle Origin**

| Mounting Location | X (m) | Y (m) | Z (m) |
|-------------------|-------|-------|-------|
| Front bumper      | 2.42  | 0     | 0.51  |
| Rear bumper       | -2.42 | 0     | 0.51  |
| Right mirror      | 0.59  | -0.94 | 1.09  |
| Left mirror       | 0.59  | 0.94  | 1.09  |
| Rearview mirror   | 0.43  | 0     | 1.31  |
| Hood center       | 1.46  | 0     | 1.11  |
| Roof center       | -0.45 | 0     | 1.69  |

| <b>Mounting Location</b> | X (m) | Y (m) | Z (m) |
|--------------------------|-------|-------|-------|
| Front bumper             | 3.07  | 0     | 0.51  |
| Rear bumper              | -3.07 | 0     | 0.51  |
| Right mirror             | 1.10  | -1.13 | 1.52  |
| Left mirror              | 1.10  | 1.13  | 1.52  |
| Rearview mirror          | 0.85  | 0     | 1.77  |
| Hood center              | 2.22  | 0     | 1.59  |
| Roof center              | 0     | 0     | 2.27  |

### Sport Utility Vehicle — Sensor Locations Relative to Vehicle Origin

| Mounting Location | X (m) | Y (m) | Z (m) |
|-------------------|-------|-------|-------|
| Front bumper      | 2.42  | 0     | 0.51  |
| Rear bumper       | -2.42 | 0     | 0.51  |
| Right mirror      | 0.60  | -1    | 1.35  |
| Left mirror       | 0.60  | 1     | 1.35  |
| Rearview mirror   | 0.39  | 0     | 1.55  |
| Hood center       | 1.58  | 0     | 1.39  |
| Roof center       | -0.56 | 0     | 2     |

Example: Origin

## Specify offset — Specify offset from mounting location off (default) | on

Select this parameter to specify an offset from the mounting location.

## Relative translation [X, Y, Z] — Translation offset from mounting location [0,0,0] (default) | real-valued 1-by-3 vector

Specify a translation offset from the mount location, about the vehicle coordinate system X, Y, and Zaxes. Units are in meters.

- The *X*-axis points forward from the vehicle.
- The Y-axis points to the left of the vehicle, as viewed when facing forward.
- The *Z*-axis points up.

Example: [0,0,0.01]

#### **Dependencies**

To enable this parameter, select **Specify offset**.

## Relative rotation [Roll, Pitch, Yaw] — Rotational offset from mounting location [0,0,0] (default) | real-valued 1-by-3 vector

Specify a rotational offset from the mounting location, about the vehicle coordinate system X, Y, and *Z* axes. Units are in degrees.

- Roll angle is the angle of rotation about the *X*-axis of the vehicle coordinate system. A positive roll angle corresponds to a clockwise rotation when looking in the positive direction of the *X*-axis.
- Pitch angle is the angle of rotation about the *Y*-axis of the vehicle coordinate system. A positive pitch angle corresponds to a clockwise rotation when looking in the positive direction of the *Y*-axis.
- Yaw angle is the angle of rotation about the *Z* of the vehicle coordinate system. A positive yaw angle corresponds to a clockwise rotation when looking in the positive direction of the *Z*-axis.

Example: [0,0,10]

#### **Dependencies**

To enable this parameter, select **Specify offset**.

### Sample time — Sample time

-1 (default) | positive scalar

Sample time of the block in seconds. The 3D simulation environment frame rate is the inverse of the sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

#### **Parameter**

#### Horizontal resolution — Pixels

uint32(1280) (default) | scalar

Horizontal image resolution, in pixels.

#### **Vertical resolution — Pixels**

uint32(720) (default) | scalar

Vertical image resolution, in pixels.

#### Horizontal field of view — Field of view

single(60) (default) | scalar

Horizontal field of view (FOV), in deg.

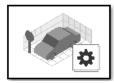
#### See Also

Simulation 3D Actor Transform Get | Simulation 3D Actor Transform Set | Simulation 3D Scene Configuration | Vehicle Terrain Sensor

#### **Topics**

- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Scene Interrogation in 3D Environment"
- "3D Visualization Engine Requirements"

#### Introduced in R2018a


# **Simulation 3D Scene Configuration**

Scene configuration for 3D simulation environment

**Library:** Automated Driving Toolbox / Simulation 3D

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core



## **Description**

The Simulation 3D Scene Configuration block implements a 3D simulation environment that is rendered by using the Unreal Engine from Epic Games<sup>®</sup>. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so that you can query the world around the vehicle and virtually test perception, control, and planning algorithms.

You can simulate from a set of prebuilt scenes or from your own custom scenes. Scene customization requires the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. For more details, see "Support Package for Customizing Scenes".

**Note** The Simulation 3D Scene Configuration block must execute after blocks that send data to the 3D environment and before blocks that receive data from the 3D environment. To verify the execution order of such blocks, right-click the blocks and select **Properties**. Then, on the **General** tab, confirm these **Priority** settings:

- For blocks that send data to the 3D environment, such as Simulation 3D Vehicle with Ground Following blocks, **Priority** must be set to -1. That way, these blocks prepare their data before the 3D environment receives it.
- For the Simulation 3D Scene Configuration block in your model, Priority must be set to 0.
- For blocks that receive data from the 3D environment, such as Simulation 3D Message Get blocks,
   Priority must be set to 1. That way, the 3D environment can prepare the data before these blocks receive it.

For more information about execution order, see "Control and Display Execution Order" (Simulink).

## **Parameters**

#### **Scene Selection**

#### Scene source — Source of scene

Default Scenes (default) | Unreal Executable | Unreal Editor

Source of the scene in which to simulate, specified as one of the options in the table.

| Option         | Description                                     |
|----------------|-------------------------------------------------|
| Default Scenes | Simulate in one of the default, prebuilt scenes |
|                | specified in the <b>Scene name</b> parameter.   |

| Option            | Description                                                                                                                                                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unreal Executable | Simulate in a scene that is part of an Unreal Engine executable file. Specify the executable file in the <b>File name</b> parameter. Specify the scene in the <b>Scene</b> parameter.  Select this option to simulate in custom scenes |
|                   | that have been packaged into an executable for faster simulation.                                                                                                                                                                      |
| Unreal Editor     | Simulate in a scene that is part of an Unreal Engine project (.uproject) file and is open in the Unreal® Editor. Specify the project file in the <b>Project</b> parameter.                                                             |
|                   | Select this option when developing custom scenes. By clicking <b>Open Unreal Editor</b> , you can co-simulate within Simulink and the Unreal Editor and modify your scenes based on the simulation results.                            |

### Scene name — Name of prebuilt 3D scene

Straight road (default) | Curved road | Parking lot | Double lane change | Open surface | US city block | US highway | Virtual Mcity | Large parking lot

Name of the prebuilt 3D scene in which to simulate, specified as one of these options. For details about a scene, see its listed corresponding reference page.

- Straight road Straight Road
- Curved road Curved Road
- Parking lot Parking Lot
- Double lane change Double Lane Change
- Open surface Open Surface
- US city block US City Block
- US highway US Highway
- Virtual Mcity Virtual Mcity
- Large parking lot Large Parking Lot

The Vehicle Dynamics Blockset Support Package for Unreal Engine 4 Projects contains customizable versions of these scenes. For details about customizing scenes, see "Support Package for Customizing Scenes".

#### **Dependencies**

To enable this parameter, set **Scene source** to **Default Scenes**.

#### File name — Name of Unreal Engine executable file

VehicleSimulation.exe (default) | valid executable file name

Name of the Unreal Engine executable file, specified as a valid executable file name. You can either browse for the file or specify the full path to the file, using backslashes. To specify a scene from this file to simulate in, use the **Scene** parameter.

By default, **File name** is set to **VehicleSimulation.exe**, which is on the MATLAB search path.

Example: C:\Local\WindowsNoEditor\AutoVrtlEnv.exe

#### **Dependencies**

To enable this parameter, set **Scene source** to Unreal Executable.

#### Scene — Name of scene from executable file

/Game/Maps/HwStrght (default) | path to valid scene name

Name of a scene from the executable file specified by the **File name** parameter, specified as a path to a valid scene name.

When you package scenes from an Unreal Engine project into an executable file, the Unreal Editor saves the scenes to an internal folder within the executable file. This folder is located at the path / Game/Maps. Therefore, you must prepend /Game/Maps to the scene name. You must specify this path using forward slashes. For the file name, do not specify the .umap extension. For example, if the scene from the executable in which you want to simulate is named myScene.umap, specify Scene as /Game/Maps/myScene.

Alternatively, you can browse for the scene in the corresponding Unreal Engine project. These scenes are typically saved to the Content/Maps subfolder of the project. This subfolder contains all the scenes in your project. The scenes have the extension .umap. Select one of the scenes that you packaged into the executable file specified by the **File name** parameter. Use backward slashes and specify the .umap extension for the scene.

By default, **Scene** is set to /Game/Maps/HwStrght, which is a scene from the default VehicleSimulation.exe executable file specified by the **File name** parameter. This scene corresponds to the prebuilt **Straight Road** scene.

Example: /Game/Maps/scene1

Example: C:\Local\myProject\Content\Maps\scene1.umap

#### **Dependencies**

To enable this parameter, set **Scene source** to Unreal Executable.

## **Project** — Name of Unreal Engine project file

valid project file name

Name of the Unreal Engine project file, specified as a valid project file name. You can either browse for the file or specify the full path to the file, using backslashes. The file must contain no spaces. To simulate scenes from this project in the Unreal Editor, click **Open Unreal Editor**. If you have an Unreal Editor session open already, then this button is disabled.

To run the simulation, in Simulink, click **Run**. Before you click **Play** in the Unreal Editor, wait until the Diagnostic Viewer window displays this confirmation message:

In the Simulation 3D Scene Configuration block, you set the scene source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated the scene actors, including the vehicles and cameras, in the Unreal Engine 3D environment. If you click **Play** before the Diagnostic Viewer window displays this confirmation message, Simulink might not instantiate the actors in the Unreal Editor.

## **Dependencies**

To enable this parameter, set **Scene source** to Unreal Editor.

#### **Scene Parameters**

## Scene view — Configure placement of virtual camera that displays scene

Scene Origin (default) | vehicle name

Configure the placement of the virtual camera that displays the scene during simulation.

- If your model contains no Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following blocks, then during simulation, you view the scene from a camera positioned at the scene origin.
- If your model contains at least one vehicle block, then by default, you view the scene from behind the first vehicle that was placed in your model. To change the view to a different vehicle, set **Scene view** to the name of that vehicle. The **Scene view** parameter list is populated with all the **Name** parameter values of the vehicle blocks contained in your model.

If you add a Simulation 3D Scene Configuration block to your model before adding any vehicle blocks, the virtual camera remains positioned at the scene. To reposition the camera to follow a vehicle, update this parameter.

When **Scene view** is set to a vehicle name, during simulation, you can change the location of the camera around the vehicle.

To change the camera views, use these key commands.

| Key | Camera V       | iew |
|-----|----------------|-----|
| 1   | Back left      | 8   |
| 2   | Back           |     |
| 3   | Back<br>right  | 79  |
| 4   | Left           |     |
| 5   | Internal       |     |
| 6   | Right          | 4 6 |
| 7   | Front left     | 4 6 |
| 8   | Front          |     |
| 9   | Front<br>right |     |
| 0   | Overhead       | 2   |

## Sample time — Sample time of visualization engine

.02 (default) | scalar greater than or equal to 0.01

Sample time,  $T_s$ , of the visualization engine, specified as a scalar greater than or equal to 0.01. Units are in seconds.

The graphics frame rate of the visualization engine is the inverse of the sample time. For example, if **Sample time** is 1/60, then the visualization engine solver tries to achieve a frame rate of 60 frames per second. However, the real-time graphics frame rate is often lower due to factors such as graphics card performance and model complexity.

By default, blocks that receive data from the visualization engine, such as Simulation 3D Message blocks, inherit this sample rate.

# Display 3D simulation window — Unreal Engine visualization on $(default) \mid off$

Select whether to run simulations in the 3D visualization environment without visualizing the results, that is, in headless mode.

Consider running in headless mode in these cases:

- You want to run multiple 3D simulations in parallel to test models in different Unreal Engine scenarios.
- You want to optimize model parameters without visualizing the results. For example, consider
  using headless mode if you want to tune vehicle suspension parameters over a terrain scenario
  defined in Unreal Engine.

#### **Dependencies**

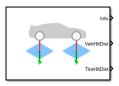
To enable this parameter, set Scene source to Default Scenes or Unreal Executable.

#### See Also

Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

#### **Topics**

- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Scene Interrogation in 3D Environment"
- "3D Visualization Engine Requirements"
- "Support Package for Customizing Scenes"


#### Introduced in R2018a

## **Vehicle Terrain Sensor**

Vehicle and tire distances to objects

Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Vehicle / Components



## **Description**

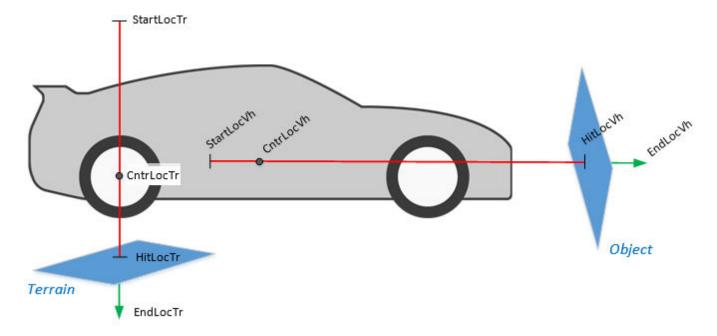
The Vehicle Terrain Sensor block implements ray tracing to detect the terrain below the tires and objects in front of the vehicle. Specifically, for these actor components, the block returns the hit location (in the world coordinate system) and the distance to an object.

- · Vehicle body
- · Left front wheel
- Right front wheel
- · Left rear wheel
- · Right rear wheel

**Tip** Verify that the Vehicle Terrain Sensor block executes before the Simulation 3D Fisheye Camera block. That way, the Unreal Engine 3D visualization environment prepares the data before the Vehicle Terrain Sensor block receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:

- Simulation 3D Scene Configuration 0
- Vehicle Terrain Sensor 1

For more information about execution order, see "Control and Display Execution Order" (Simulink).


Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

#### **Hit Distance**

To calculate the hit distances shown in the illustration, the block implements these equations.

| DistToHitVh = GetLength(CntrLocVh, HitLocVh) DistToHitVhAdjust = DistToHitVh - VehCntrLngthVal                                         |
|----------------------------------------------------------------------------------------------------------------------------------------|
| <pre>EndLocVh = CntrLocVh + VehRayLngth - VehRayOffset VehRayOffset = CntrLocVh - StartLocVh VehRayLngth = StartLocVh - EndLocVh</pre> |

| <pre>DistToHitTr = GetLength(CntrLocTr, HitLocTr) DistToHitTrAdjust = DistToHitTr - TireRadiiVal</pre>                   |
|--------------------------------------------------------------------------------------------------------------------------|
| <pre>EndLocTr = CntrLocTr + LengthTr - OffsetTr OffsetTr = CntrLocTr - StartLocTr LengthTr = StartLocTr - EndLocTr</pre> |



This illustration and equations use these variables.

CntrLocVh Vehicle center location

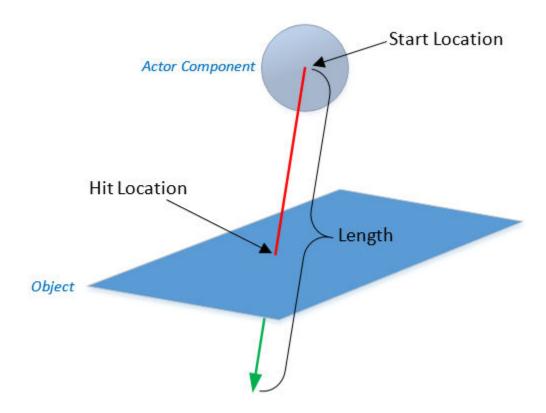
DistToHitVh Distance from vehicle center location to object DistToHitVhAdjust Distance from the front of the vehicle to object

EndLocVh Vehicle ray trace end HitLocVh Vehicle hit location OffsetVh Vehicle trace offset StartLocVh Vehicle ray trace start VehRayLngth Vehicle trace length

VehCntrLngthVal Distance from vehicle center to front

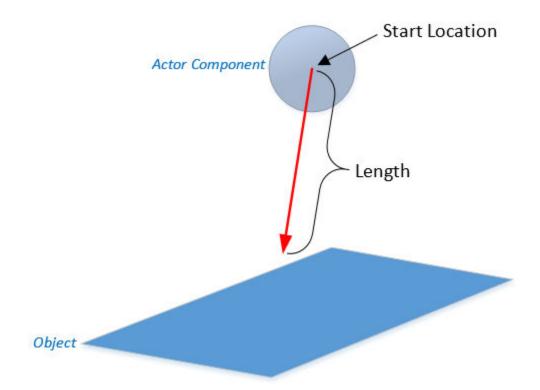
CntrLocTr Tire center location

DistToHitTr Distance from tire center location to terrain


DistToHitTrAdjust Distance from tire to terrain

HitLocTr Tire hit location EndLocTr Tire ray trace end OffsetTr Tire trace offset StartLocTr Tire ray trace start

LengthTr Tire trace length
TireRadiiVal Tire radius


#### **Hit Event**

To determine a hit event, the block uses the ray trace. The block provides the hit location in the world coordinate system.



## **Miss Event**

To determine a miss event, the block uses the ray trace.



## **Ports**

## Input

## VehCntr — Vehicle distance from center to front

scalar

Distance from the vehicle center to front, VehCntrLngthVal, in m.

## **Dependencies**

| Distance to vehicle center | Creates Port | Creates Parameter                                         |
|----------------------------|--------------|-----------------------------------------------------------|
| Constant                   | None         | Distance from vehicle center to front,<br>VehCntrLngthVal |
| External input             | VehCntr      | None                                                      |

## TireRadii — Tire radii

array

Tire radii, TireRadiiVal, in m.

#### **Dependencies**

| Distance to tire center Setting | Creates Port | Creates Parameter                                    |
|---------------------------------|--------------|------------------------------------------------------|
| Constant                        |              | Distance from tire center to ground,<br>TireRadiiVal |
| External input                  | TireRadii    | None                                                 |

## Output

## Info — Bus signal

bus

Bus signal containing block values. The signals are arrays that depend on the wheel location.

| Signal   | Description                                                                                                                                                               | Variable                                                                                                                                                    | Units |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| HitFlg   | <ul> <li>Vehicle and wheel hit flag:</li> <li>Hit an object - 1</li> <li>Miss an object - 0</li> </ul>                                                                    | Vehicle FrontLeft FrontRight RearLeft RearRight                                                                                                             | NA    |
| HitLoc   | Vehicle, <i>HitLocVh</i> , and tire, <i>HitLocTr</i> , hit locations, in world coordinate system <i>X</i> -, <i>Y</i> , and <i>Z</i> - axes, respectively                 | $egin{array}{cccc} Vehicle_X & Vehicle_Y & Vehicle_Z \ FrontLeft_X & FrontLeft_Y & FrontRight_Z \ FrontRight_X & FrontRight_Y & FrontRight_Z \ \end{array}$ | m     |
| StartLoc | Vehicle, <i>StartLocVh</i> , and tire, <i>StartLocTr</i> , ray trace start locations, in world coordinate system <i>X</i> -, <i>Y</i> , and <i>Z</i> - axes, respectively | $oxed{RearLeft_X} oxed{RearLeft_Z} oxed{RearRear_X} oxed{RearRear_Y} oxed{RearRear_Z}$                                                                      | m     |

## **VehHitDist** — Front of vehicle distance to object

scalar

Distance from the front of the vehicle to object, *DistToHitVhAdjust*, in m.

## TireHitDist — Tire distance to terrain

vector

Distance from tire to terrain, DistToHitTrAdjust, in m.

DistToHitTrAdjust = [FrontLeft FrontRight RearLef RearRight]

## **Parameters**

#### **Actor Setup**

## Tag for actor in 3D scene, ActorTag — Name

SimulinVehicle1 (default) | character vector

Actor name.

Actors are scene objects that support 3D translation, rotation, and scale. Parts are actor components. Components do not exist by themselves; they are associated with an actor.

The block does not support multiple instances of the same actor tag. To refer to the same scene actor when you use the 3D block pairs (e.g. Simulation 3D Actor Transform Get and Simulation 3D Actor Transform Set), specify the same **Tag for actor in 3D scene**, **ActorTag** parameter.

### Distance to vehicle center — Selection

Constant (default) | External input

Configure how to provide the distance to the vehicle center.

#### **Dependencies**

| Distance to vehicle center | Creates Port | Creates Parameter                                      |
|----------------------------|--------------|--------------------------------------------------------|
| Constant                   | None         | Distance from vehicle center to front, VehCntrLngthVal |
| External input             | VehCntr      | None                                                   |

#### Distance to tire center — Selection

Constant (default) | External input

Configure how to provide the distance to the tire center.

#### **Dependencies**

| Distance to tire center<br>Setting | Creates Port | Creates Parameter                                    |
|------------------------------------|--------------|------------------------------------------------------|
| Constant                           |              | Distance from tire center to ground,<br>TireRadiiVal |
| External input                     | TireRadii    | None                                                 |

# **Distance from vehicle center to front, VehCntrLngthVal — Vehicle center** 0 (default) | scalar

Distance from the vehicle center to front, VehCntrLngthVal, in m.

#### **Dependencies**

| Distance to vehicle center | Creates Port | Creates Parameter                                         |
|----------------------------|--------------|-----------------------------------------------------------|
| Constant                   | None         | Distance from vehicle center to front,<br>VehCntrLngthVal |
| External input             | VehCntr      | None                                                      |

# **Distance from tire center to ground, TireRadiiVal — Tire radii** 0 (default) | scalar

Tire radius, TireRadiiVal, in m.

#### **Dependencies**

| Distance to tire center<br>Setting | Creates Port | Creates Parameter                                    |
|------------------------------------|--------------|------------------------------------------------------|
| Constant                           |              | Distance from tire center to ground,<br>TireRadiiVal |
| External input                     | TireRadii    | None                                                 |

### **Trace Lengths**

Vehicle body x-axis trace length, VehRayLngth — Trace length 5 (default) | scalar

Vehicle body trace length, VehRayLngth, in m.

Left front wheel z-axis trace length, LfRayLngth — Trace length  $5 (default) \mid scalar$ 

Left front wheel trace length, *LfRayLngth* and *LengthTr*, in m.

**Right front wheel z-axis trace length, RfRayLngth — Trace length** 5 (default) | scalar

Right front wheel trace length, RfRayLngth and LengthTr, in m.

**Left rear wheel z-axis trace length, LrRayLngth — Trace length** 5 (default) | scalar

Left rear wheel trace length, *LrRayLngth* and *LengthTr*, in m.

Right rear wheel z-axis trace length, RrRayLngth — Trace length
5 (default) | scalar

Right rear wheel trace length, *RrRayLngth* and *LengthTr*, in m.

## **Starting Point Offsets**

Vehicle body x-axis trace offset, VehRayOffset — Offset the vehicle ray trace  $\theta$  (default) | scalar

Vehicle body trace offset, OffsetVh, in m.

Left front wheel z-axis trace offset, LfRayOffset — Offset the left front wheel ray trace

0 (default) | scalar

Left front wheel trace offset, LfRayOffset and OffsetTr, in m.

Right front wheel z-axis trace offset, RfRayOffset — Offset the right front wheel ray trace

0 (default) | scalar

Right front wheel trace offset, *RfRayOffset* and *OffsetTr*, in m.

# Left rear wheel z-axis trace offset, LrRayOffset — Offset the left rear wheel ray trace

0 (default) | scalar

Left rear wheel trace offset, LrRayOffset and OffsetTr, in m.

# Right rear wheel z-axis trace offset, RrRayOffset — Offset the right rear wheel ray trace

0 (default) | scalar

Right rear wheel trace offset, RrRayOffset and OffsetTr, in m.

#### **Enable Traces**

### Vehicle body — Enable vehicle body ray tracing

on (default) | off

Enable vehicle body ray tracing.

## Left front tire — Enable left front tire ray tracing

on (default) | off

Enable left front tire ray tracing.

## Right front tire — Enable right front tire ray tracing

on (default) | off

Enable right front tire ray tracing.

#### Left rear tire — Enable left rear tire ray tracing

on (default) | off

Enable left rear tire ray tracing.

### Right rear tire — Enable right rear tire ray tracing

on (default) | off

Enable right rear tire ray tracing.

## Trace line visualization — Visualize ray traces

on (default) | off

Enable trace line visualization.

### Sample time — Sample time

-1 (default) | scalar

Sample time,  $T_s$ . The graphics frame rate is the inverse of the sample time.

#### See Also

Simulation 3D Vehicle | Simulation 3D Camera Get | Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following

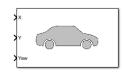
## **Topics**

"Scene Interrogation in 3D Environment"

## **External Websites**

Unreal Engine

Introduced in R2018a


# **Simulation 3D Vehicle with Ground Following**

Implement vehicle that follows ground in 3D environment

**Library:** Automated Driving Toolbox / Simulation 3D

Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Vehicle / Components



## **Description**

The Simulation 3D Vehicle with Ground Following block implements a vehicle with four wheels in a 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The block uses the input (X, Y) position and yaw angle of the vehicle to adjust the elevation, roll angle, and pitch angle of the vehicle so that it follows the ground terrain. The block determines the vehicle velocity and heading and adjusts the steering angle and rotation for each wheel. Use this block for automated driving applications.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the **Sample time** parameter of the Simulation 3D Vehicle with Ground Following block to -1, the block inherits the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down *right-handed* (RH) *Cartesian* coordinate system defined in SAE J670<sup>1</sup>. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- X-axis Along vehicle longitudinal axis, points forward
- Y-axis Along vehicle lateral axis, points to the right
- Z-axis Points downward

**Note** The Simulation 3D Vehicle with Ground Following block must execute before the Simulation 3D Scene Configuration block. That way, the Simulation 3D Vehicle with Ground Following block prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:

- Simulation 3D Scene Configuration 0
- Simulation 3D Vehicle with Ground Following -1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

#### **Ports**

#### Input

## X — Longitudinal position of vehicle

scalar

Longitudinal position of the vehicle along the X-axis of the scene. X is in the inertial Z-down coordinate system. Units are in meters.

#### Y — Lateral position of vehicle

scalar

Lateral position of the vehicle along the Y-axis of the scene. Y is in the inertial Z-down coordinate system. Units are in meters.

#### Yaw — Yaw orientation angle of vehicle

scalar

Yaw orientation angle of the vehicle along the Z-axis of the scene. Yaw is in the Z-down coordinate system. Units are in radians.

#### **Parameters**

#### **Vehicle Parameters**

## Type — Type of vehicle

Muscle car(default)|Sedan|Sport utility vehicle|Small pickup truck|Hatchback| Box truck

Select the type of vehicle. To obtain the dimensions of each vehicle type, see these reference pages:

- Muscle car Muscle Car
- Sedan Sedan
- Sport utility vehicle Sport Utility Vehicle
- Small pickup truck Small Pickup Truck
- Hatchback Hatchback
- Box truck Box Truck

#### Color — Color of vehicle

Red (default) | Orange | Yellow | Green | Blue | Black | White | Silver

Select the color of the vehicle.

# Initial position [X, Y, Z], InitialPos (m) — Initial vehicle position

[0, 0, 0] (default) | real-valued 1-by-3 vector

Initial vehicle position along the X-axis, Y-axis, and Z-axis in the inertial Z-down coordinate system, in m.

# Initial rotation [Roll, Pitch, Yaw], InitialRot (rad) — Initial angle of vehicle rotation

```
[0, 0, 0] (default) | real-valued 1-by-3 vector
```

Initial angle of vehicle rotation, in rad. The angle of rotation is defined by the roll, pitch, and yaw of the vehicle.

## Name, ActorName — Name of vehicle

SimulinkVehicle1 (default) | vehicle name

Name of vehicle. By default, when you use the block in your model, the block sets the **Name** parameter to SimulinkVehicleX. The value of X depends on the number of Simulation 3D Vehicle with Ground Following blocks that you have in your model.

## Sample time, SampleTime — Sample time

-1 (default) | positive scalar

Sample time,  $T_s$ . The graphics frame rate is the inverse of the sample time.

If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

## References

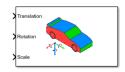
- [1] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [2] Technical Committee. *Road vehicles Vehicle dynamics and road-holding ability Vocabulary*. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle

#### Topics

- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Scene Interrogation in 3D Environment"
- "3D Visualization Engine Requirements"


#### Introduced in R2019b

## Simulation 3D Vehicle

Implement vehicle in 3D environment

Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Vehicle / Components



## Description

The Simulation 3D Vehicle block implements a vehicle with four wheels in the 3D simulation environment.

To use this block, ensure that the Simulation 3D Scene Configuration block is in your model. If you set the **Sample time** parameter of this block to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

The block input uses the vehicle Z-down *right-handed* (RH) *Cartesian* coordinate system defined in SAE J670<sup>1</sup>. The coordinate system is inertial and initially aligned with the vehicle geometric center:

- *X*-axis Along vehicle longitudinal axis, points forward
- Y-axis Along vehicle lateral axis, points to the right
- Z-axis Points downward

**Tip** Verify that the Simulation 3D Vehicle block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Vehicle prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:

- Simulation 3D Scene Configuration 0
- Simulation 3D Vehicle - 1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

#### **Ports**

#### Input

#### **Translation — Vehicle translation**

5-by-3 array

Vehicle and wheel translation, in m. Array dimensions are 5-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) Vehicle translation along the inertial vehicle Z-down X-, Y-, and Z- axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) Wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z- axes, respectively.

The signal contains translation information according to the axle and wheel locations.

$$Translation = \begin{bmatrix} X_{V} & Y_{V} & Z_{V} \\ X_{FL} & Y_{FL} & Z_{FL} \\ X_{FR} & Y_{FR} & Z_{FR} \\ X_{RL} & Y_{RL} & Z_{RL} \\ X_{RR} & Y_{RR} & Z_{RR} \end{bmatrix}$$

| Translation                 | Array Element    | Translation Axis               |
|-----------------------------|------------------|--------------------------------|
| Vehicle, $X_{\nu}$          | Translation(1,1) | Inertial vehicle Z-down X-axis |
| Vehicle, $Y_{\nu}$          | Translation(1,2) | Inertial vehicle Z-down Y-axis |
| Vehicle, $Z_{\nu}$          | Translation(1,3) | Inertial vehicle Z-down Z-axis |
| Front left wheel, $X_{FL}$  | Translation(2,1) | Vehicle Z-down X-axis          |
| Front left wheel, $Y_{FL}$  | Translation(2,2) | Vehicle Z-down Y-axis          |
| Front left wheel, $Z_{FL}$  | Translation(2,3) | Vehicle Z-down Z-axis          |
| Front right wheel, $X_{FR}$ | Translation(3,1) | Vehicle Z-down X-axis          |
| Front right wheel, $Y_{FR}$ | Translation(3,2) | Vehicle Z-down Y-axis          |
| Front right wheel, $Z_{FR}$ | Translation(3,3) | Vehicle Z-down Z-axis          |
| Rear left wheel, $X_{RL}$   | Translation(4,1) | Vehicle Z-down X-axis          |
| Rear left wheel, $Y_{RL}$   | Translation(4,2) | Vehicle Z-down Y-axis          |
| Rear left wheel, $Z_{RL}$   | Translation(4,3) | Vehicle Z-down Z-axis          |
| Rear right wheel, $X_{RR}$  | Translation(5,1) | Vehicle Z-down X-axis          |
| Rear right wheel, $Y_{RR}$  | Translation(5,2) | Vehicle Z-down Y-axis          |
| Rear right wheel, $Z_{RR}$  | Translation(5,3) | Vehicle Z-down Z-axis          |

#### **Rotation** — Vehicle rotation

5-by-3 array

Vehicle and wheel rotation, in rad. Array dimensions are 5-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) Vehicle rotation about the inertial vehicle Z-down X-, Y-, and Z- axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) Wheel rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z- axes, respectively.

The signal contains rotation information according to the axle and wheel locations.

$$Rotation = \begin{bmatrix} Roll_v & Pitch_v & Yaw_v \\ Roll_{FL} & Pitch_{FL} & Yaw_{FL} \\ Roll_{FR} & Pitch_{FR} & Yaw_{FR} \\ Roll_{RL} & Pitch_{RL} & Yaw_{RL} \\ Roll_{RR} & Pitch_{RR} & Yaw_{RR} \end{bmatrix}$$

| Rotation              | Array Element | Rotation Axis                  |
|-----------------------|---------------|--------------------------------|
| Vehicle, $Roll_{\nu}$ | Rotation(1,1) | Inertial vehicle Z-down X-axis |

| Rotation                               | Array Element | Rotation Axis                  |
|----------------------------------------|---------------|--------------------------------|
| Vehicle, Pitch <sub>v</sub>            | Rotation(1,2) | Inertial vehicle Z-down Y-axis |
| Vehicle, Yaw <sub>v</sub>              | Rotation(1,3) | Inertial vehicle Z-down Z-axis |
| Front left wheel, $Roll_{FL}$          | Rotation(2,1) | Vehicle Z-down X-axis          |
| Front left wheel, Pitch <sub>FL</sub>  | Rotation(2,2) | Vehicle Z-down Y-axis          |
| Front left wheel, $Yaw_{FL}$           | Rotation(2,3) | Vehicle Z-down Z-axis          |
| Front right wheel, $Roll_{FR}$         | Rotation(3,1) | Vehicle Z-down X-axis          |
| Front right wheel, Pitch <sub>FR</sub> | Rotation(3,2) | Vehicle Z-down Y-axis          |
| Front right wheel, Yaw <sub>FR</sub>   | Rotation(3,3) | Vehicle Z-down Z-axis          |
| Rear left wheel, $Roll_{RL}$           | Rotation(4,1) | Vehicle Z-down X-axis          |
| Rear left wheel, Pitch <sub>RL</sub>   | Rotation(4,2) | Vehicle Z-down Y-axis          |
| Rear left wheel, Yaw <sub>RL</sub>     | Rotation(4,3) | Vehicle Z-down Z-axis          |
| Rear right wheel, Roll <sub>RR</sub>   | Rotation(5,1) | Vehicle Z-down X-axis          |
| Rear right wheel, Pitch <sub>RR</sub>  | Rotation(5,2) | Vehicle Z-down Y-axis          |
| Rear right wheel, Yaw <sub>RR</sub>    | Rotation(5,3) | Vehicle Z-down Z-axis          |

## Scale — Vehicle scale

5-by-3

Vehicle and wheel scale, dimensionless. Array dimensions are 5-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) Vehicle scale along the inertial vehicle Z-down X-, Y-, and Z- axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) Wheel scale relative to vehicle, along vehicle Z-down X-, Y-, and Z- axes, respectively.

The signal contains scale information according to the axle and wheel locations.

$$Scale = \begin{bmatrix} X_{Vscale} & Y_{Vscale} & Z_{Vscale} \\ X_{FL_{scale}} & Y_{FL_{scale}} & Z_{FL_{scale}} \\ X_{FR_{scale}} & Y_{FR_{scale}} & Z_{FR_{scale}} \\ X_{RL_{scale}} & Y_{RL_{scale}} & Z_{RL_{scale}} \\ X_{RR_{scale}} & Y_{RR_{scale}} & Z_{RR_{scale}} \end{bmatrix}$$

| Scale                              | Array Element | Scale Axis            |
|------------------------------------|---------------|-----------------------|
| Vehicle, $X_{v_{scale}}$           | Scale(1,1)    | Vehicle Z-down X-axis |
| Vehicle, $Y_{\nu_{scale}}$         | Scale(1,2)    | Vehicle Z-down Y-axis |
| Vehicle, $Z_{v_{scale}}$           | Scale(1,3)    | Vehicle Z-down Z-axis |
| Front left wheel, $X_{FL_{scale}}$ | Scale(2,1)    | Vehicle Z-down X-axis |
| Front left wheel, $Y_{FL_{scale}}$ | Scale(2,2)    | Vehicle Z-down Y-axis |
| Front left wheel, $Z_{FL_{scale}}$ | Scale(2,3)    | Vehicle Z-down Z-axis |

| Scale                               | Array Element | Scale Axis            |
|-------------------------------------|---------------|-----------------------|
| Front right wheel, $X_{FR_{scale}}$ | Scale(3,1)    | Vehicle Z-down X-axis |
| Front right wheel, $Y_{FR_{scale}}$ | Scale(3,2)    | Vehicle Z-down Y-axis |
| Front right wheel, $Z_{FR_{scale}}$ | Scale(3,3)    | Vehicle Z-down Z-axis |
| Rear left wheel, $X_{RL_{scale}}$   | Scale(4,1)    | Vehicle Z-down X-axis |
| Rear left wheel, $Y_{RL_{scale}}$   | Scale(4,2)    | Vehicle Z-down Y-axis |
| Rear left wheel, $Z_{RL_{scale}}$   | Scale(4,3)    | Vehicle Z-down Z-axis |
| Rear right wheel, $X_{RR_{scale}}$  | Scale(5,1)    | Vehicle Z-down X-axis |
| Rear right wheel, $Y_{RR_{scale}}$  | Scale(5,2)    | Vehicle Z-down Y-axis |
| Rear right wheel, $Z_{RR_{scale}}$  | Scale(5,3)    | Vehicle Z-down Z-axis |

## **Parameters**

#### **Vehicle Parameters**

#### Type — Type

Muscle car(default)|Sedan|Sport utility vehicle|Small pickup truck|Hatchback|Box truck

If you set **Actor type** to **Passenger vehicle**, use the **Vehicle type** parameter to specify the vehicle. This table provides links to the vehicle dimensions.

| Vehicle type Setting  | Vehicle Dimensions    |
|-----------------------|-----------------------|
| Muscle car            | Muscle Car            |
| Sedan                 | Sedan                 |
| Sport utility vehicle | Sport Utility Vehicle |
| Small pickup truck    | Small Pickup Truck    |
| Hatchback             | Hatchback             |
| Box truck             | Box Truck             |

#### Color — Vehicle

Red (default) | Orange | Yellow | Green | Blue | Black | White | Silver

Specify the vehicle color.

#### Name — Name of vehicle

SimulinkVehicle1 (default) | character vector

Name of vehicle. By default, when you use the block in your model, the block sets the **Name** parameter to SimulinkVehicleX. The value of X depends on the number of Simulation 3D Vehicle with Ground Following and Simulation 3D Vehicle blocks that you have in your model.

### **Initial Values**

# Initial array values to translate vehicle per part, Translation — Vehicle initial translation

zeros(5,3) (default) | 5-by-3 array

Initial vehicle and wheel translation, in m. Array dimensions are 5-by-3.

- Translation(1,1), Translation(1,2), and Translation(1,3) Initial vehicle translation along the inertial vehicle Z-down coordinate system X-, Y-, and Z- axes, respectively.
- Translation(...,1), Translation(...,2), and Translation(...,3) Initial wheel translation relative to vehicle, along the vehicle Z-down X-, Y-, and Z- axes, respectively.

The parameter contains translation information according to the axle and wheel locations.

$$Translation = \begin{bmatrix} X_V & Y_V & Z_V \\ X_{FL} & Y_{FL} & Z_{FL} \\ X_{FR} & Y_{FR} & Z_{FR} \\ X_{RL} & Y_{RL} & Z_{RL} \\ X_{RR} & Y_{RR} & Z_{RR} \end{bmatrix}$$

| Translation                 | Array Element    | Translation Axis               |
|-----------------------------|------------------|--------------------------------|
| Vehicle, $X_{\nu}$          | Translation(1,1) | Inertial vehicle Z-down X-axis |
| Vehicle, $Y_{\nu}$          | Translation(1,2) | Inertial vehicle Z-down Y-axis |
| Vehicle, $Z_{\nu}$          | Translation(1,3) | Inertial vehicle Z-down Z-axis |
| Front left wheel, $X_{FL}$  | Translation(2,1) | Vehicle Z-down X-axis          |
| Front left wheel, $Y_{FL}$  | Translation(2,2) | Vehicle Z-down Y-axis          |
| Front left wheel, $Z_{FL}$  | Translation(2,3) | Vehicle Z-down Z-axis          |
| Front right wheel, $X_{FR}$ | Translation(3,1) | Vehicle Z-down X-axis          |
| Front right wheel, $Y_{FR}$ | Translation(3,2) | Vehicle Z-down Y-axis          |
| Front right wheel, $Z_{FR}$ | Translation(3,3) | Vehicle Z-down Z-axis          |
| Rear left wheel, $X_{RL}$   | Translation(4,1) | Vehicle Z-down X-axis          |
| Rear left wheel, $Y_{RL}$   | Translation(4,2) | Vehicle Z-down Y-axis          |
| Rear left wheel, $Z_{RL}$   | Translation(4,3) | Vehicle Z-down Z-axis          |
| Rear right wheel, $X_{RR}$  | Translation(5,1) | Vehicle Z-down X-axis          |
| Rear right wheel, $Y_{RR}$  | Translation(5,2) | Vehicle Z-down Y-axis          |
| Rear right wheel, $Z_{RR}$  | Translation(5,3) | Vehicle Z-down Z-axis          |

# Initial array values to rotate vehicle per part, Rotation — Vehicle initial rotation

zeros(5,3) (default) | 5-by-3 array

Initial vehicle and wheel rotation, about the vehicle Z-down *X*-, *Y*-, and *Z*- axes.

Array dimensions are 5-by-3.

- Rotation(1,1), Rotation(1,2), and Rotation(1,3) Initial vehicle rotation about the inertial vehicle Z-down coordinate systemX-, Y-, and Z- axes, respectively.
- Rotation(...,1), Rotation(...,2), and Rotation(...,3) Initial wheel rotation relative to vehicle, about the vehicle Z-down X-, Y-, and Z- axes, respectively.

The parameter contains rotation information according to the axle and wheel locations.

$$Rotation = \begin{bmatrix} Roll_v & Pitch_v & Yaw_v \\ Roll_{FL} & Pitch_{FL} & Yaw_{FL} \\ Roll_{FR} & Pitch_{FR} & Yaw_{FR} \\ Roll_{RL} & Pitch_{RL} & Yaw_{RL} \\ Roll_{RR} & Pitch_{RR} & Yaw_{RR} \end{bmatrix}$$

| Rotation                               | Array Element | Rotation Axis                  |
|----------------------------------------|---------------|--------------------------------|
| Vehicle, Roll <sub>v</sub>             | Rotation(1,1) | Inertial vehicle Z-down X-axis |
| Vehicle, Pitch <sub>v</sub>            | Rotation(1,2) | Inertial vehicle Z-down Y-axis |
| Vehicle, Yaw <sub>v</sub>              | Rotation(1,3) | Inertial vehicle Z-down Z-axis |
| Front left wheel, Roll <sub>FL</sub>   | Rotation(2,1) | Vehicle Z-down X-axis          |
| Front left wheel, Pitch <sub>FL</sub>  | Rotation(2,2) | Vehicle Z-down Y-axis          |
| Front left wheel, Yaw <sub>FL</sub>    | Rotation(2,3) | Vehicle Z-down Z-axis          |
| Front right wheel, Roll <sub>FR</sub>  | Rotation(3,1) | Vehicle Z-down X-axis          |
| Front right wheel, Pitch <sub>FR</sub> | Rotation(3,2) | Vehicle Z-down Y-axis          |
| Front right wheel, Yaw <sub>FR</sub>   | Rotation(3,3) | Vehicle Z-down Z-axis          |
| Rear left wheel, $Roll_{RL}$           | Rotation(4,1) | Vehicle Z-down X-axis          |
| Rear left wheel, $Pitch_{RL}$          | Rotation(4,2) | Vehicle Z-down Y-axis          |
| Rear left wheel, Yaw <sub>RL</sub>     | Rotation(4,3) | Vehicle Z-down Z-axis          |
| Rear right wheel, Roll <sub>RR</sub>   | Rotation(5,1) | Vehicle Z-down X-axis          |
| Rear right wheel, Pitch <sub>RR</sub>  | Rotation(5,2) | Vehicle Z-down Y-axis          |
| Rear right wheel, Yaw <sub>RR</sub>    | Rotation(5,3) | Vehicle Z-down Z-axis          |

# Initial array values to scale vehicle per part, Scale — Vehicle initial scale ones(5, 3) (default) | 5-by-3 array

Initial vehicle and wheel scale, dimensionless. Array dimensions are 5-by-3.

- Scale(1,1), Scale(1,2), and Scale(1,3) Initial vehicle scale along the inertial vehicle Z-down X-, Y-, and Z-axes, respectively.
- Scale(...,1), Scale(...,2), and Scale(...,3) Initial wheel scale relative to vehicle, along vehicle Z-down X-, Y-, and Z- axes, respectively.

The parameter contains scale information according to the axle and wheel locations.

$$Scale = \begin{bmatrix} X_{Vscale} & Y_{Vscale} & Z_{Vscale} \\ X_{FLscale} & Y_{FLscale} & Z_{FLscale} \\ X_{FRscale} & Y_{FRscale} & Z_{FRscale} \\ X_{RLscale} & Y_{RLscale} & Z_{RLscale} \\ X_{RRscale} & Y_{RRscale} & Z_{RRscale} \end{bmatrix}$$

| Scale                               | Array Element | Scale Axis            |
|-------------------------------------|---------------|-----------------------|
| Vehicle, $X_{ u_{scale}}$           | Scale(1,1)    | Vehicle Z-down X-axis |
| Vehicle, $Y_{v_{scale}}$            | Scale(1,2)    | Vehicle Z-down Y-axis |
| Vehicle, $Z_{ u_{scale}}$           | Scale(1,3)    | Vehicle Z-down Z-axis |
| Front left wheel, $X_{FL_{scale}}$  | Scale(2,1)    | Vehicle Z-down X-axis |
| Front left wheel, $Y_{FL_{scale}}$  | Scale(2,2)    | Vehicle Z-down Y-axis |
| Front left wheel, $Z_{FL_{scale}}$  | Scale(2,3)    | Vehicle Z-down Z-axis |
| Front right wheel, $X_{FR_{scale}}$ | Scale(3,1)    | Vehicle Z-down X-axis |
| Front right wheel, $Y_{FR_{scale}}$ | Scale(3,2)    | Vehicle Z-down Y-axis |
| Front right wheel, $Z_{FR_{scale}}$ | Scale(3,3)    | Vehicle Z-down Z-axis |
| Rear left wheel, $X_{RL_{scale}}$   | Scale(4,1)    | Vehicle Z-down X-axis |
| Rear left wheel, $Y_{RL_{scale}}$   | Scale(4,2)    | Vehicle Z-down Y-axis |
| Rear left wheel, $Z_{RL_{scale}}$   | Scale(4,3)    | Vehicle Z-down Z-axis |
| Rear right wheel, $X_{RR_{scale}}$  | Scale(5,1)    | Vehicle Z-down X-axis |
| Rear right wheel, $Y_{RR_{scale}}$  | Scale(5,2)    | Vehicle Z-down Y-axis |
| Rear right wheel, $Z_{RR_{scale}}$  | Scale(5,3)    | Vehicle Z-down Z-axis |

## Sample time — Sample time

-1 (default) | scalar

Sample time,  $T_s$ . The graphics frame rate is the inverse of the sample time.

## References

- [1] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [2] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## See Also

Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following

#### **Topics**

- "Coordinate Systems in Vehicle Dynamics Blockset"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"

#### Introduced in R2019b

<sup>&</sup>quot;3D Visualization Engine Requirements"

# Simulation 3D Message Get

Retrieve data from Unreal Engine visualization environment

Library: Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D /

Sim3D Core



## **Description**

The Simulation 3D Message Get block retrieves data from the Unreal Engine 3D visualization environment. In your model, ensure that the Simulation 3D Scene Configuration block is at the same level as the Simulation 3D Message Get block.

**Tip** Verify that the Simulation 3D Scene Configuration block executes before the Simulation 3D Message Get block. That way, the Unreal Engine 3D visualization environment prepares the data before the Simulation 3D Message Get block receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:


- Simulation 3D Scene Configuration 0
- Simulation 3D Message Get − 1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

### **Configure Scenes to Send Data**

To use the block, you must configure scenes in the Unreal Engine environment to send data to the Simulink model:

- **1** Install the "Support Package for Customizing Scenes".
- 2 In the Unreal Editor, follow these general workflows to customize scenes.



| Unreal Engine<br>User | Workflow                                                                                                                                             |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| C++ class             | Create a new actor class for the mesh or asset that you want the Simulink model to interact with. Derive it from ASim3dActor.                        |
|                       | <b>b</b> In the new actor class:                                                                                                                     |
|                       | <ul> <li>Declare a pointer to the signal name as a class field.</li> <li>Get the class tag.</li> </ul>                                               |
|                       | <ul> <li>Create a signal writer and assign the pointer in the method<br/>Sim3dSetup.</li> </ul>                                                      |
|                       | <ul> <li>In the method Sim3dStep, invoke the<br/>WriteSimulation3DMessage{DataType} function to write<br/>the data to the Simulink model.</li> </ul> |
|                       | <ul> <li>Delete the signal writer in the method Sim3dRelease of the actor.</li> </ul>                                                                |

For more information about the Unreal Editor, see the Unreal Engine 4 Documentation.

### **Ports**

## Output

## ReadMsg — Data retrieved from scene

scalar|array

Data retrieved from the 3D visualization environment scene data. In the Unreal Engine environment, you can use the Sim3DSet class to configure scene actors to send data to the Simulink model.

For example, in the Unreal Editor, the Double Lane Change scene has a Sim3DSetBoolean actor with tag name NumOfConesHit. Use it to retrieve the number of cones the vehicle hits during a double-lane change maneuver.

This table provides the Double Lane Change scene cone name that corresponds to the ReadMsg array element.

| Simulation 3D<br>Message Get Block<br>ReadMsg Value | Unreal Editor Cone<br>Name | Simulation 3D<br>Message Get Block<br>Array Element | Unreal Editor Cone<br>Name |
|-----------------------------------------------------|----------------------------|-----------------------------------------------------|----------------------------|
| ReadMsg(1,1)                                        | SM_Cone5                   | ReadMsg(2,1)                                        | SM_Cone10                  |
| ReadMsg(1,2)                                        | SM_Cone4                   | ReadMsg(2,2)                                        | SM_Cone09                  |
| ReadMsg(1,3)                                        | SM_Cone3                   | ReadMsg(2,3)                                        | SM_Cone08                  |
| ReadMsg(1,4)                                        | SM_Cone2                   | ReadMsg(2,4)                                        | SM_Cone07                  |
| ReadMsg(1,5)                                        | SM_Cone01                  | ReadMsg(2,5)                                        | SM_Cone06                  |
| ReadMsg(1,6)                                        | SM_Cone15                  | ReadMsg(2,6)                                        | SM_Cone20                  |
| ReadMsg(1,7)                                        | SM_Cone14                  | ReadMsg(2,7)                                        | SM_Cone19                  |
| ReadMsg(1,8)                                        | SM_Cone13                  | ReadMsg(2,8)                                        | SM_Cone18                  |

| Simulation 3D<br>Message Get Block<br>ReadMsg Value | Unreal Editor Cone<br>Name | Simulation 3D<br>Message Get Block<br>Array Element | Unreal Editor Cone<br>Name |
|-----------------------------------------------------|----------------------------|-----------------------------------------------------|----------------------------|
| ReadMsg(1,9)                                        | SM_Cone12                  | ReadMsg(2,9)                                        | SM_Cone17                  |
| ReadMsg(1,10)                                       | SM_Cone11                  | ReadMsg(2,10)                                       | SM_Cone16                  |
| ReadMsg(1,11)                                       | SM_Cone25                  | ReadMsg(2,11)                                       | SM_Cone30                  |
| ReadMsg(1,12)                                       | SM_Cone24                  | ReadMsg(2,12)                                       | SM_Cone29                  |
| ReadMsg(1,13)                                       | SM_Cone23                  | ReadMsg(2,13)                                       | SM_Cone28                  |
| ReadMsg(1,14)                                       | SM_Cone22                  | ReadMsg(2,14)                                       | SM_Cone27                  |
| ReadMsg(1,15)                                       | SM_Cone21                  | ReadMsg(2,15)                                       | SM_Cone26                  |

#### **Parameters**

## Signal name, SigName — Message signal name

mySignal (default)

Specifies the signal name in the 3D visualization environment. In the Unreal Engine environment, use the Sim3DSet actor class 'Tags' property located in the 'Details' pane.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene, set this parameter to NumOfConesHit. In the double-lane change scene, the Sim3DSet actor class 'Tags' property is set to NumOfConesHit.

#### Data type, DataType — Message data type

uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

3D visualization environment signal data type. In the Unreal Engine environment, instantiate the Sim3DSet actor class for the data type that you want to send to the Simulink model.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene, set this parameter to boolean. In the double-lane change scene, the Sim3DSetBoolean actor class is instantiated to send the cone hit or miss boolean data.

## Message size, MsgSize — Message dimension

[1 1] (default) | scalar | array

3D visualization environment signal dimension. In the Unreal Engine environment blueprint, set the input to the node of the Sim3DSet actor class to specify the dimensions of data that you want to send to the Simulink model.

For example, you can retrieve data from the double-lane change scene that indicates if cones are hit during a double-lane change maneuver. To retrieve cone hit data from the double-lane change scene, set this parameter to [2 15]. In the double-lane change scene, the input to the blueprint node for the Sim3DSetBoolean actor class is set to 30, the number of cones in the scene.

## Sample time — Sample time

0.02 (default) | -1 | scalar

Sample time, in s. The graphics frame rate is the inverse of the sample time. If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

## **See Also**

**Double Lane Change** | Simulation 3D Message Set | Simulation 3D Scene Configuration

## **Topics**

- "Send and Receive Double-Lane Change Scene Data"
- "Support Package for Customizing Scenes"
- "3D Visualization Engine Requirements"

## **External Websites**

Unreal Engine

Introduced in R2019b

# Simulation 3D Message Set

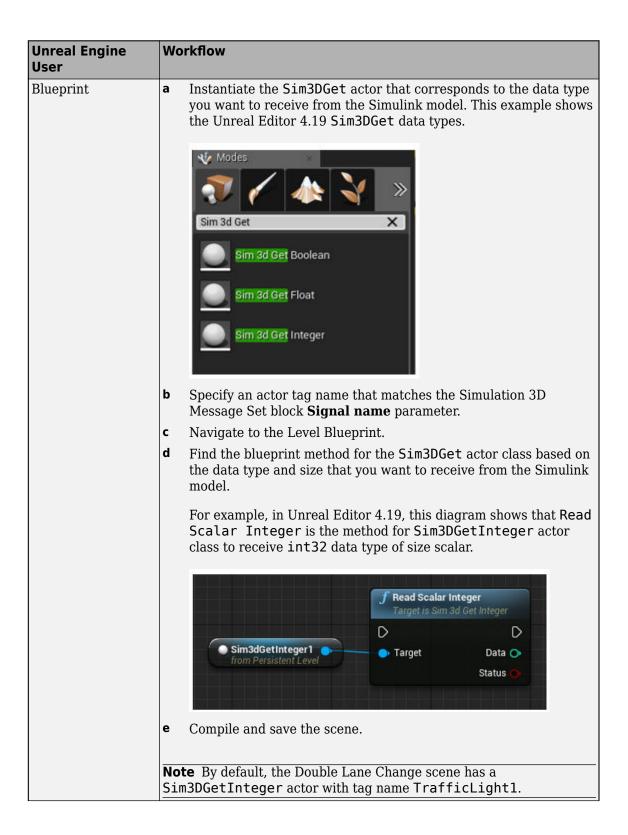
Send data to Unreal Engine visualization environment **Library:** Vehicle Dynamics Blockset / Vehicle Scenarios / Sim3D / Sim3D Core



## **Description**

The Simulation 3D Message Set block sends data to the Unreal Engine 3D visualization environment. In your model, ensure that the Simulation 3D Scene Configuration block is at the same level as the Simulation 3D Message Set block.

**Tip** Verify that the Simulation 3D Message Set block executes before the Simulation 3D Scene Configuration block. That way, Simulation 3D Message Set prepares the signal data before the Unreal Engine 3D visualization environment receives it. To check the block execution order, right-click the blocks and select **Properties**. On the **General** tab, confirm these **Priority** settings:


- Simulation 3D Scene Configuration 0
- Simulation 3D Message Set -1

For more information about execution order, see "Control and Display Execution Order" (Simulink).

## **Configure Scenes to Receive Data**

To use the block, you must configure scenes in the Unreal Engine environment to receive data from the Simulink model:

- 1 Install the "Support Package for Customizing Scenes".
- 2 In the Unreal Editor, follow these general workflows to customize scenes.



| Unreal Engine<br>User | Wo | rkflow                                                                                                                                             |
|-----------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| C++ class             | а  | Create a new actor class for the mesh or asset that you want the Simulink model to interact with. Derive it from ASim3dActor.                      |
|                       | b  | In the new actor class:                                                                                                                            |
|                       |    | <ul><li>Declare a pointer to the signal name as a class field.</li><li>Get the class tag.</li></ul>                                                |
|                       |    | <ul> <li>Create a signal reader and assign the pointer in the method<br/>Sim3dSetup.</li> </ul>                                                    |
|                       |    | <ul> <li>In the method Sim3dStep, invoke the<br/>ReadSimulation3DMessage{DataType} function to read<br/>the data from a Simulink model.</li> </ul> |
|                       |    | <ul> <li>Delete the signal reader in the method Sim3dRelease of the actor.</li> </ul>                                                              |

For more information about the Unreal Editor, see the Unreal Engine 4 Documentation.

#### **Ports**

#### Input

### WriteMsg — Data sent to scene

scalar | array

Data sent to the 3D visualization environment scene. In the Unreal Engine environment, you can configure the Sim3DGet class to receive the data from the Simulink model.

For example, in the Unreal Editor, the Double Lane Change scene has a Sim3DGetInteger integer actor with tag name TrafficLight1. The integer actor reads int32 data type from the Simulink model. You can use it to control the traffic signal light color.

This table provides the scene traffic signal light color that corresponds to the WriteMsg value in the Double Lane Change scene.

| Simulation 3D Message Set Block WriteMsg<br>Value | TrafficLight1 Color |
|---------------------------------------------------|---------------------|
| 0                                                 | Red                 |
| 1                                                 | Yellow              |
| 2                                                 | Green               |

### **Parameters**

### Signal name, SigName — Message signal name

mySignal (default)

Specifies the signal name in the 3D visualization environment. In the Unreal Engine environment, use the Sim3Get actor class 'Tags' property located in the 'Details' pane.

For example, you can send data to the double lane change scene that changes the traffic signal light color to red, yellow, or green. To send data to the traffic signal light, set this parameter to TrafficLight1. In the double lane change scene, the 'Tags' property value for Sim3dGetInteger actor class is set to TrafficLight1.

#### Sample time — Sample time

0.02 (default) | -1 | scalar

Sample time, in s. The graphics frame rate is the inverse of the sample time. If you set the sample time to -1, the block uses the sample time specified in the Simulation 3D Scene Configuration block.

### See Also

Double Lane Change | Simulation 3D Message Get | Simulation 3D Scene Configuration

#### **Topics**

"Send and Receive Double-Lane Change Scene Data"

"Support Package for Customizing Scenes"

"3D Visualization Engine Requirements"

#### Introduced in R2019b

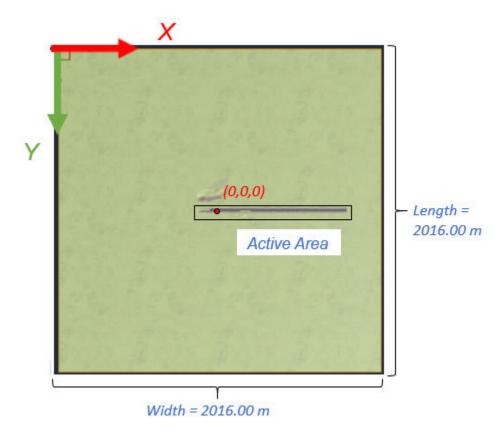
# **Scenes**

## **Straight Road**

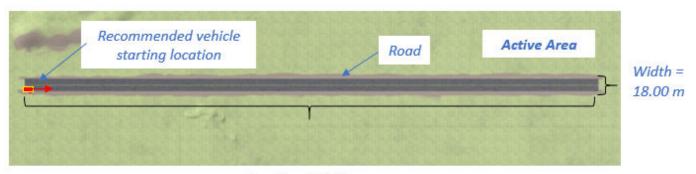
Straight road 3D environment

### **Description**

The **Straight Road** scene is a 3D environment of a straight four-lane divided highway. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:


- **1** Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to **Straight road**.

### **Scene Layout**

The scene uses the world coordinate system to locate objects.



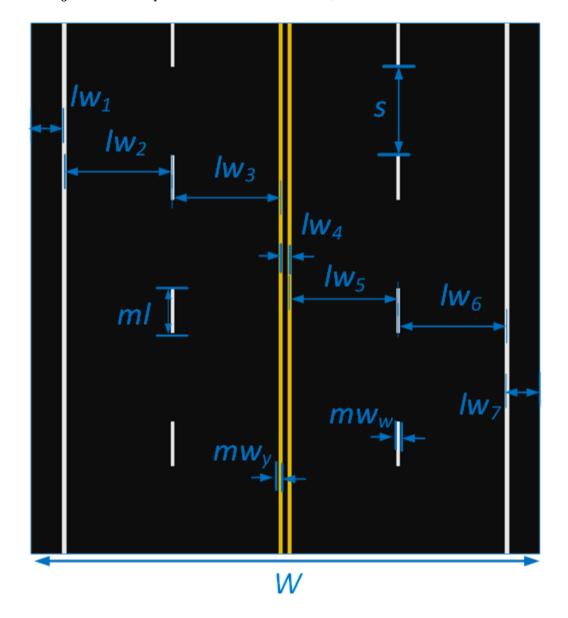
The active area of the scene contains the road.



Length = 913.83 m

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

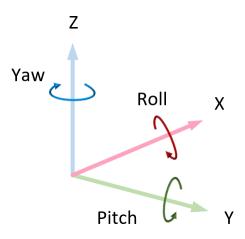
| Locations                 | X       | Υ     | Z   |
|---------------------------|---------|-------|-----|
|                           | (m)     | (m)   | (m) |
| Scene — Top left          | -1080   | -1080 | 0   |
| Scene — Bottom right      | 1080    | 1080  | 0   |
| Active area — Bottom left | -122.19 | 6.00  | 0   |


### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |     |     |       |       |       |
|-------------------------------|-----|-----|-------|-------|-------|
| X                             | Υ   | Z   | Roll  | Pitch | Yaw   |
| (m)                           | (m) | (m) | (deg) | (deg) | (deg) |
| -118                          |     |     |       |       |       |

### **Lane Dimensions**


This figure and table provides the lane dimensions, in m.



| Variable        | Dimension (m) |
|-----------------|---------------|
| lw <sub>1</sub> | 1.2           |
| $lw_2$          | 3.84          |
| $lw_3$          | 3.8           |
| $lw_4$          | 0.36          |
| $lw_5$          | 3.8           |
| $lw_6$          | 3.8           |
| $lw_7$          | 1.2           |
| ml              | 1.5           |
| S               | 3.0           |
| $mw_w$          | 0.13          |
| $mw_y$          | 0.14          |
| W               | 18.0          |

### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                        |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about Z-axis                           |

### **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named HwStrght.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

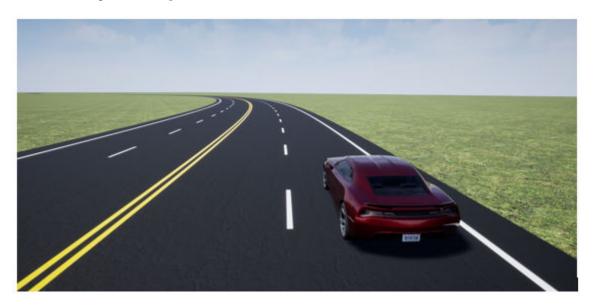
### See Also

Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |
Simulation 3D Scene Configuration | US City Block | US Highway | Virtual Mcity

#### **Topics**

"3D Visualization Engine Requirements"

"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

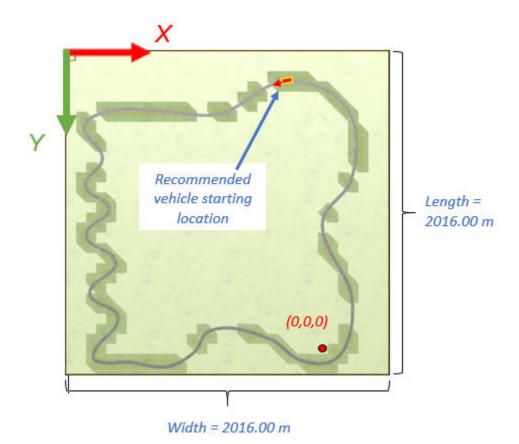

"Support Package for Customizing Scenes"

## **Curved Road**

Curved road 3D environment

### **Description**

The **Curved Road** scene is a 3D environment of a curved highway loop. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:

- 1 Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to Curved road.

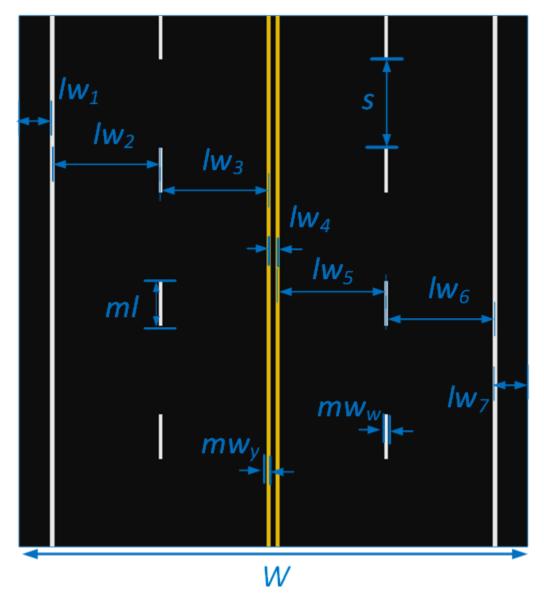
### **Scene Layout**

The scene uses the world coordinate system to locate objects.



This table provides the scene corner locations in the world coordinate system. Dimensions are in m.

| Location            | X        | Υ        | Z   |
|---------------------|----------|----------|-----|
|                     | (m)      | (m)      | (m) |
| Scene — Bottom left | -1587.75 | 195.39   | 0   |
| Scene — Top right   | 428.26   | -1820.60 | 0   |

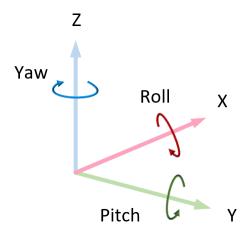

### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |          |     |       |       |       |
|-------------------------------|----------|-----|-------|-------|-------|
| X                             | Υ        | Z   | Roll  | Pitch | Yaw   |
| (m)                           | (m)      | (m) | (deg) | (deg) | (deg) |
| 0.2                           | -1605.00 | 0   | 0     | Θ     | –156° |

#### **Lane Dimensions**

This figure and table provides the lane dimensions, in m.




| Variable | Dimension (m) |
|----------|---------------|
| $lw_1$   | 1.2           |
| $lw_2$   | 3.82          |
| $lw_3$   | 3.82          |
| $lw_4$   | 0.3           |
| $lw_5$   | 3.83          |
| $lw_6$   | 3.83          |
| $lw_7$   | 1.2           |
| ml       | 1.5           |
| S        | 3.0           |

| Variable | Dimension (m) |
|----------|---------------|
| $mw_w$   | 0.13          |
| $mw_y$   | 0.15          |
| W        | 18.0          |

#### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                        |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about <i>Z</i> -axis                   |

### **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named HwCurve.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

### See Also

**Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |** Simulation 3D Scene Configuration | **Straight Road | US City Block | US Highway | Virtual Mcity** 

### **Topics**

"3D Visualization Engine Requirements"

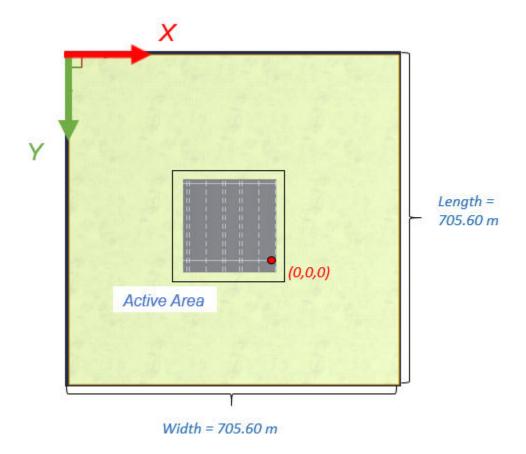
"Vehicle Dynamics Blockset Communication with 3D Visualization Software" "Support Package for Customizing Scenes"  $\,$ 

## **Parking Lot**

Parking lot 3D environment

### **Description**

The **Parking Lot** scene is a 3D environment of a parking lot. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:

- 1 Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to Parking lot.

### **Scene Layout**

The scene uses the world coordinate system to locate objects.

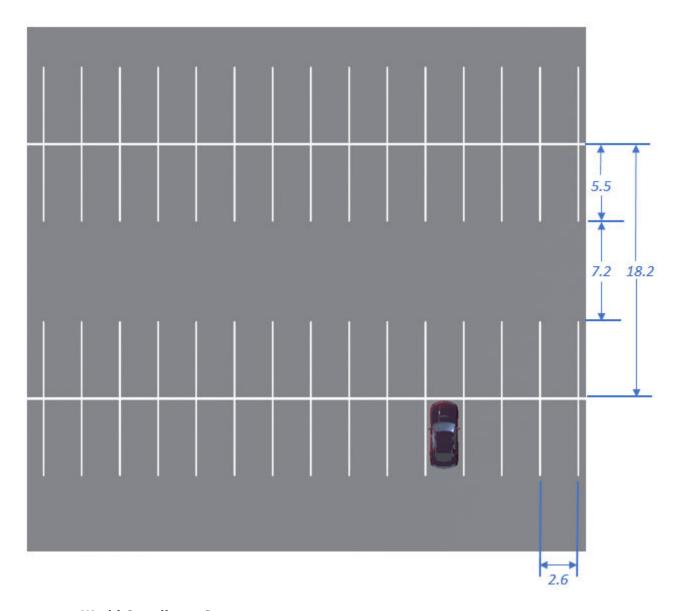


The active area of the scene contains the parking lot.



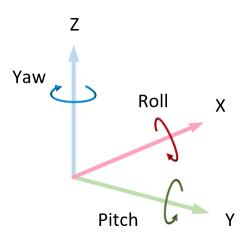
This table provides the scene and active area corner locations in the world coordinate system. Dimensions are in m.

| Locations                 | X       | Υ       | Z   |
|---------------------------|---------|---------|-----|
|                           | (m)     | (m)     | (m) |
| Scene — Bottom left       | -437.32 | 262.79  | 0   |
| Scene — Top right         | 268.28  | -442.81 | 0   |
| Active area — Bottom left | -193.86 | 23.43   | 0   |


### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |        |       |       |       |       |  |
|-------------------------------|--------|-------|-------|-------|-------|--|
| X                             | Y      | Z     | Roll  | Pitch | Yaw   |  |
| (m)                           | (m)    | (m)   | (deg) | (deg) | (deg) |  |
|                               | \····/ | ····/ | (ueg, | (ueg, | (acg, |  |


### **Parking Space Dimensions**

This figure shows the parking space dimensions, in m.



### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                        |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about Z-axis                           |

### **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named SimpleLot.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

### See Also

Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Simulation 3D Scene Configuration | Straight Road | US City Block | US Highway | Virtual Mcity

#### **Topics**

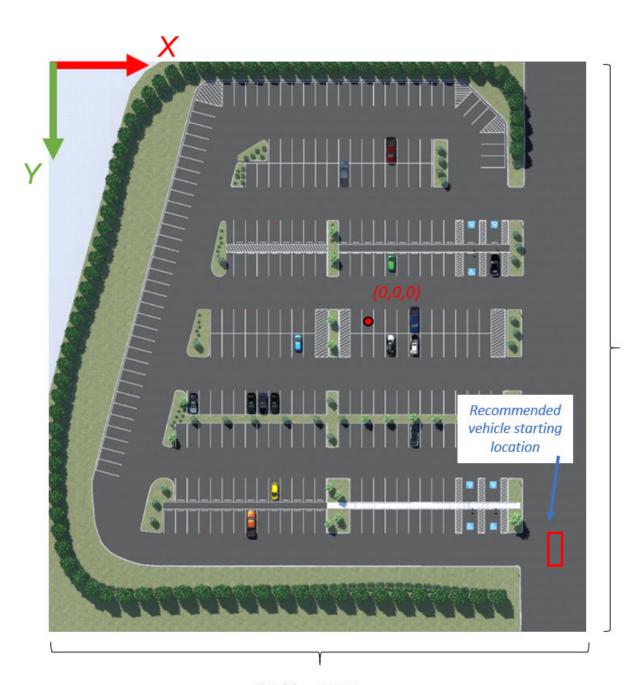
- "3D Visualization Engine Requirements"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Support Package for Customizing Scenes"

## **Large Parking Lot**

Large parking lot 3D environment

### **Description**

The **Large Parking Lot** scene is a 3D environment of a large parking lot that contains cones, curbs, traffic signs, and parked vehicles. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:

- 1 Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default Scenes**.
- 3 Set the enabled **Scene name** parameter to Large parking lot.

### **Scene Layout**

The scene uses the world coordinate system to locate objects.



Length = 151.2 m

Width = 151.2 m

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m and deg.

| Locations            | X     | Y     | Z   |
|----------------------|-------|-------|-----|
|                      | (m)   | (m)   | (m) |
| Scene — Top left     | -78.6 | -73.5 | 0   |
| Scene — Bottom right | 72.6  | 77.7  | 0   |

### **Recommended Vehicle Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |      |     |       |       |       |  |
|-------------------------------|------|-----|-------|-------|-------|--|
| X                             | Υ    | Z   | Roll  | Pitch | Yaw   |  |
| (m)                           | (m)  | (m) | (deg) | (deg) | (deg) |  |
| 45.0                          | 54.7 | 0   | 0     | 0     | - 90  |  |

### **Parking Space Dimensions**

This figure shows the parking space dimensions, in m.



### **Other Vehicles**

This table provides the vehicle tag names and initial locations for other vehicles in the scene, in the world coordinate system. Dimensions are in m and deg.

| Object  | Unreal                | Locations |        |      |       |       |       |
|---------|-----------------------|-----------|--------|------|-------|-------|-------|
|         | Engine<br>Editor Name | X         | Y      | Z    | Roll  | Pitch | Yaw   |
|         |                       | (m)       | (m)    | (m)  | (deg) | (deg) | (deg) |
| Vehicle | SM_Hatchba<br>ck      | 5.68      | -14.25 | 0.05 | 0     | 0     | - 90  |
|         | SM_PickupT<br>ruck2   | 5.59      | -40.40 | 0.05 | 0     | 0     | 90    |
|         | SM_PickupT<br>ruck    | -5.35     | -34.87 | 0.05 | 0     | 0     | - 90  |
|         | SM_MuscleC<br>ar      | 29.70     | -13.80 | 0.05 | 0     | 0     | - 90  |
|         | SM_PickupT<br>ruck3   | 11.10     | -0.9   | 0.05 | 0     | 0     | 90    |
|         | SM_SUVCar             | 11.10     | 4.80   | 0.05 | 0     | 0     | - 90  |
|         | SM_SedanCa<br>r4      | 5.60      | 4.80   | 0.05 | 0     | 0     | - 90  |
|         | SM_Hatchba            | -16.10    | 4.40   | 0.05 | 0     | 0     | - 90  |
|         | SM_SedanCa<br>r       | -21.50    | 18.40  | 0.05 | 0     | 0     | 90    |
|         | SM_SUVCar2            | -24.20    | 18.40  | 0.05 | 0     | 0     | 90    |
|         | SM_SedanCa<br>r2      | -26.90    | 18.40  | 0.05 | 0     | 0     | 90    |
|         | SM_SedanCa<br>r3      | -40.40    | 18.40  | 0.05 | 0     | 0     | 90    |
|         | SM_MuscleC<br>ar2     | 11.10     | 25.90  | 0.05 | 0     | 0     | -90   |
|         | SM_Hatchba<br>ck3     | -21.50    | 38.90  | 0.05 | 0     | 0     | 90    |
|         | SM_PickupT<br>ruck4   | -27.00    | 46.40  | 0.05 | 0     | Θ     | -90   |

### Cones

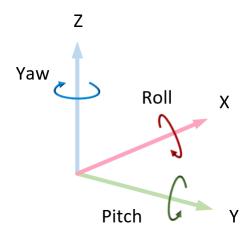


This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

| Object | Unreal           | Location |        |      |       |       |       |  |
|--------|------------------|----------|--------|------|-------|-------|-------|--|
|        | Engine<br>Editor | X        | Y      | Z    | Roll  | Pitch | Yaw   |  |
|        | Name             | (m)      | (m)    | (m)  | (deg) | (deg) | (deg) |  |
| Cone   | SM_Cone1         | -21.43   | -23.41 | 0.05 | 0     | 0     | 0     |  |
|        | SM_Cone2         | -24.20   | 36.19  | 0.05 | 0     | 0     | 0     |  |
|        | SM_Cone3         | -37.74   | 48.02  | 0.05 | 0     | 0     | 0     |  |
|        | SM_Cone4         | -26.97   | -2.68  | 0.05 | 0     | 0     | 0     |  |
|        | SM_Cone5         | 13.95    | 28.21  | 0.05 | 0     | 0     | 0     |  |

### **Traffic Signs**




This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

| Object  | Unreal Engine Editor   | Location | Location |      |       |       |       |  |
|---------|------------------------|----------|----------|------|-------|-------|-------|--|
|         | Name                   | X        | Y        | Z    | Roll  | Pitch | Yaw   |  |
|         |                        | (m)      | (m)      | (m)  | (deg) | (deg) | (deg) |  |
| Traffic | SM_StopSign1           | 34.77    | 57.38    | 0.11 | 0     | 0     | 0     |  |
| signs   | SM_StopSign2           | 35.29    | 36.38    | 0.11 | 0     | 0     | 0     |  |
|         | SM_StopSign3           | 35.28    | 15.955   | 0.11 | 0     | 0     | 180   |  |
|         | SM_StopSign4           | 35.35    | -2.92    | 0.11 | 0     | 0     | 180   |  |
|         | SM_StopSign5           | 35.69    | -23.64   | 0.11 | 0     | 0     | 0     |  |
|         | SM_DisabilitySign      | 23.81    | 42.71    | 0.11 | 0     | 0     | 0     |  |
|         | SM_DisabilitySign 2    | 29.21    | 42.71    | 0.11 | 0     | Θ     | 0     |  |
|         | SM_DisabilitySign<br>3 | 23.81    | 41.71    | 0.11 | Θ     | 0     | 180   |  |

| Object | <b>Unreal Engine Editor</b> | Location | ation  |      |       |       |       |  |
|--------|-----------------------------|----------|--------|------|-------|-------|-------|--|
|        | Name                        | X        | Y      | Z    | Roll  | Pitch | Yaw   |  |
|        |                             | (m)      | (m)    | (m)  | (deg) | (deg) | (deg) |  |
|        | SM_DisabilitySign           | 29.21    | 41.71  | 0.11 | 0     | Θ     | 180   |  |
|        | SM_DisabilitySign 5         | 24.25    | -17.01 | 0.11 | Θ     | Θ     | Θ     |  |
|        | SM_DisabilitySign 6         | 29.69    | -17.01 | 0.11 | Θ     | Θ     | Θ     |  |
|        | SM_DisabilitySign<br>7      | 25.25    | -18.31 | 0.11 | Θ     | Θ     | 180   |  |
|        | SM_DisabilitySign<br>8      | 29.69    | -18.31 | 0.11 | 0     | 0     | 180   |  |

### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about <i>Y</i> -axis                |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about Z-axis                           |

### **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named LargeParkingLot.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

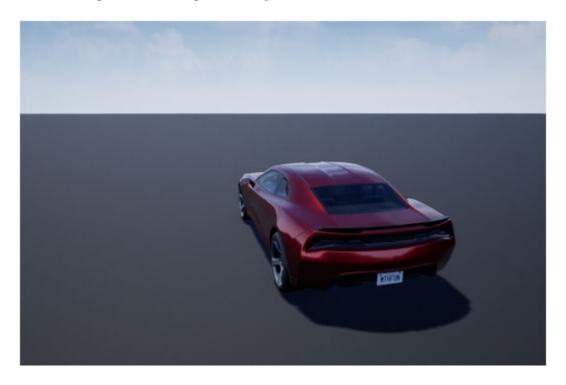
### See Also

Curved Road | Double Lane Change | Open Surface | Parking Lot | Simulation 3D Scene Configuration | Straight Road | US City Block | US Highway | Virtual Mcity

#### **Topics**

"3D Visualization Engine Requirements"

"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

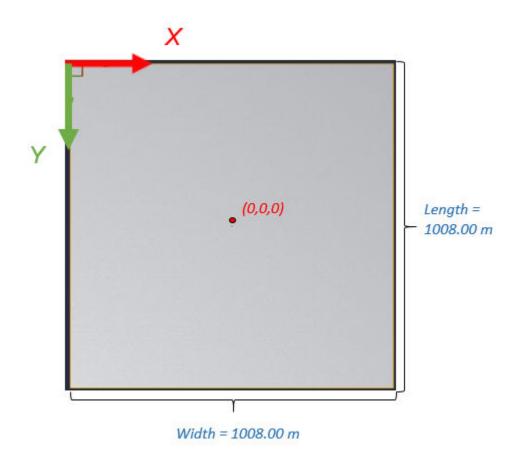

"Support Package for Customizing Scenes"

## **Open Surface**

Open surface 3D environment

### **Description**

The **Open Surface** scene contains a 3D environment of an open, black road surface. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:

- 1 Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to **Open** surface.

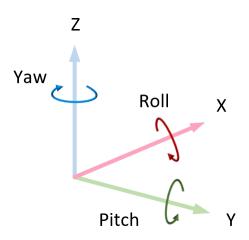
### **Scene Layout**

The scene uses the world coordinate system to locate objects.



This table provides the scene corner locations in the world coordinate system. Dimensions are in m.

| Location            | X       | Υ       | Z |
|---------------------|---------|---------|---|
| Scene — Bottom left | -504.00 | 504.00  | 0 |
| Scene — Top right   | 504.00  | -504.00 | 0 |


### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |     |     |       |       |       |  |
|-------------------------------|-----|-----|-------|-------|-------|--|
| X                             | Υ   | Z   | Roll  | Pitch | Yaw   |  |
|                               |     |     |       |       |       |  |
| (m)                           | (m) | (m) | (deg) | (deg) | (deg) |  |

### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about <i>Y</i> -axis                |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about $Z$ -axis                        |

### **Tips**

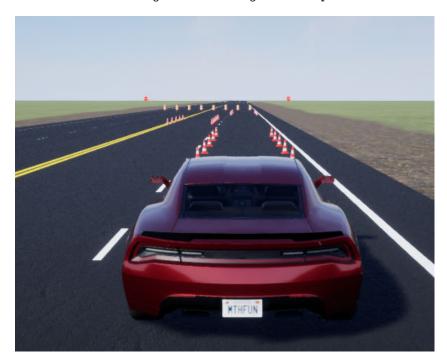
• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named BlackLake.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

### See Also

**Curved Road | Double Lane Change | Large Parking Lot | Parking Lot | Simulation 3D Scene Configuration | Straight Road | US City Block | US Highway | Virtual Mcity** 

#### **Topics**

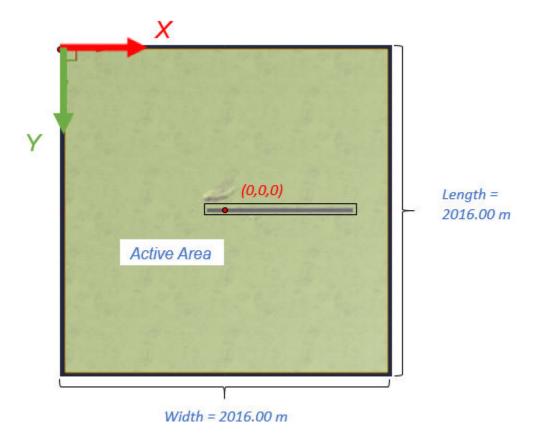

- "3D Visualization Engine Requirements"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Support Package for Customizing Scenes"

## **Double Lane Change**

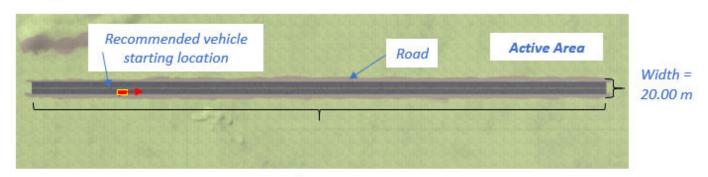
Double lane change 3D environment

### **Description**

The **Double Lane Change** scene is a 3D environment of a straight road containing cones, traffic signs, and barrels. The cones are set up for a vehicle to perform a double lane change maneuver. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:


- **1** Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to **Double** lane change.

#### **Scene Layout**

The scene uses the world coordinate system to locate objects.



The active area of the scene contains the road.



Length = 913.85 m

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

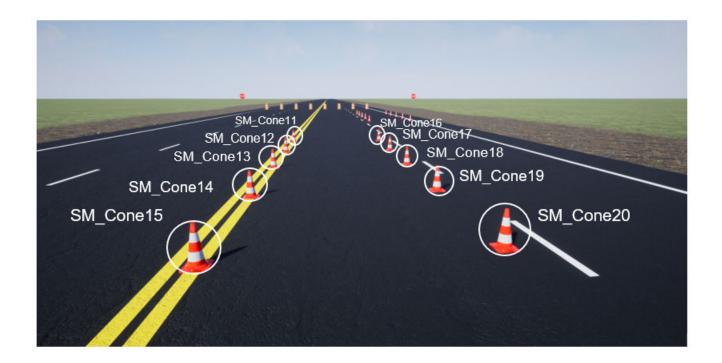
| Locations                 | X       | Y     | Z |
|---------------------------|---------|-------|---|
| Scene — Top left          | - 1008  | -1008 | 0 |
| Scene — Bottom right      | 1008    | 1008  | 0 |
| Active area — Bottom left | -122.19 | 6.99  | 0 |

### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |       |     |       |       |       |
|-------------------------------|-------|-----|-------|-------|-------|
| X                             | Υ     | Z   | Roll  | Pitch | Yaw   |
| (m)                           | (m)   | (m) | (deg) | (deg) | (deg) |
| 0                             | 3.125 | 0   | 0     | 0     | 0     |

#### Cones




This table provides the object names and locations in the world coordinate system. Dimensions are in m.

| Object | Unreal         | Location |       |      |       |       |       |  |
|--------|----------------|----------|-------|------|-------|-------|-------|--|
|        | Editor<br>Name | X        | Y     | Z    | Roll  | Pitch | Yaw   |  |
|        |                | (m)      | (m)   | (m)  | (deg) | (deg) | (deg) |  |
| Cone   | SM_Cone01      | 187.90   | 1.70  | .009 | 0     | 0     | Θ     |  |
|        | SM_Cone02      | 184.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone03      | 181.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone04      | 178.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone05      | 175.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone06      | 187.90   | 4.73  | .009 |       |       |       |  |
|        | SM_Cone07      | 184.90   | 4.73  | .009 |       |       |       |  |
|        | SM_Cone08      | 181.90   | 4.73  | .009 |       |       |       |  |
|        | SM_Cone09      | 178.90   | 4.73  | .009 |       |       |       |  |
|        | SM_Cone10      | 175.90   | 4.73  | .009 |       |       |       |  |
|        | SM_Cone11      | 212.40   | -2.86 | .009 |       |       |       |  |
|        | SM_Cone12      | 209.65   | -2.86 | .009 |       |       |       |  |
|        | SM_Cone13      | 206.90   | -2.86 | .009 |       |       |       |  |
|        | SM_Cone14      | 204.15   | -2.86 | .009 |       |       |       |  |

| Object | Unreal         | Location |       |      |       |       |       |  |
|--------|----------------|----------|-------|------|-------|-------|-------|--|
|        | Editor<br>Name | X        | Y     | Z    | Roll  | Pitch | Yaw   |  |
|        |                | (m)      | (m)   | (m)  | (deg) | (deg) | (deg) |  |
|        | SM_Cone15      | 201.40   | -2.86 | .009 |       |       |       |  |
|        | SM_Cone16      | 212.40   | 0.69  | .009 |       |       |       |  |
|        | SM_Cone17      | 209.65   | 0.69  | .009 |       |       |       |  |
|        | SM_Cone18      | 206.90   | 0.69  | .009 |       |       |       |  |
|        | SM_Cone19      | 204.15   | 0.69  | .009 |       |       |       |  |
|        | SM_Cone20      | 201.40   | 0.69  | .009 |       |       |       |  |
|        | SM_Cone21      | 236.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone22      | 236.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone23      | 230.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone24      | 227.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone25      | 224.90   | 1.70  | .009 |       |       |       |  |
|        | SM_Cone26      | 236.90   | 4.95  | .009 |       |       |       |  |
|        | SM_Cone27      | 233.90   | 4.95  | .009 |       |       |       |  |
|        | SM_Cone28      | 230.90   | 4.95  | .009 |       |       |       |  |
|        | SM_Cone29      | 227.90   | 4.95  | .009 |       |       |       |  |
|        | SM_Cone30      | 224.90   | 4.95  | .009 |       |       |       |  |







In the Unreal Editor, the scene has a Sim3DSetBoolean actor with signal name NumOfConesHit. You can use it with the Simulation 3D Message Get block to retrieve how many cones the vehicle hits during a double-lane change maneuver.

### **Traffic Signs**



This table provides the object names and locations in the world coordinate system. Dimensions are in m.

| Object          | Unreal           | Location | cation |     |            |       |       |  |
|-----------------|------------------|----------|--------|-----|------------|-------|-------|--|
|                 | Editor<br>Name   | X        | Y      | Z   | Roll Pitch | Pitch | Yaw   |  |
|                 |                  | (m)      | (m)    | (m) | (deg)      | (deg) | (deg) |  |
| Traffic<br>sign | SM_StopSig<br>n  | 248.80   | -13.10 | Θ   | 0          | 0     | 0     |  |
|                 | SM_StopSig<br>n2 | 248.80   | 10.90  | Θ   |            |       |       |  |

# **Traffic Signal Light**

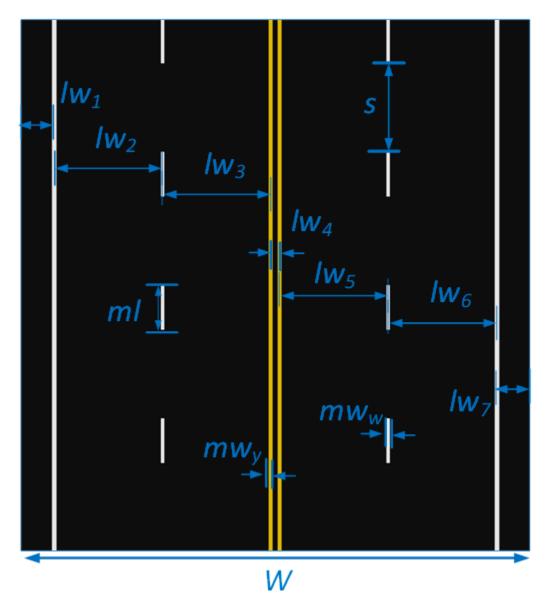


This table provides the object name and location in the world coordinate system. Dimensions are in m.

| •            | Unreal                           | Location |      |     |       |          |         |
|--------------|----------------------------------|----------|------|-----|-------|----------|---------|
|              | Editor<br>Name                   | X        | Υ    | Z   | Roll  | Pitch Ya | Yaw     |
|              |                                  | (m)      | (m)  | (m) | (deg) | (deg)    | (deg)   |
| signal light | SM_Traffic<br>LightsSide<br>Only |          | 6.00 | Θ   | Θ     | 0        | 180.00° |

In the Unreal Editor, the Double Lane Change scene has a Sim3DGetInteger actor with signal name TrafficLight1. You can use it with the Simulation 3D Message Set block to control the traffic signal light color.

#### **Barrels**

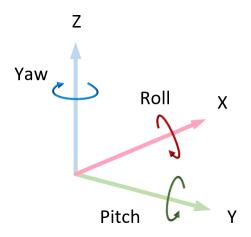



This table provides the object names and locations in the world coordinate system. Dimensions are in m.

| Object  | Unreal                | Location |        |     |       |       |         |
|---------|-----------------------|----------|--------|-----|-------|-------|---------|
|         | <b>Editor Name</b>    | X        | Y      | Z   | Roll  | Pitch | Yaw     |
|         |                       | (m)      | (m)    | (m) | (deg) | (deg) | (deg)   |
| Barrels | SM_Traffic<br>Barrel1 | 252.70   | 4.50   | 0   | 0     | 0     | 180.00° |
|         | SM_Traffic<br>Barrel2 | 252.70   | 2.35   | 0   | 0     | 0     | 0       |
|         | SM_Traffic<br>Barrel3 | 252.70   | .20    | 0   | 0     | 0     | 0       |
|         | SM_Traffic<br>Barrel4 | 252.70   | -1.95  | 0   | 0     | 0     | 0       |
|         | SM_Traffic<br>Barrel5 | 252.70   | -4.10  | 0   | 0     | 0     | 0       |
|         | SM_Traffic<br>Barrel6 | 252.70   | -6.25  | 0   | 0     | 0     | 0       |
|         | SM_Traffic<br>Barrel7 | 252.70   | -8.40  | 0   | 0     | 0     | 0       |
|         | SM_Traffic<br>Barrel8 | 252.70   | -10.55 | Θ   | Θ     | 0     | 0       |

### **Lane Dimensions**

This figure and table provides the lane dimensions, in m.




| Variable | Dimension (m) |
|----------|---------------|
| $lw_1$   | 1.33          |
| $lw_2$   | 4.25          |
| $lw_3$   | 4.25          |
| $lw_4$   | 0.34          |
| $lw_5$   | 4.25          |
| $lw_6$   | 4.25          |
| $lw_7$   | 1.33          |

| Variable | Dimension (m) |
|----------|---------------|
| ml       | 1.5           |
| S        | 2.0           |
| $mw_w$   | 0.13          |
| $mw_y$   | 0.17          |
| W        | 20.0          |

#### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                        |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about Z-axis                           |

# **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named DblLnChng.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

### **See Also**

Curved Road | Large Parking Lot | Open Surface | Parking Lot | Simulation 3D Scene Configuration | Straight Road | US City Block | US Highway | Virtual Mcity

### **Topics**

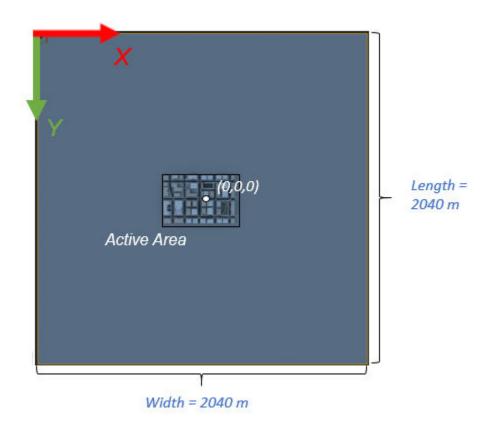
- "Send and Receive Double-Lane Change Scene Data"
  "3D Visualization Engine Requirements"
  "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
  "Support Package for Customizing Scenes"

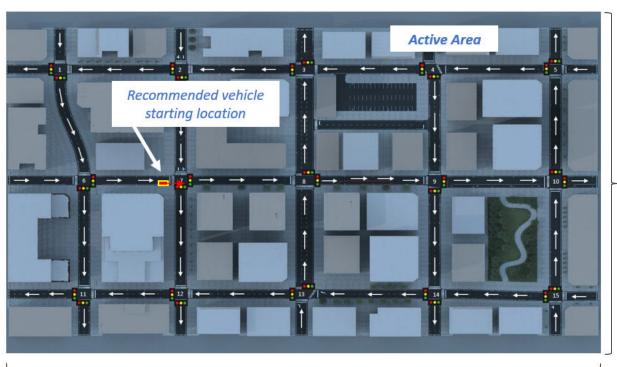
# **US City Block**

US city block 3D environment

# **Description**

The **US City Block** scene is a 3D environment of a US city block that contains 15 intersections and 30 traffic lights. The scene is rendered using the Unreal Engine from Epic Games.





To simulate a driving maneuver in this scene:

- 1 Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to US city block.

#### **Scene Layout**

The scene uses the world coordinate system to locate objects.



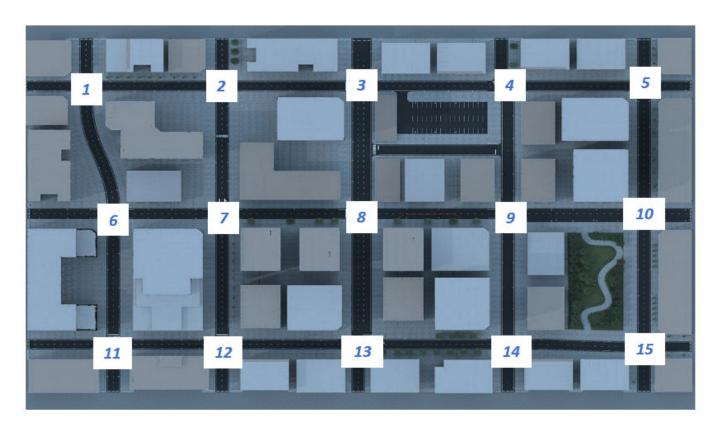


Width = 300 m

Length = 439 m

This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

| Locations                 | X       | Υ      | Z   |
|---------------------------|---------|--------|-----|
|                           | (m)     | (m)    | (m) |
| Scene — Top left          | -1020   | -1020  | 0   |
| Scene — Bottom right      | 1020    | 1020   | 0   |
| Active area — Bottom left | -240.77 | 151.67 | 0   |

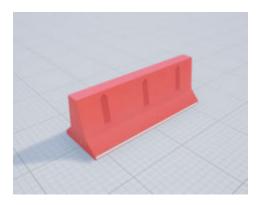

### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |     |                                                |       |       |       |  |  |  |
|-------------------------------|-----|------------------------------------------------|-------|-------|-------|--|--|--|
| X Y                           |     | Z Roll F                                       |       | Pitch | Yaw   |  |  |  |
| (m)                           | (m) | (m)                                            | (deg) | (deg) | (deg) |  |  |  |
| -125.19                       |     | 0.04 -0.04 in vehicle Z-down coordinate system | 0     | 0     | 0     |  |  |  |

#### **Intersections**

The US city block scene has 15 intersections, as indicated in this diagram.




This table provides the intersection locations in the world coordinate system. Dimensions are in m.

| Intersection | Center Location |        |     |  |  |
|--------------|-----------------|--------|-----|--|--|
|              | X               | Y      | Z   |  |  |
|              | (m)             | (m)    | (m) |  |  |
| 1            | -202.60         | - 108  | .01 |  |  |
| 2            | -112.60         | - 108  | .01 |  |  |
| 3            | -20.38          | - 108  | .01 |  |  |
| 4            | 74.58           | - 108  | .01 |  |  |
| 5            | 166.40          | - 108  | .01 |  |  |
| 6            | -184.60         | 0      | .01 |  |  |
| 7            | -112.60         | 0      | .01 |  |  |
| 8            | -20.34          | 0      | .01 |  |  |
| 9            | 76.40           | 0      | .01 |  |  |
| 10           | 166.46          | 0      | .01 |  |  |
| 11           | -184.60         | 110.50 | .01 |  |  |
| 12           | -112.60         | 110.50 | .01 |  |  |
| 13           | -22.60          | 110.50 | .01 |  |  |
| 14           | 76.40           | 110.50 | .01 |  |  |

| Intersection | Center Locatio | Center Location |     |  |  |  |
|--------------|----------------|-----------------|-----|--|--|--|
|              | X              | Y               | Z   |  |  |  |
|              | (m)            | (m)             | (m) |  |  |  |
| 15           | 166.40         | 112.50          | .01 |  |  |  |

# **Barrier**



This table provides the object names and locations in the world coordinate system. Dimensions are in m.

| Object  | Unreal                | Location |         |   |      |       |       |  |
|---------|-----------------------|----------|---------|---|------|-------|-------|--|
|         | Engine<br>Editor Name | X        | Y       | Z | Roll | Pitch | Yaw   |  |
| Barrier | SM_Barrier            | 163.5    | -146.95 | 0 | 0    | 0     | 90°   |  |
|         | SM_Barrier<br>2       | 166.35   | -146.95 | 0 | 0    | 0     | 90°   |  |
|         | SM_Barrier<br>3       | 169.2    | -146.95 | 0 | 0    | 0     | 90°   |  |
|         | SM_Barrier<br>7       | 163.5    | 150.15  | 0 | 0    | 0     | 90°   |  |
|         | SM_Barrier<br>8       | 166.35   | 150.15  | 0 | 0    | 0     | 90°   |  |
|         | SM_Barrier<br>9       | 169.2    | 150.15  | 0 | 0    | 0     | 90°   |  |
|         | SM_Barrier<br>11      | 197.05   | 109.65  | 0 | 0    | 0     | -180° |  |
|         | SM_Barrier<br>13      | 197.05   | 112.5   | 0 | 0    | 0     | -180° |  |
|         | SM_Barrier<br>14      | 197.05   | 115.34  | 0 | 0    | Θ     | -180° |  |
|         | SM_Barrier<br>18      | 197.05   | -2.9    | 0 | 0    | 0     | -180° |  |

| Object | Unreal                | Location |         |   |      |       |       |  |
|--------|-----------------------|----------|---------|---|------|-------|-------|--|
|        | Engine<br>Editor Name | X        | Υ       | Z | Roll | Pitch | Yaw   |  |
|        | SM_Barrier<br>19      | 197.05   | -0.05   | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>20      | 197.05   | 2.8     | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>21      | -240.5   | 107.65  | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>22      | 197.05   | -110.9  | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>24      | 197.05   | 5.6     | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>27      | 197.05   | -108.05 | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>28      | 197.05   | -105.25 | Θ | 0    | 0     | -180° |  |
|        | SM_Barrier<br>31      | -240.5   | 110.5   | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>32      | -240.5   | 113.35  | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>36      | -240.1   | -2.9    | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>37      | -240.1   | -0.05   | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>38      | -240.1   | 2.8     | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>43      | -242.15  | 110.9   | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>44      | -242.15  | -108.05 | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>45      | -242.15  | -105.25 | 0 | 0    | 0     | -180° |  |
|        | SM_Barrier<br>48      | 73.4     | 150.15  | 0 | 0    | 0     | 90°   |  |
|        | SM_Barrier<br>49      | 76.25    | 150.15  | 0 | 0    | 0     | 90°   |  |
|        | SM_Barrier<br>50      | 79.1     | 150.15  | 0 | 0    | 0     | 90°   |  |
|        | SM_Barrier<br>54      | -25.55   | 150.15  | 0 | 0    | 0     | 90°   |  |
|        | SM_Barrier<br>55      | -22.7    | 150.15  | 0 | 0    | 0     | 90°   |  |

| Object | Unreal                | Location |         |      |      |       |     |  |
|--------|-----------------------|----------|---------|------|------|-------|-----|--|
|        | Engine<br>Editor Name | X        | Y       | Z    | Roll | Pitch | Yaw |  |
|        | SM_Barrier<br>56      | -19.85   | 150.15  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>59      | -115.3   | 150.15  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>60      | -112.45  | 150.15  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>61      | -109.6   | 150.15  | 0    | 0    | 0     | 90° |  |
|        | SM_Barrier<br>66      | 69.25    | -147.35 | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>68      | 75.45    | -147.5  | 0.15 | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>69      | 72.45    | -147.5  | 0.15 | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>70      | -25.55   | -146.45 | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>71      | -22.15   | -146.45 | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>72      | -18.65   | -146.45 | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>75      | -115.3   | -147.6  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>76      | -112.45  | -147.6  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>77      | -109.6   | -147.6  | 0    | 0    | 0     | 90° |  |
|        | SM_Barrier<br>84      | -15.45   | -146.45 | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>88      | -187.5   | 150.15  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>89      | -184.65  | 150.15  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>90      | -181.8   | 150.15  | 0    | Θ    | 0     | 90° |  |
|        | SM_Barrier<br>94      | -205.6   | -147.4  | 0    | 0    | 0     | 90° |  |
|        | SM_Barrier<br>95      | -202.75  | -147.4  | 0    | 0    | 0     | 90° |  |
|        | SM_Barrier<br>96      | -199.9   | -147.4  | 0    | 0    | Θ     | 90° |  |

| Object | Unreal                | Location |      |   |      |       |       |  |  |
|--------|-----------------------|----------|------|---|------|-------|-------|--|--|
|        | Engine<br>Editor Name | X        | Y    | Z | Roll | Pitch | Yaw   |  |  |
|        | SM_Barrier<br>101     | 44.15    | 3.05 | 0 | 0    | 0     | -50°  |  |  |
|        | SM_Barrier<br>102     | 39.15    | 0.55 | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>103     | 41.95    | 1.3  | 0 | 0    | 0     | -50°  |  |  |
|        | SM_Barrier<br>104     | 36.5     | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>105     | 33.85    | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>106     | 31.2     | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>107     | 28.45    | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>108     | 25.8     | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>109     | 23.15    | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>110     | 20.5     | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>111     | 17.95    | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>112     | 15.3     | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>113     | 12.65    | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>114     | 10.0     | .55  | 0 | 0    | 0     | -90°  |  |  |
|        | SM_Barrier<br>115     | 7.01     | 1.38 | 0 | 0    | 0     | -125° |  |  |
|        | SM_Barrier<br>116     | 4.75     | 3.05 | 0 | 0    | 0     | -125° |  |  |

### **Traffic Lights**



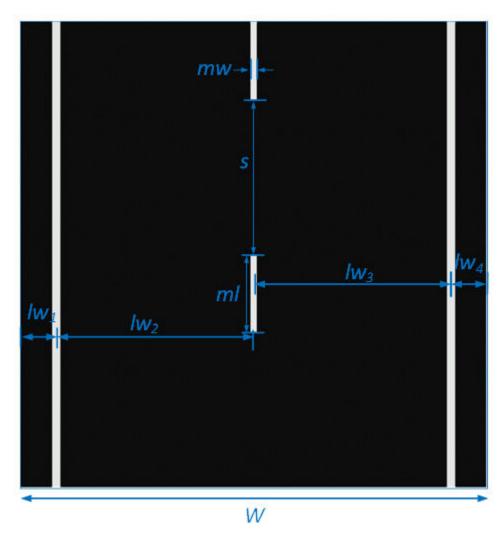
The US City Scene contains 30 traffic lights, two at each of the 15 intersections. Each intersection has a traffic light group. If you have the "Support Package for Customizing Scenes" for customizing scenes, you can control the timing of the traffic lights.

This table provides the traffic light names and locations in the world coordinate system. Dimensions are in m. Only one of the traffic lights in the group can be green at a time. The traffic lights are green for 10 s and yellow for 3 s. At the start of the simulation, the first traffic lights in the group are green (for example, SM\_TrafficLights1\_3 and SM\_TrafficLights2\_4). The second lights in the group are red (for example, SM\_TrafficLights1\_4 and SM\_TrafficLights2\_3).

| Intersect ion | Unreal Engir<br>Editor Name |                                 | Location |         |     |      |       |      |
|---------------|-----------------------------|---------------------------------|----------|---------|-----|------|-------|------|
|               | Traffic Light<br>Group      | Traffic<br>Light                | X        | Y       | Z   | Roll | Pitch | Yaw  |
| 1             | TrafficLig<br>htGroup       | SM_Tr<br>affic<br>Light<br>s1_3 | -196.55  | -100.65 | 0   | Θ    | 0     | -90° |
|               |                             | SM_Tr<br>affic<br>Light<br>s1_4 | -210.20  | -113.40 | Θ   | Θ    | Θ     | 0    |
| 2             | TrafficLig<br>htGroup2      | SM_Tr<br>affic<br>Light<br>s2_4 | -120.40  | -113.50 | 0   | Θ    | 0     | Θ    |
|               |                             | SM_Tr<br>affic<br>Light<br>s2_3 | -106.35  | 98.35   | Θ   | Θ    | Θ     | -90° |
| 3             | TrafficLig<br>htGroup3      | SM_Tr<br>affic<br>Light<br>s3_1 | -13.10   | -116.20 | 0.2 | Θ    | 0     | 90°  |

| Intersect ion | Unreal Engine<br>Editor Name |                                 | Location |         |     |      |       |       |  |
|---------------|------------------------------|---------------------------------|----------|---------|-----|------|-------|-------|--|
|               | Traffic Light<br>Group       | Traffic<br>Light                | X        | Y       | Z   | Roll | Pitch | Yaw   |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s3_4 | -30.60   | -113.80 | Θ   | Θ    | Θ     | 0     |  |
| 4             | TrafficLig<br>htGroup4       | SM_Tr<br>affic<br>Light<br>s4_4 | 64.80    | -113.0  | 0   | Θ    | 0     | 0     |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s4_3 | 71.40    | -100.30 | Θ   | Θ    | Θ     | -100° |  |
| 5             | TrafficLig<br>htGroup5       | SM_Tr<br>affic<br>Light<br>s5_1 | 171.50   | -115.70 | 0   | Θ    | Θ     | 90°   |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s5_4 | 157.40   | -113.50 | 0   | Θ    | Θ     | Θ     |  |
| 6             | TrafficLig<br>htGroup6       | SM_Tr<br>affic<br>Light<br>s6_3 | -189.60  | 7.40    | 0   | Θ    | Θ     | -90°  |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s6_2 | -177.30  | 5.70    | 0   | Θ    | Θ     | 180°  |  |
| 7             | TrafficLig<br>htGroup7       | SM_Tr<br>affic<br>Light<br>s7_3 | -117.80  | 7.70    | 0.2 | Θ    | Θ     | -90°  |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s7_2 | -105.20  | 5.50    | Θ   | Θ    | 0     | 180°  |  |
| 8             | TrafficLig<br>htGroup8       | SM_Tr<br>affic<br>Light<br>s8_2 | -10.90   | 5.60    | Θ   | Θ    | Θ     | 180°  |  |

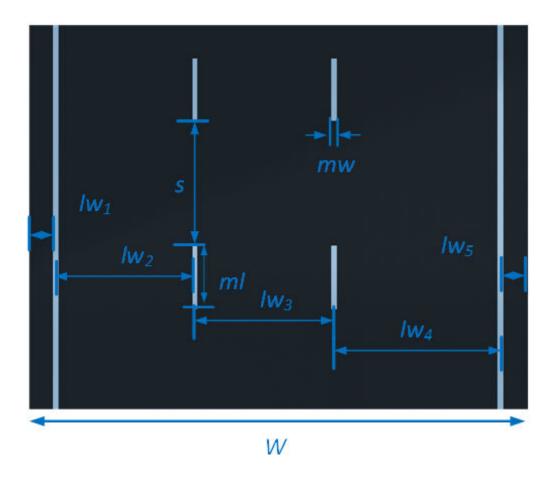
| Intersect ion | Unreal Engine<br>Editor Name |                                  | Location |        |     |      |       |      |  |
|---------------|------------------------------|----------------------------------|----------|--------|-----|------|-------|------|--|
|               | Traffic Light<br>Group       | Traffic<br>Light                 | X        | Y      | Z   | Roll | Pitch | Yaw  |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s8_1  | -13.10   | -7.60  | 0.1 | Θ    | Θ     | 90°  |  |
| 9             | TrafficLig<br>htGroup9       | SM_Tr<br>affic<br>Light<br>s9_3  | 70.90    | 9.20   | Θ   | Θ    | 0     | -90° |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s9_2  | 85.90    | 7.60   | 0.2 | Θ    | Θ     | 180° |  |
| 10            | TrafficLig<br>htGroup10      | SM_Tr<br>affic<br>Light<br>s10_2 | 173.70   | 7.50   | 0   | Θ    | Θ     | 180° |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s10_1 | 172.10   | -7.70  | 0   | Θ    | 0     | 90°  |  |
| 11            | TrafficLig<br>htGroup11      | SM_Tr<br>affic<br>Light<br>s11_3 | -189.80  | 118.45 | 0   | Θ    | 0     | -90° |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s11_4 | -191.05  | 104.55 | 0   | Θ    | Θ     | Θ    |  |
| 12            | 12 TrafficLig<br>htGroup12   |                                  | -120.50  | 105.40 | 0   | Θ    | Θ     | Θ    |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s12_3 | -117.60  | 117.60 | Θ   | Θ    | 0     | -90° |  |
| 13            | TrafficLig<br>htGroup13      | SM_Tr<br>affic<br>Light<br>s13_1 | -12.80   | 102.50 | Θ   | Θ    | Θ     | 90°  |  |


| Intersect ion | Unreal Engine<br>Editor Name |                                  | Location |        |   |      |       |      |  |
|---------------|------------------------------|----------------------------------|----------|--------|---|------|-------|------|--|
|               | Traffic Light<br>Group       | Traffic<br>Light                 | X        | Y      | Z | Roll | Pitch | Yaw  |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s13_4 | -30.50   | 105.30 | 0 | Θ    | Θ     | Θ    |  |
| 14            | TrafficLig<br>htGroup14      | SM_Tr<br>affic<br>Light<br>s14_4 | 69.30    | 105.30 | 0 | Θ    | Θ     | Θ    |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s14_3 | 70.90    | 118.70 | 0 | Θ    | Θ     | -90° |  |
| 15            | TrafficLig<br>htGroup15      | SM_Tr<br>affic<br>Light<br>s15_1 | 171.40   | 105.20 | 0 | Θ    | Θ     | 90°  |  |
|               |                              | SM_Tr<br>affic<br>Light<br>s15_4 | 158.40   | 107.20 | 0 | Θ    | Θ     | 0    |  |

### **Lane Dimensions**

The scene contains three types of roads.

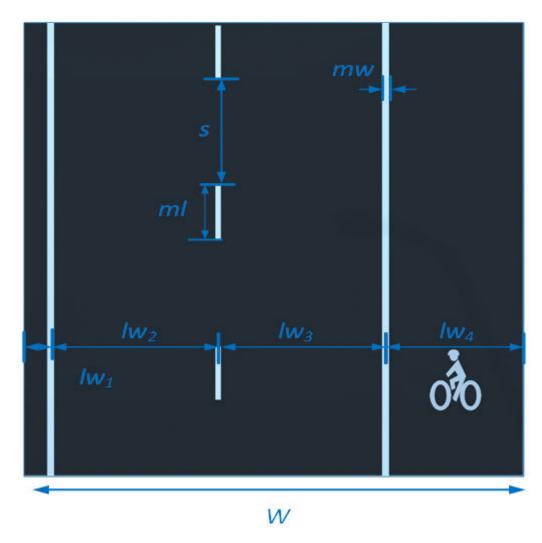
# Road Type 1


This figure and table provides the road type 1 lane dimensions, in m.



| Variable | Dimension (m) |
|----------|---------------|
| $lw_1$   | 0.65          |
| $lw_2$   | 3.85          |
| $lw_3$   | 3.85          |
| $lw_4$   | 0.65          |
| ml       | 1.5           |
| S        | 3.0           |
| mw       | 0.13          |
| W        | 9             |

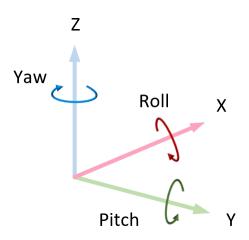
# Road Type 2


This figure and table provides the road type 2 lane dimensions, in m.



| Variable | Dimension (m) |
|----------|---------------|
| $lw_1$   | 0.73          |
| $lw_2$   | 3.77          |
| $lw_3$   | 3.77          |
| $lw_4$   | 4.5           |
| $lw_5$   | 0.73          |
| ml       | 1.5           |
| S        | 3.0           |
| mw       | 0.13          |
| W        | 13.5          |

# Road Type 3


This figure and table provides the road type 3 lane dimensions, in m.



| Variable | Dimension (m) |
|----------|---------------|
| $lw_1$   | 0.65          |
| $lw_2$   | 3.85          |
| $lw_3$   | 3.85          |
| $lw_4$   | 3.15          |
| ml       | 1.5           |
| S        | 3.0           |
| mw       | 0.13          |
| W        | 11.5          |

# **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |  |  |  |  |  |
|------|-------------------------------------------------------------------|--|--|--|--|--|
| X    | Forward direction of the vehicle                                  |  |  |  |  |  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |  |  |  |  |  |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |  |  |  |  |  |
|      | Pitch — Right-handed rotation about Y-axis                        |  |  |  |  |  |
| Z    | Extends upwards                                                   |  |  |  |  |  |
|      | Yaw — Left-handed rotation about <i>Z</i> -axis                   |  |  |  |  |  |

# **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named USCityBlock.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

### See Also

Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot | Simulation 3D Scene Configuration | Straight Road | US Highway | Virtual Mcity

#### **Topics**

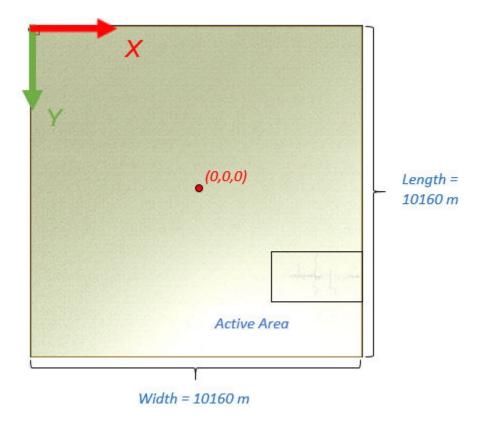
- "3D Visualization Engine Requirements"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Support Package for Customizing Scenes"

# **US Highway**

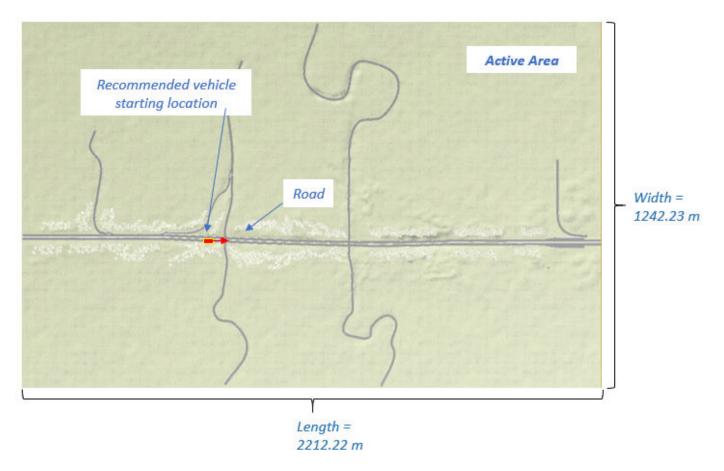
US highway 3D environment

# **Description**

The **US Highway** scene is a 3D environment of a US highway that contains barriers, cones, and traffic signs. The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:


- **1** Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to US highway.

#### **Scene Layout**

The scene uses the world coordinate system to locate objects.



The active area of the scene contains the road.



This table provides the scene area corner locations in the world coordinate system. Dimensions are in m


| Locations                 | X       | Y       | Z   |
|---------------------------|---------|---------|-----|
|                           | (m)     | (m)     | (m) |
| Scene — Top left          | -5080   | -5080   | 1   |
| Scene — Bottom right      | 5080    | 5080    | 1   |
| Active area — Bottom left | 2867.41 | 3169.93 | 1   |

### **Recommended Starting Location**

This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |         |                                                |       |       |       |  |  |  |
|-------------------------------|---------|------------------------------------------------|-------|-------|-------|--|--|--|
| Х                             | Υ       | Z                                              | Roll  | Pitch | Yaw   |  |  |  |
| (m)                           | (m)     | (m)                                            | (deg) | (deg) | (deg) |  |  |  |
| 3592.00                       | 2617.00 | 1.00 -1.00 in vehicle Z-down coordinate system | 0     | 0     | 0     |  |  |  |

### **Barrier**



This table provides the object names and locations in the world coordinate system. Dimensions are in m.

| Object  | Unreal                | Location |         |     |       |       |       |
|---------|-----------------------|----------|---------|-----|-------|-------|-------|
|         | Engine<br>Editor Name | X        | Y       | Z   | Roll  | Pitch | Yaw   |
|         |                       | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |
| Barrier | SM_Barrier<br>26      | 2866.45  | 2612.1  | 1   | 0     | Θ     | 0     |
|         | SM_Barrier<br>27      | 2866.45  | 2609.35 | 1   |       |       |       |
|         | SM_Barrier<br>28      | 2866.45  | 2606.6  | 1   |       |       |       |
|         | SM_Barrier<br>29      | 2866.45  | 2603.95 | 1   |       |       |       |
|         | SM_Barrier<br>30      | 2866.45  | 2599.7  | 1   |       |       |       |
|         | SM_Barrier<br>31      | 2866.45  | 2596.95 | 1   |       |       |       |
|         | SM_Barrier<br>32      | 2866.45  | 2594.2  | 1   |       |       |       |

| Object | Unreal                | Location |         |     |       |       |       |
|--------|-----------------------|----------|---------|-----|-------|-------|-------|
|        | Engine<br>Editor Name | X        | Y       | Z   | Roll  | Pitch | Yaw   |
|        |                       | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |
|        | SM_Barrier<br>33      | 2866.45  | 2591.55 | 1   |       |       |       |

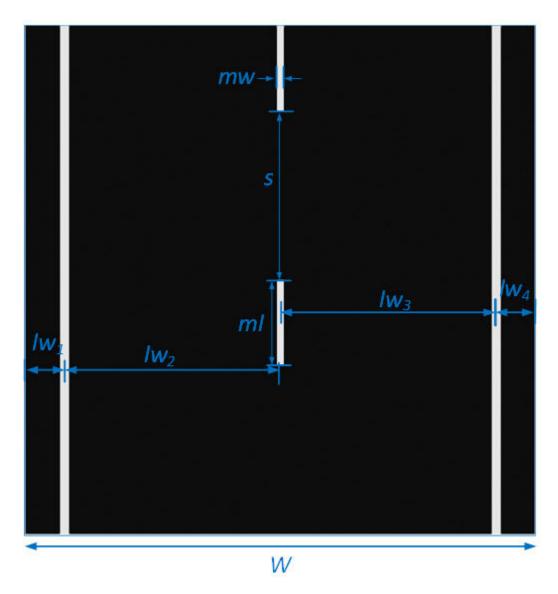
### Cones



This table provides the cone tag names and locations in the world coordinate system. Dimensions are in m.

| Object | Unreal                | Location |         |     |       |       |       |  |
|--------|-----------------------|----------|---------|-----|-------|-------|-------|--|
|        | Engine<br>Editor Name | X        | Y       | Z   | Roll  | Pitch | Yaw   |  |
|        |                       | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |  |
| Cone   | SM_Cone               | 3022.85  | 2599.90 | 1   | 0     | 0     | 0     |  |
|        | SM_Cone2              | 3022.85  | 2599.10 | 1   |       |       |       |  |
|        | SM_Cone3              | 3022.85  | 2598.25 | 1   |       |       |       |  |
|        | SM_Cone4              | 3022.85  | 2597.30 | 1   |       |       |       |  |
|        | SM_Cone5              | 3022.85  | 2596.50 | 1   |       |       |       |  |
|        | SM_Cone6              | 3022.85  | 2595.65 | 1   |       |       |       |  |
|        | SM_Cone7              | 3022.85  | 2594.70 | 1   |       |       |       |  |
|        | SM_Cone8              | 3022.85  | 2593.90 | 1   |       |       |       |  |
|        | SM_Cone9              | 3022.85  | 2593.05 | 1   |       |       |       |  |
|        | SM_Cone10             | 3022.85  | 2592.20 | 1   |       |       |       |  |
|        | SM_Cone11             | 3022.85  | 2591.40 | 1   |       |       |       |  |

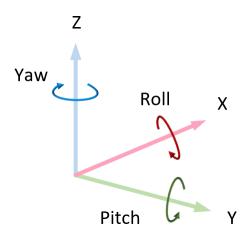
### **Traffic Signs**




This table provides the traffic sign tag names and locations in the world coordinate system. Dimensions are in  $\mathbf{m}$ .

| Object          | Unreal                    | Location |         |     |       |       |       |
|-----------------|---------------------------|----------|---------|-----|-------|-------|-------|
|                 | Engine Editor<br>Name     | X        | Y       | Z   | Roll  | Pitch | Yaw   |
|                 |                           | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |
| Traffic<br>Sign | SM_Large_Ex it_Sign       | 3368.15  | 2588.20 | 1   | 0     | 0     | -90°  |
|                 | SM_Small_Ex it_Sign       | 3232.70  | 2588.40 | 1   | 0     | 0     | -90°  |
|                 | ChevronAlig<br>nmentSign  | 3154.80  | 2584.50 | 1   | 0     | 0     | -85°  |
|                 | ChevronAlig<br>nmentSign2 | 3149.10  | 2579.45 | 1   | 0     | 0     | -85°  |
|                 | ChevronAlig<br>nmentSign3 | 3144.15  | 2571.95 | 1   | 0     | 0     | -85°  |
|                 | ChevronAlig<br>nmentSign4 | 3139.45  | 2562.60 | 1   | 0     | 0     | -85°  |

### **Lane Dimensions**


This figure and table provides the lane dimensions, in m.



| Variable | Dimension (m) |
|----------|---------------|
| $lw_1$   | 0.65          |
| $lw_2$   | 3.85          |
| $lw_3$   | 3.85          |
| $lw_4$   | 0.65          |
| ml       | 1.5           |
| s        | 3.0           |
| mw       | 0.13          |
| W        | 9.0           |

### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about <i>Y</i> -axis                |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about Z-axis                           |

## **Tips**

• If you have the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, then you can modify this scene. In the Unreal Engine project file that comes with the support package, this scene is named USHighway.

For more details on customizing scenes, see "Support Package for Customizing Scenes".

### See Also

Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |
Simulation 3D Scene Configuration | Straight Road | US City Block | Virtual Mcity

#### **Topics**

- "3D Visualization Engine Requirements"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Support Package for Customizing Scenes"

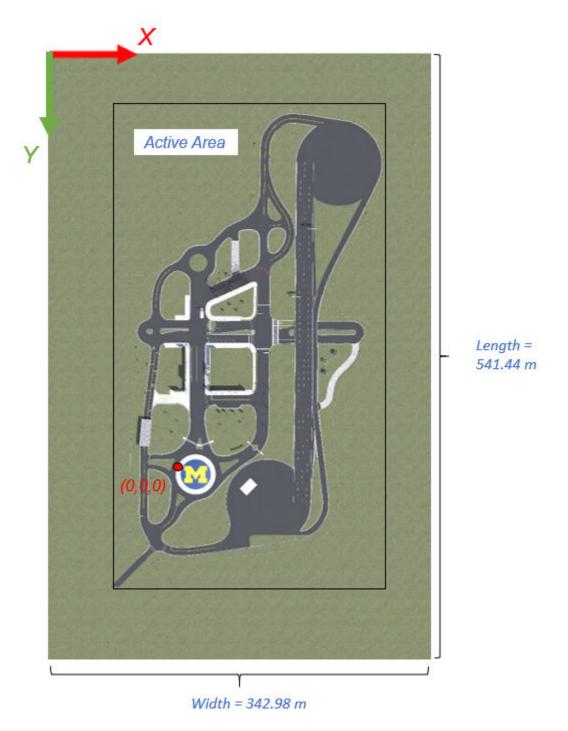
# **Virtual Mcity**

Virtual Mcity 3D environment

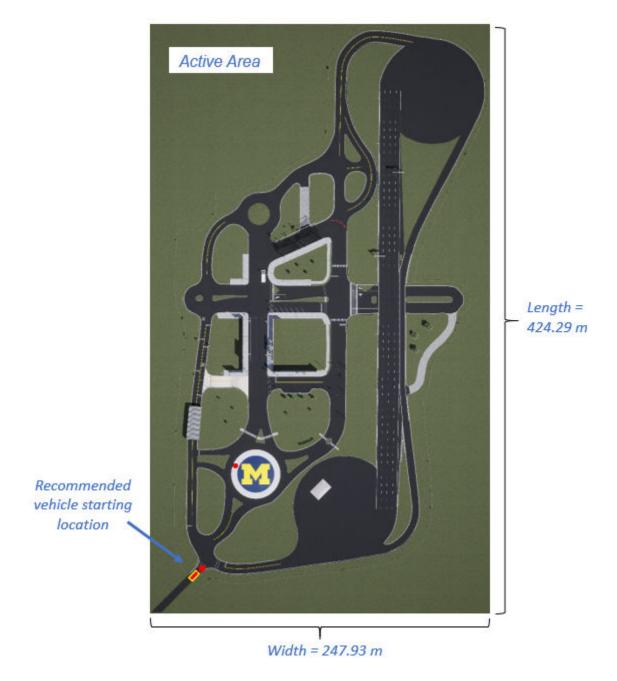
### **Description**

The **Virtual Mcity** scene is a 3D environment containing a virtual representation of Mcity<sup>®</sup>, which is a testing ground belonging to the University of Michigan. For more details, see Mcity Test Facility.

The scene is rendered using the Unreal Engine from Epic Games.




To simulate a driving maneuver in this scene:


- **1** Add a Simulation 3D Scene Configuration block to your Simulink model.
- 2 In this block, set the **Scene source** parameter to **Default** Scenes.
- 3 Set the enabled **Scene name** parameter to Virtual Mcity.

#### **Scene Layout**

The scene uses the world coordinate system to locate objects.



The active area of the scene contains the road.



This table provides the scene area corner locations in the world coordinate system. Dimensions are in m.

| Locations                 | X       | Y       | Z   |
|---------------------------|---------|---------|-----|
|                           | (m)     | (m)     | (m) |
| Scene — Top left          | -116.85 | -369.18 | 02  |
| Scene — Bottom right      | 226.13  | 172.26  | 02  |
| Active area — Bottom left | -60.61  | 106.75  | 02  |

### **Recommended Vehicle Starting Location**

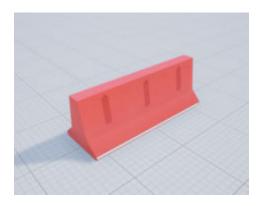
This table provides the recommended starting location for the vehicle in the world coordinate system. Dimensions are in m and deg.

| Recommended Starting Location |      |   |   |   |      |  |  |  |
|-------------------------------|------|---|---|---|------|--|--|--|
| X Y Z Roll Pitch Yaw          |      |   |   |   |      |  |  |  |
| (m) (m) (deg) (deg)           |      |   |   |   |      |  |  |  |
| -26.00                        | 76.0 | Θ | 0 | 0 | - 40 |  |  |  |

#### **Other Vehicles**

This table provides the vehicle tag names and initial locations for other vehicles in the scene, in the world coordinate system. Dimensions are in m and deg.

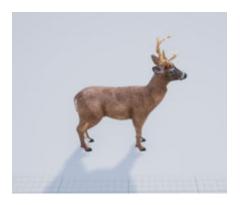
| Object  | Unreal           | Locations |         |     |       |       |       |  |
|---------|------------------|-----------|---------|-----|-------|-------|-------|--|
|         | Engine<br>Editor | Х         | Y       | Z   | Roll  | Pitch | Yaw   |  |
|         | Name             | (m)       | (m)     | (m) | (deg) | (deg) | (deg) |  |
| Vehicle | SK_BoxTr<br>uck  | 20.96     | -136.90 | 0   | 0     | 0     | - 90  |  |
|         | SM_Motor cycle   | 42.50     | -157.60 | 0   | 0     | 0     | -20   |  |
|         | SK_Sedan<br>Car  | 5.83      | -117.91 | Θ   | 0     | 0     | 0     |  |
|         | SM_Bicyc<br>le   | 10.88     | -84.42  | 0   | 0     | 0     | 90    |  |


#### Cones



This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

| Object | Unreal           | Location |         |     |       |       |       |  |
|--------|------------------|----------|---------|-----|-------|-------|-------|--|
|        | Engine<br>Editor | X        | Y       | Z   | Roll  | Pitch | Yaw   |  |
|        | Name             | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |  |
| Cone   | SM_Cone          | 22.33    | -131.51 | 0   | 0     | 0     | 0     |  |
|        | SM_Cone2         | 21.23    | -131.51 | 0   | 0     | 0     | 0     |  |
|        | SM_Cone3         | 20.03    | -131.51 | 0   | 0     | 0     | 0     |  |
|        | SM_Cone4         | 18.93    | -131.51 | 0   | 0     | 0     | 0     |  |


# **Barrier**



This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

| Object  | Unreal           | Location |         |     |       |       |       |  |
|---------|------------------|----------|---------|-----|-------|-------|-------|--|
|         | Engine<br>Editor | X        | Y       | Z   | Roll  | Pitch | Yaw   |  |
|         | Name             | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |  |
| Barrier | SM_Barrie<br>r13 | 79.65    | -173.39 | 0   | 0     | 0     | -35   |  |
|         | SM_Barrie<br>r14 | 77.31    | -175.94 | Θ   | Θ     | 0     | -55   |  |
|         | SM_Barrie<br>r15 | 74.42    | -177.49 | 0   | 0     | 0     | -80   |  |
|         | SM_Barrie<br>r16 | 71.18    | -177.64 | 0   | 0     | 0     | -95   |  |

### **Animals**



This table provides the object name and location in the world coordinate system. Dimensions are in m and deg.

| Object                   | Unreal  | Location |         |          |       |       |              |
|--------------------------|---------|----------|---------|----------|-------|-------|--------------|
| Engine<br>Editor<br>Name |         | X (m)    | Y (m)   | Z<br>(m) |       |       | Yaw<br>(dog) |
|                          | Italiic | (m)      | (m)     | (m)      | (deg) | (deg) | (deg)        |
| Animals                  | Deer    | 36.84    | -122.15 | 0        | 0     | 0     | 0            |

### **Traffic Signs**



This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

| Object           | Unreal<br>Engine<br>Editor<br>Name | Location |          |          |               |                |              |  |
|------------------|------------------------------------|----------|----------|----------|---------------|----------------|--------------|--|
|                  |                                    | X<br>(m) | Y<br>(m) | Z<br>(m) | Roll<br>(deg) | Pitch<br>(deg) | Yaw<br>(deg) |  |
| Traffic<br>signs | SM_StopSi<br>gn                    | -35.21   | 44.19    | 0        | 0             | 0              | 95           |  |
|                  | SM_Yellow<br>RoadSign              | -38.75   | 18.14    | 02       | 0             | 0              | -170         |  |

| Object | Unreal<br>Engine<br>Editor    | Location |         |     |       |       |       |  |
|--------|-------------------------------|----------|---------|-----|-------|-------|-------|--|
|        |                               | X        | Y       | Z   | Roll  | Pitch | Yaw   |  |
|        | Name                          | (m)      | (m)     | (m) | (deg) | (deg) | (deg) |  |
|        | LargeDoub<br>leArrowSi<br>gn4 | -35.19   | -4.39   | Θ   | 0     | 0     | -90   |  |
|        | LargeDoub<br>leArrowSi<br>gn  | -31.01   | -60.55  | Θ   | 0     | Θ     | -80   |  |
|        | RailroadS<br>ign2             | -27.06   | -88.67  | 0   | 0     | 0     | 5     |  |
|        | RailroadS<br>ign              | -17.79   | -89.77  | 0   | 0     | 0     | -170  |  |
|        | SM_YieldS<br>ign              | 26.80    | -165.14 | 0   | 0     | 0     | 0     |  |
|        | SM_StopSi<br>gn7              | 54.84    | -200.43 | 0   | 0     | 0     | -90   |  |
|        | LargeDoub<br>leArrowSi<br>gn3 | 47.54    | -218.00 | Θ   | 0     | Θ     | -15   |  |
|        | SM_StopSi<br>gn9              | 70.32    | -195.66 | 0   | 0     | 0     | 0     |  |
|        | SM_Yellow<br>RoadSign3        | 82.66    | -285.75 | 02  | 0     | 0     | 15    |  |
|        | SM_SpeedL<br>imitSign2        | 80.89    | -226.85 | 06  | 0     | 0     | 0     |  |
|        | LargeDoub<br>leArrowSi<br>gn5 | 104.10   | -212.80 | Θ   | 0     | Θ     | 80    |  |
|        | ChevronAl<br>ignmentSi<br>gn  | 98.45    | -191.22 | Θ   | 0     | Θ     | 101   |  |
|        | ChevronAl<br>ignmentSi<br>gn2 | 102.05   | -197.62 | Θ   | 0     | Θ     | 76.5  |  |
|        | ChevronAl<br>ignmentSi<br>gn3 | 103.98   | -206.06 | 0   | 0     | 0     | 85    |  |
|        | SM_Large_<br>Exit_Sign        | 122.45   | -212.50 | 0   | 0     | 0     | 0     |  |
|        | SM_Large_<br>Exit_Sign<br>2   | 101.79   | -151.66 | 0   | Θ     | 0     | 180   |  |

| Object | Unreal                       |        |         |      |       |       |       |
|--------|------------------------------|--------|---------|------|-------|-------|-------|
|        | Engine<br>Editor             | Х      | Υ       | Z    | Roll  | Pitch | Yaw   |
|        | Name                         | (m)    | (m)     | (m)  | (deg) | (deg) | (deg) |
|        | SM_StopSi<br>gn3             | 32.01  | -163.68 | Θ    | 0     | Θ     | 160   |
|        | SM_StopSi<br>gn2             | 54.98  | -177.12 | 0    | 0     | 0     | 90    |
|        | LargeSing<br>leArrowSi<br>gn | 121.01 | -148.56 | 0    | Θ     | Θ     | Θ     |
|        | SM_YieldS<br>ign2            | 162.22 | -109.64 | 0    | 0     | 0     | 25    |
|        | SM_Windin gRoadSign          | 127.11 | -50.21  | .01  | 0     | 0     | 50    |
|        | SchoolBus<br>OnlySign        | 44.03  | -51.11  | 0    | 0     | 0     | 90    |
|        | SM_Yellow<br>RoadSign5       | 68.05  | -47.03  | .01  | 0     | 0     | -175  |
|        | SM_CrossS<br>ignal8          | 74.37  | -14.11  | 0    | Θ     | 0     | -165  |
|        | SM_CrossS<br>ignal7          | 64.69  | -22.69  | 0    | Θ     | 0     | -150  |
|        | SM_CrossS<br>ignal6          | 62.51  | -20.34  | 0    | 0     | 0     | 40    |
|        | SM_CrossS<br>ignal5          | 72.42  | -12.06  | 0    | Θ     | 0     | 40    |
|        | SM_Yellow<br>RoadSign2       | 60.01  | -2.69   | 01   | Θ     | 0     | 50    |
|        | SM_CrossS<br>ignal2          | 28.53  | -20.58  | 0    | Θ     | 0     | -20   |
|        | SM_CrossS<br>ignal           | 21.19  | -17.95  | 0    | Θ     | 0     | -20   |
|        | SM_CrossS<br>ignal3          | 17.55  | -21.53  | 0    | Θ     | 0     | -170  |
|        | SM_CrossS<br>ignal4          | 6.59   | -27.66  | 0    | 0     | 0     | - 145 |
|        | SM_YieldS<br>ign4            | 4.89   | -23.42  | 0    | 0     | 0     | - 140 |
|        | SM_Yellow<br>RoadSign4       | 9.23   | -45.63  | 9    | 0     | Θ     | -175  |
|        | SM_BikeLa<br>neSign          | 24.13  | -92.03  | . 15 | 0     | Θ     | Θ     |

# **Traffic Lights**



This table provides the object names and locations in the world coordinate system. Dimensions are in m and deg.

| Object         | Unreal                                    | Location |         |      |       |       |       |  |
|----------------|-------------------------------------------|----------|---------|------|-------|-------|-------|--|
|                | Engine<br>Editor                          | X        | Y       | Z    | Roll  | Pitch | Yaw   |  |
|                | Name                                      | (m)      | (m)     | (m)  | (deg) | (deg) | (deg) |  |
| Traffic lights | SM_Traffi<br>cLights                      | 27.40    | -138.55 | .16  | 0     | 0     | 90    |  |
|                | SM_Traffi<br>cLights2                     | 9.38     | -106.90 | .16  | 0     | 0     | -90   |  |
|                | SM_Traffi<br>cLightsSi<br>deOnly3         | 8.44     | -47.95  | 03   | 0     | Θ     | -92.2 |  |
|                | SM_Traffi<br>cLightsSi<br>deOnly4         | 1.64     | -55.10  | .16  | 0     | Θ     | -5    |  |
|                | SM_Traffi<br>cLightsSi<br>deOnly5         | 9.24     | -67.70  | .16  | 0     | Θ     | 85    |  |
|                | SM_Traffi<br>cLightsSi<br>deOnly6         | 24.50    | -67.82  | .16  | 0     | Θ     | 85    |  |
|                | SM_Traffi<br>cLights3                     | 27.89    | -109.86 | .16  | 0     | 0     | 180   |  |
|                | SM_Hangin<br>gTrafficL<br>ightSingl<br>e  | 74.43    | -69.25  | 7.37 | Θ     | 0     | Θ     |  |
|                | SM_Hangin<br>gTrafficL<br>ightSingl<br>e2 | 76.13    | -69.10  | 7.34 | 0     | Θ     | 0     |  |

| Object | Unreal                                    | Location |        |      |       |       |       |
|--------|-------------------------------------------|----------|--------|------|-------|-------|-------|
|        | Engine<br>Editor                          | X        | Y      | Z    | Roll  | Pitch | Yaw   |
|        | Name                                      | (m)      | (m)    | (m)  | (deg) | (deg) | (deg) |
|        | SM_Hangin<br>gTrafficL<br>ightSingl<br>e3 | 82.58    | -60.10 | 7.57 | Θ     | 0     | -90   |
|        | SM_Hangin<br>gTrafficL<br>ightSingl<br>e4 | 82.65    | -61.48 | 7.54 | Θ     | 0     | -90   |
|        | SM_Hangin<br>gTrafficL<br>ightSingl<br>e6 | 73.67    | -51.25 | 7.97 | Θ     | 0     | -180  |
|        | SM_Hangin<br>gTrafficL<br>ightSingl<br>e7 | 75.07    | -51.25 | 7.95 | Θ     | 0     | -180  |
|        | SM_Hangin<br>gTrafficL<br>ight            | -24.78   | -61.49 | 6.71 | 0     | Θ     | 100   |
|        | SM_Railro<br>adCrossin<br>g4              | -18.21   | -86.63 | .01  | Θ     | Θ     | 8     |
|        | SM_Railro<br>adCrossin<br>g5              | -26.73   | -90.78 | .01  | 0     | Θ     | -172  |

### **World Coordinate System**

The 3D visualization environment uses a world coordinate system with axes that are fixed in the inertial reference frame.



| Axis | Description                                                       |
|------|-------------------------------------------------------------------|
| X    | Forward direction of the vehicle                                  |
|      | Roll — Right-handed rotation about <i>X</i> -axis                 |
| Y    | Extends to the right of the vehicle, parallel to the ground plane |
|      | Pitch — Right-handed rotation about Y-axis                        |
| Z    | Extends upwards                                                   |
|      | Yaw — Left-handed rotation about Z-axis                           |

### **Limitations**

• In the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package, this scene is not available for customization.

For details on which scenes you can customize, see "Support Package for Customizing Scenes".

### **See Also**

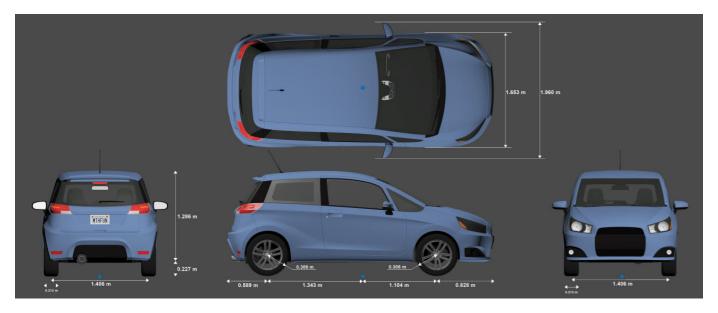
Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot |
Simulation 3D Scene Configuration | Straight Road | US City Block | US Highway

### **Topics**

- "3D Visualization Engine Requirements"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "Support Package for Customizing Scenes"

### **External Websites**

Mcity Test Facility


# **Vehicle Dimensions**

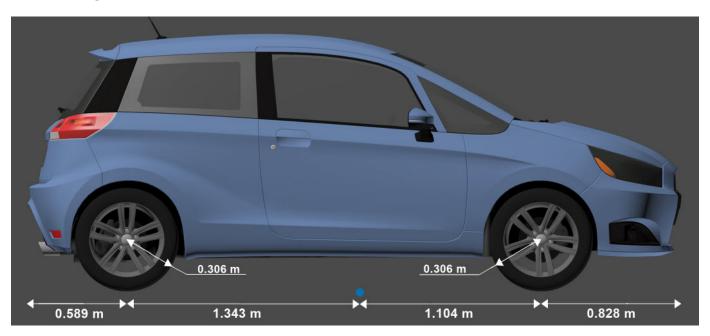
# **Hatchback**

Hatchback vehicle dimensions

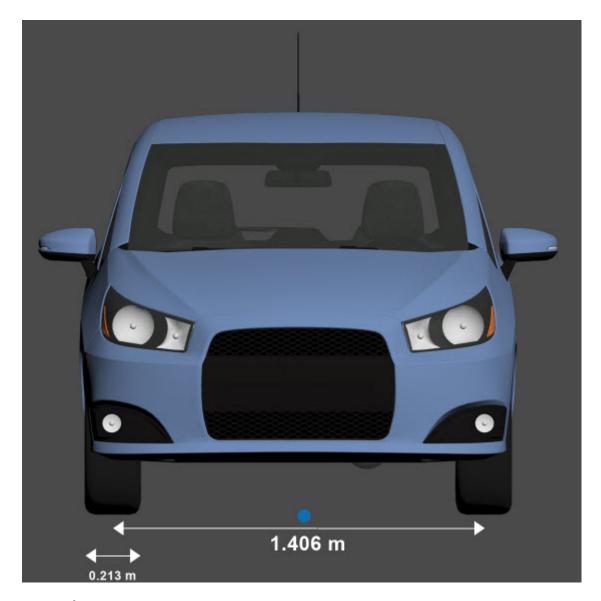
# **Description**

**Hatchback** is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the **Dimensions** section.

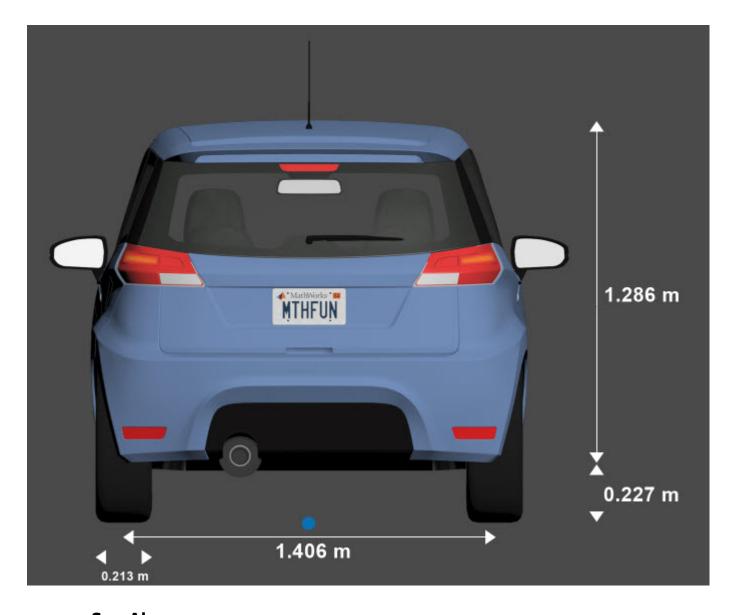



To add this type of vehicle to the 3D simulation environment:

- Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
- 2 In the block, set the **Type** parameter to Hatchback.


### **Dimensions**




 $\label{eq:side_view} \textbf{Side view} - \textbf{Vehicle length, front overhang, and rear overhang dimensions} \\ \text{diagram}$ 



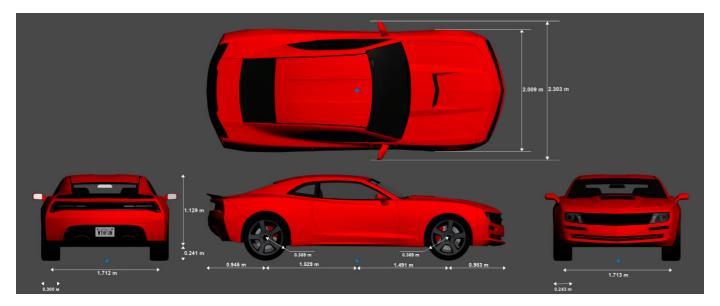
Front view — Tire width and front axle dimensions diagram



Rear  $\mbox{\sc view}$  — Vehicle height and rear axle dimensions  $\mbox{\sc diagram}$ 



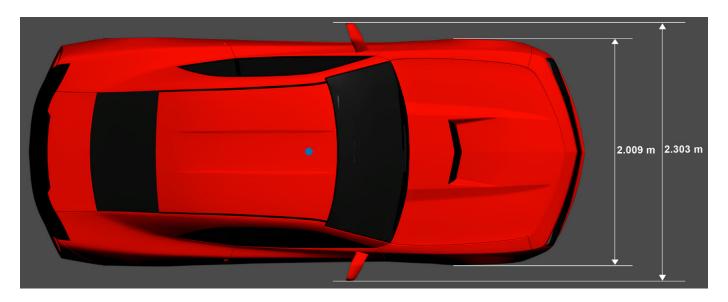
Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following


**Topics**"Coordinate Systems in Vehicle Dynamics Blockset"
"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

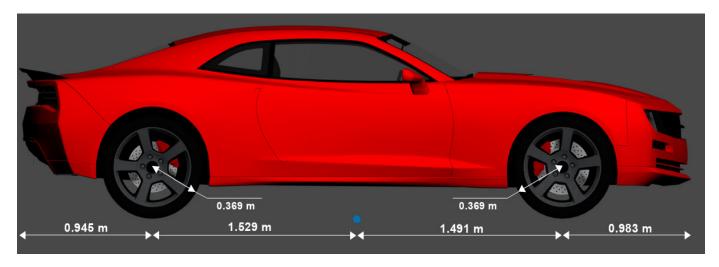
# **Muscle Car**

Muscle car vehicle dimensions

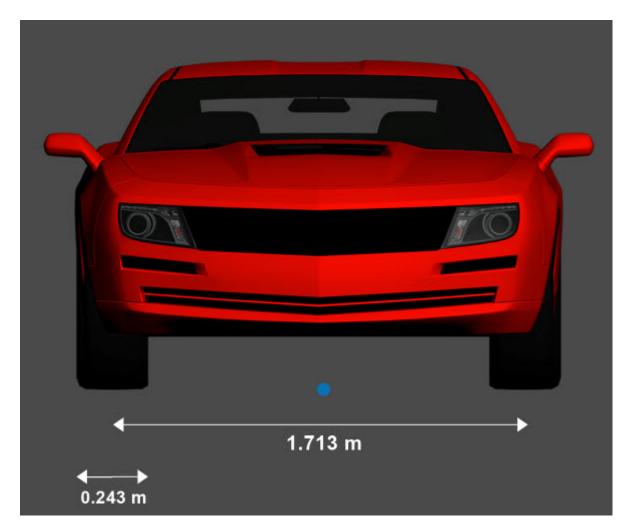
### **Description**


**Muscle Car** is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the **Dimensions** section.

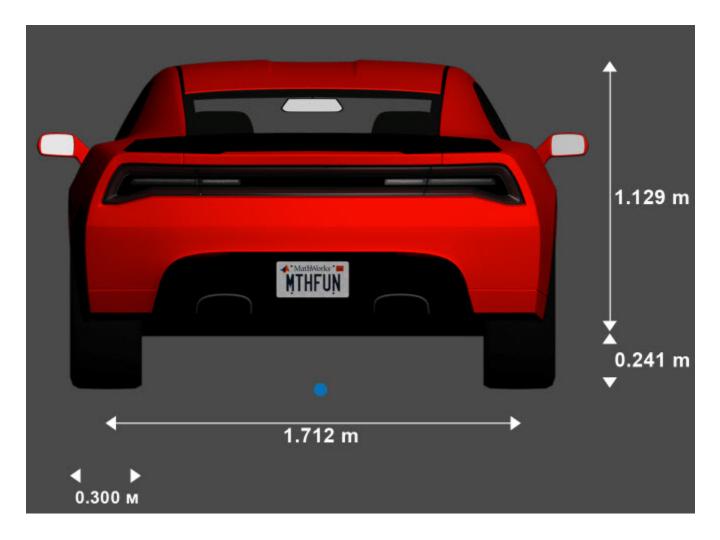



To add this type of vehicle to the 3D simulation environment:

- Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
- 2 In the block, set the **Type** parameter to Muscle car.


### **Dimensions**




 $\mbox{Side view}$  — Vehicle length, front overhang, and rear overhang dimensions  $\mbox{diagram}$ 



Front view — Tire width and front axle dimensions  $\operatorname{diagram}$ 

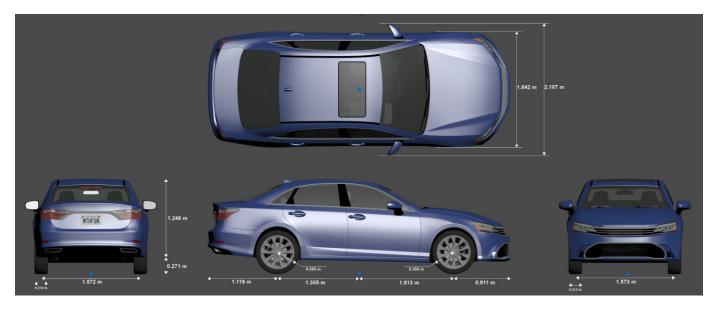


Rear view — Vehicle height and rear axle dimensions  $\operatorname{diagram}$ 



Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

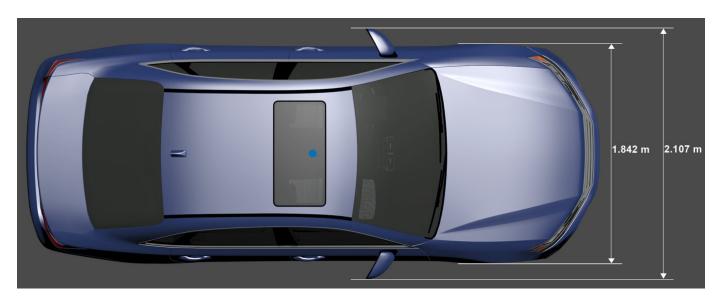
### **Topics**


<sup>&</sup>quot;Coordinate Systems in Vehicle Dynamics Blockset"
"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

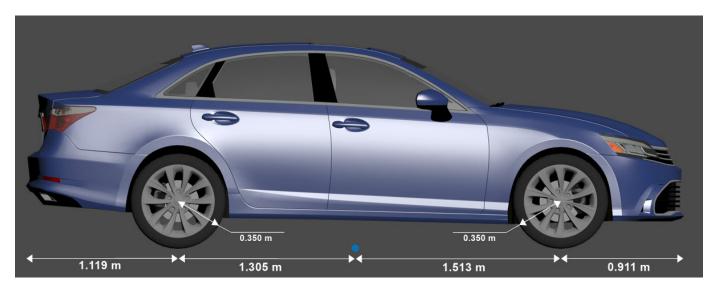
# Sedan

Sedan vehicle dimensions

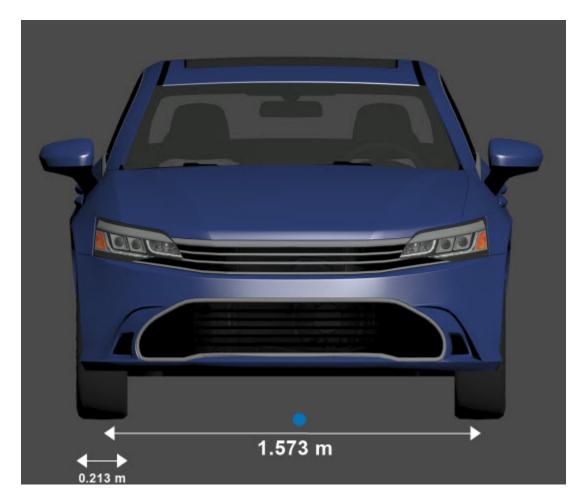
# **Description**


**Sedan** is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the **Dimensions** section.

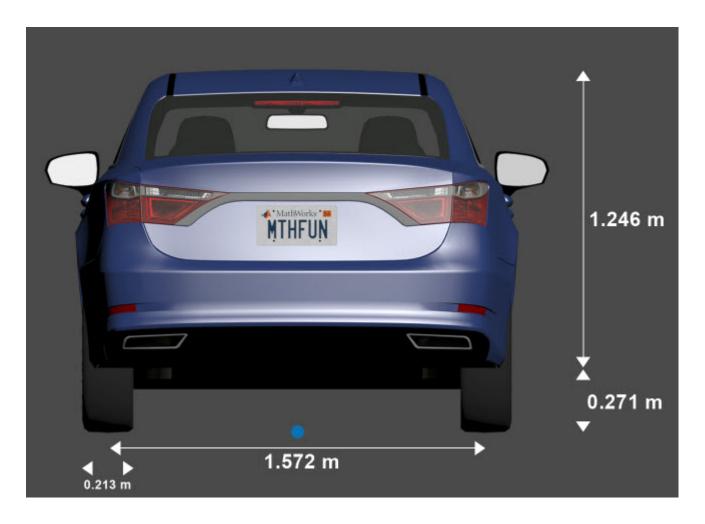



To add this type of vehicle to the 3D simulation environment:

- Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
- 2 In the block, set the **Type** parameter to **Sedan**.


### **Dimensions**




 $\mbox{Side view}$  — Vehicle length, front overhang, and rear overhang dimensions  $\mbox{diagram}$ 



Front view — Tire width and front axle dimensions  $\operatorname{diagram}$ 



Rear view — Vehicle height and rear axle dimensions  $\operatorname{diagram}$ 



Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

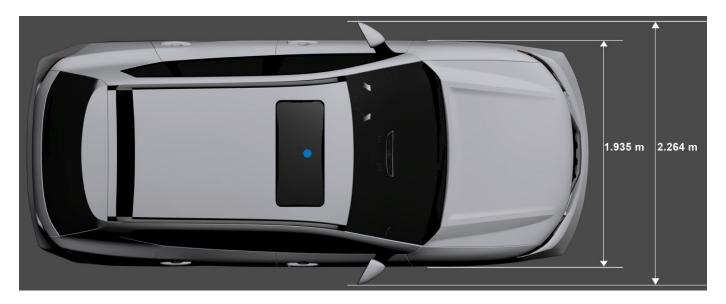
### **Topics**


<sup>&</sup>quot;Coordinate Systems in Vehicle Dynamics Blockset"
"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

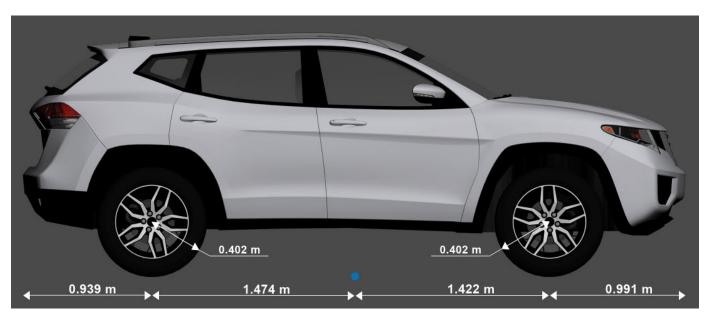
# **Sport Utility Vehicle**

Sport utility vehicle dimensions

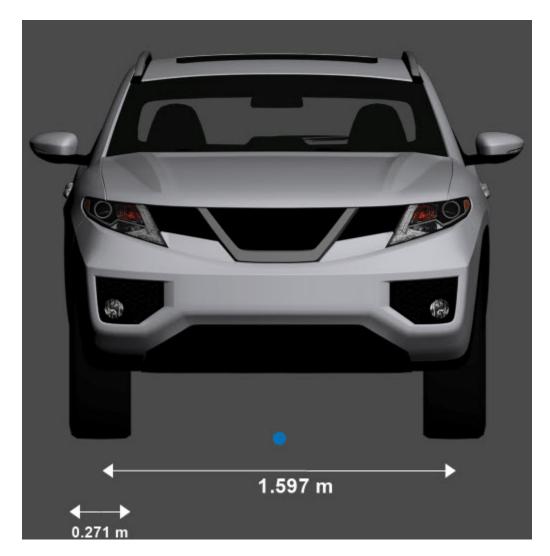
# **Description**


**Sport Utility Vehicle** is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the **Dimensions** section.

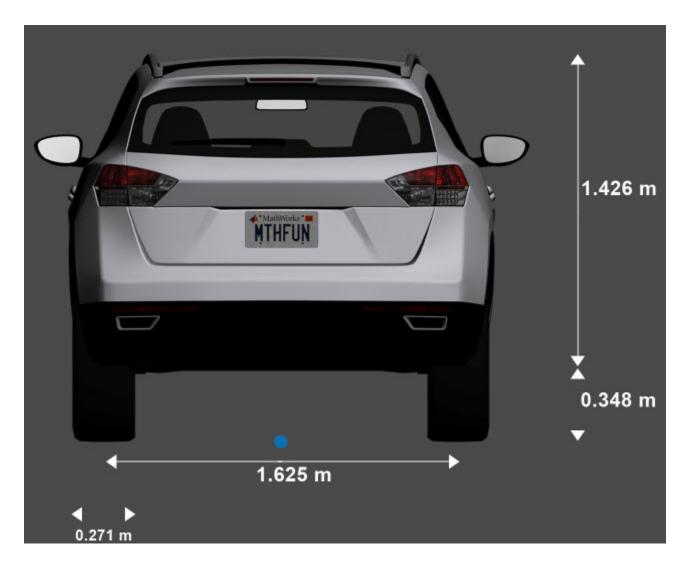



To add this type of vehicle to the 3D simulation environment:

- Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
- 2 In the block, set the **Type** parameter to Sport utility vehicle.


### **Dimensions**




 $\begin{tabular}{ll} \textbf{Side view - Vehicle length, front overhang, and rear overhang dimensions} \\ \textbf{diagram} \end{tabular}$ 



Front view — Tire width and front axle dimensions  $\operatorname{diagram}$ 



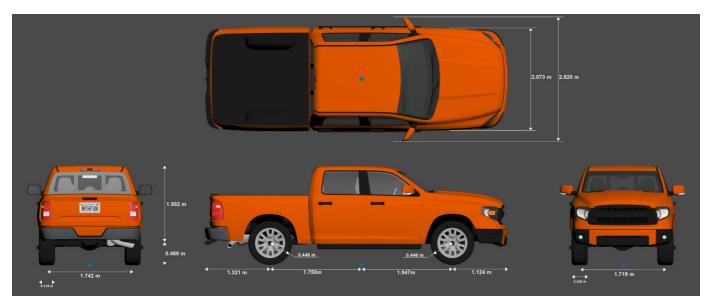
Rear view — Vehicle height and rear axle dimensions  $\operatorname{diagram}$ 



Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

# **Topics**

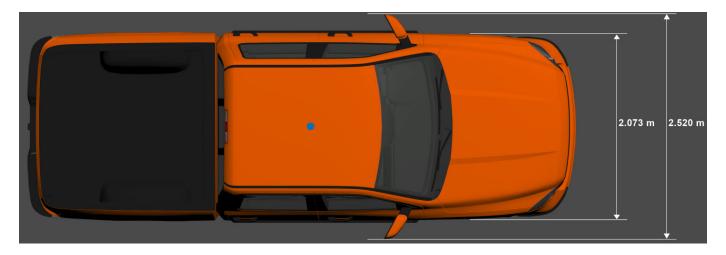
"Coordinate Systems in Vehicle Dynamics Blockset"


<sup>&</sup>quot;Vehicle Dynamics Blockset Communication with 3D Visualization Software"

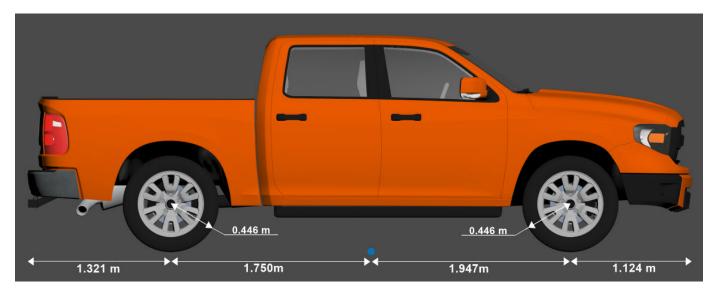
# **Small Pickup Truck**

Small pickup truck vehicle dimensions

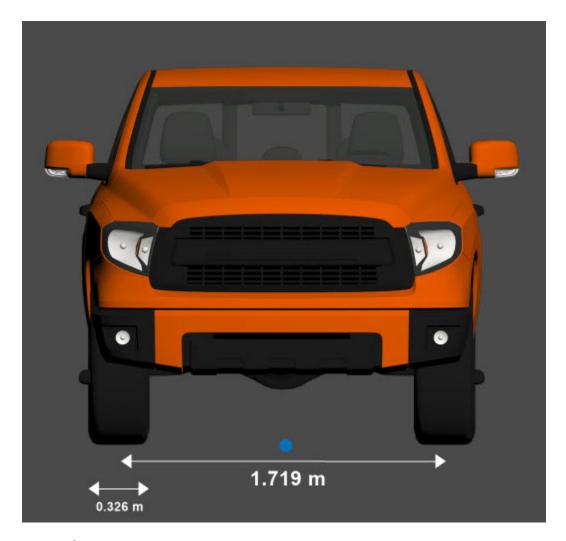
# **Description**


**Small Pickup Truck** is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the **Dimensions** section.

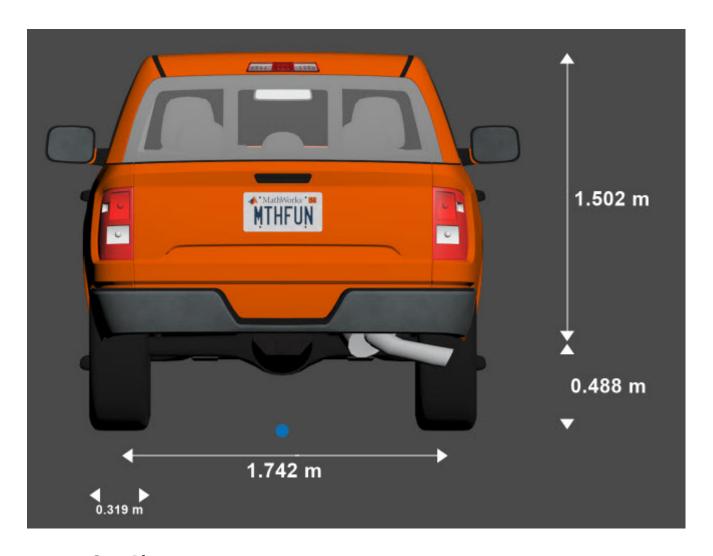



To add this type of vehicle to the 3D simulation environment:

- Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
- 2 In the block, set the **Type** parameter to Small pickup truck.


### **Dimensions**




 $\mbox{Side view}$  — Vehicle length, front overhang, and rear overhang dimensions  $\mbox{diagram}$ 



Front view — Tire width and front axle dimensions  $\operatorname{diagram}$ 



Rear view — Vehicle height and rear axle dimensions  $\operatorname{diagram}$ 



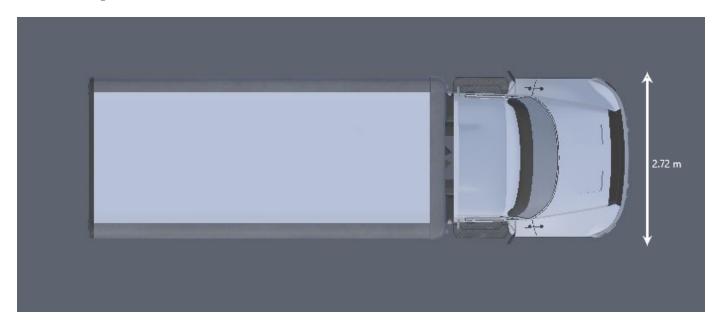
Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

### **Topics**

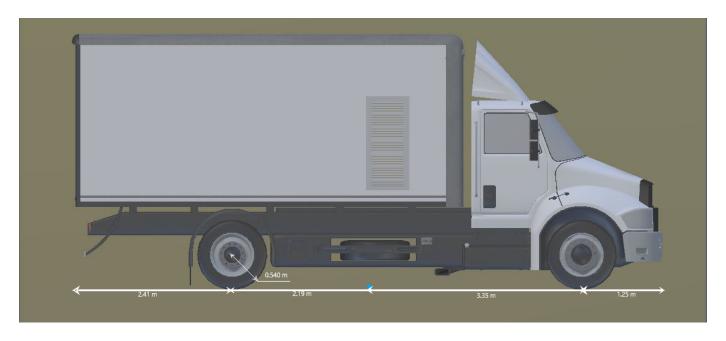
<sup>&</sup>quot;Coordinate Systems in Vehicle Dynamics Blockset"
"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

# **Box Truck**

Box truck vehicle dimensions


### **Description**

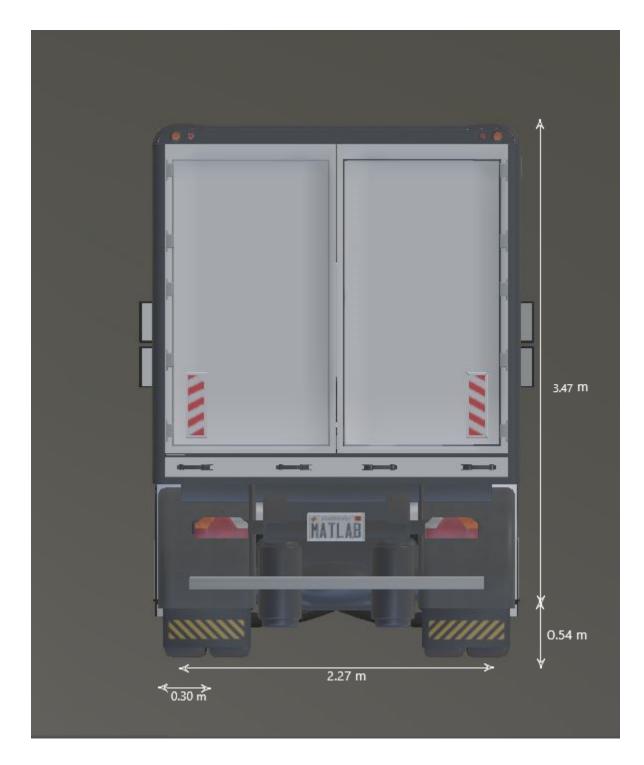
**Box truck** is one of the vehicles that you can use within the 3D simulation environment. This environment is rendered using the Unreal Engine from Epic Games. The following diagram provides the dimensions of this vehicle. The height dimensions are with respect to the vertical ground plane. The length and width dimensions are with respect to the origin of the vehicle in the vehicle coordinate system. The origin is on the ground, at the geometric center of the vehicle. For more detailed views of these diagrams, see the **Dimensions** section.


To add this type of vehicle to the 3D simulation environment:

- **1** Add a Simulation 3D Vehicle or Simulation 3D Vehicle with Ground Following block to your Simulink model.
- 2 In the block, set the **Type** parameter to Box truck.


### **Dimensions**




**Side view — Vehicle length, front overhang, and rear overhang dimensions** diagram



Front view — Tire width and front axle dimensions  $\operatorname{diagram}$ 



Rear view — Vehicle height and rear axle dimensions  $\operatorname{diagram}$ 



Simulation 3D Scene Configuration | Simulation 3D Vehicle | Simulation 3D Vehicle with Ground Following

**Topics** "Coordinate Systems in Vehicle Dynamics Blockset"

"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

# **Blocks in Reference Applications**

# 3D Engine

Configure scenes in reference applications

### **Description**

The 3D Engine block implements the 3D simulation environment. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so that you can guery the world around the vehicle for virtually testing perception, control, and planning algorithms.

To position the vehicle in the scene:

- Select the position initialization method:
  - **Recommended for scene** Set the initial vehicle position to values recommended for the scene
  - **User-specified** Set your own initial vehicle position
- Select **Apply** to modify the initial vehicle position parameters.
- Click **Update the model workspaces with the initial values** to overwrite the initial vehicle position in the model workspaces with the applied values.

### **Ports**

### Input

### VehFdbk — Vehicle feedback

Bus

Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

### **Parameters**

### **3D Engine**

### 3D Engine — Enable 3D visualization

off (default) | on

Enable 3D visualization.

### Scene — 3D scene

Straight road | Curved road | Parking lot | Double lane change | Open surface | US city block | US highway | Virtual Mcity | Large parking lot | Custom

Specify the name of the 3D scene.

#### Engine frame rate, dt3D — Graphics

.03 (default)

Graphics frame rate, in s. The graphics frame rate is the inverse of the sample time.

### Recommended for scene — Initial vehicle position

on (default) | off

Use vehicle positions that are recommended for the scene.

### User-specified — Initial vehicle position

off (default) | on

Specify to set your own initial vehicle position values.

# Initial longitudinal position, $X_0$ — Initial longitudinal position

off (default) | on

Initial vehicle CG position along the earth-fixed *X*-axis, in m.

### Initial lateral position, Y\_o — Initial lateral position

off (default) | on

Initial vehicle CG position along the earth-fixed Y-axis, in m.

### Initial vertical position, $Z_o - Initial vertical position$

off (default) | on

Initial vehicle CG position along the earth-fixed *Z*-axis, in m.

### Initial roll angle, phi o — Roll

off (default) | on

Rotation of the vehicle-fixed frame about the earth-fixed *X*-axis (roll), in rad.

### Initial pitch angle, theta o — Pitch

off (default) | on

Rotation of the vehicle-fixed frame about the earth-fixed Y-axis (pitch), in rad.

### Initial yaw angle, psi\_o — Yaw

off (default) | on

Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

### See Also

# Curved Road | Double Lane Change | Large Parking Lot | Open Surface | Parking Lot | Straight Road | US City Block | US Highway | Virtual Mcity

### **Topics**

- "Double-Lane Change Maneuver"
- "Slowly Increasing Steering Maneuver"
- "Swept-Sine Steering Maneuver"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "3D Visualization Engine Requirements"

### **External Websites**

Unreal Engine

### Introduced in R2019a

# **Bicycle Model**

Implement a single track 3DOF rigid vehicle body to calculate longitudinal, lateral, and yaw motion

# **Description**

The Bicycle Model block implements a rigid two-axle single track vehicle body model to calculate longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and weight distribution between the axles due to acceleration and steering. There are two types of Bicycle Model blocks.

| Block                                       | Implementation                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bicycle Model - Velocity Input    Info      | <ul> <li>Block assumes that the external longitudinal velocity is quasi-steady state so the longitudinal acceleration is approximately zero.</li> <li>Since the motion is quasi-steady, the block calculates only lateral forces using the tire slip angles and linear cornering stiffness.</li> </ul> |  |  |  |  |  |
| Bicycle Model - Velocity Input              | Displaying the outcomed longitudinal forms to applement                                                                                                                                                                                                                                                |  |  |  |  |  |
| Bicycle Model - Force Input    Info         | <ul> <li>Block uses the external longitudinal force to accelerate or brake the vehicle.</li> <li>Block calculates lateral forces using the tire slip angles and linear cornering stiffness.</li> </ul>                                                                                                 |  |  |  |  |  |
| FxR psi |                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

To calculate the normal forces on the front and rear axles, the block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces. The block resolves the force and moment components on the rigid vehicle body frame.

#### **Ports**

#### Input

WhlAngF — Wheel angle

scalar

Front wheel angle, in rad.

### FxF — Force Input: Total longitudinal force on the front axle

scalar

Longitudinal force on the front axle,  $Fx_F$ , along vehicle-fixed x-axis, in N.

Bicycle Model - Force Input block input port.

# **FxR — Force Input: Total longitudinal force on the rear axle** scalar

Longitudinal force on the rear axle,  $Fx_R$ , along vehicle-fixed x-axis, in N.

Bicycle Model - Force Input block input port.

# xdotin — Velocity Input: Longitudinal velocity scalar

Vehicle CG velocity along vehicle-fixed *x*-axis, in m/s.

Bicycle Model - Velocity Input block input port.

### **Output**

### Info — Bus signal

bus

Bus signal containing these block values.

| Signal   |         |      |       | Description                                                          | Value    | Units |
|----------|---------|------|-------|----------------------------------------------------------------------|----------|-------|
| InertFrm | Cg      | Disp | X     | Vehicle CG displacement along earth-fixed X-axis                     | Computed | m     |
|          |         |      | Y     | Vehicle CG displacement along earth-fixed Y-axis                     | 0        | m     |
|          |         |      | Z     | Vehicle CG displacement along earth-fixed Z-axis                     | Computed | m     |
|          |         | Vel  | Xdot  | Vehicle CG velocity along earth-fixed X-axis                         | Computed | m/s   |
|          |         |      | Ydot  | Vehicle CG velocity along earth-fixed Y-axis                         | 0        | m/s   |
|          |         |      | Zdot  | Vehicle CG velocity along earth-fixed Z-axis                         | Computed | m/s   |
|          |         | Ang  | phi   | Rotation of the vehicle-fixed frame about earth-fixed X-axis (roll)  | 0        | rad   |
|          |         |      | theta | Rotation of the vehicle-fixed frame about earth-fixed Y-axis (pitch) | Computed | rad   |
|          |         |      | psi   | Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw)   | Θ        | rad   |
|          | FrntAxl | Disp | X     | Front axle displacement along the earth-fixed X-axis                 | Computed | m     |
|          |         |      | Υ     | Front axle displacement along the earth-fixed Y-axis                 | 0        | m     |

| Signal |         |        |       | Description                                                                 | Value    | Units |
|--------|---------|--------|-------|-----------------------------------------------------------------------------|----------|-------|
|        |         |        | Z     | Front axle displacement along the earth-fixed Z-axis                        | Computed | m     |
|        |         | Vel    | Xdot  | Front axle velocity along the earth-fixed X-axis                            | Computed | m/s   |
|        |         |        | Ydot  | Front axle velocity along the earth-fixed Y-axis                            | Θ        | m/s   |
|        |         |        | Zdot  | Front axle velocity along the earth-fixed Z-axis                            | Computed | m/s   |
|        | RearAxl | Disp   | Х     | Rear axle displacement along the earth-fixed X-axis                         | Computed | m     |
|        |         |        | Y     | Rear axle displacement along the earth-fixed Y-axis                         | 0        | m     |
|        |         |        | Z     | Rear axle displacement along the earth-fixed Z-axis                         | Computed | m     |
|        |         | Vel    | Xdot  | Rear axle velocity along the earth-fixed X-axis                             | Computed | m/s   |
|        |         |        | Ydot  | Rear axle velocity along the earth-fixed Y-axis                             |          | m/s   |
|        |         |        | Zdot  | Rear axle velocity along the earth-fixed Z-axis                             | Computed | m/s   |
| BdyFrm | Cg      | Vel    | xdot  | Vehicle CG velocity along vehicle-fixed x-axis                              | Computed | m/s   |
|        |         |        | ydot  | Vehicle CG velocity along vehicle-fixed y-axis                              | Θ        | m/s   |
|        |         |        | zdot  | Vehicle CG velocity along vehicle-fixed z-axis                              | Computed | m/s   |
|        |         | AngVel | р     | Vehicle angular velocity<br>about the vehicle-fixed x-<br>axis (roll rate)  | 0        | rad/s |
|        |         |        | q     | Vehicle angular velocity<br>about the vehicle-fixed y-<br>axis (pitch rate) | Computed | rad/s |
|        |         |        | r     | Vehicle angular velocity about the vehicle-fixed z- axis (yaw rate)         |          | rad/s |
|        |         | Acc    | ax    | Vehicle CG acceleration along vehicle-fixed x-axis                          | Computed | gn    |
|        |         |        | ay    | Vehicle CG acceleration along vehicle-fixed y-axis                          | 0        | gn    |
|        |         |        | az    | Vehicle CG acceleration Computation along vehicle-fixed z-axis              |          | gn    |
|        |         |        | xddot | Vehicle CG acceleration along vehicle-fixed x-axis                          | Computed | gn    |

| Signal |        |         |              |        | Description                                                      | Value    | Units |
|--------|--------|---------|--------------|--------|------------------------------------------------------------------|----------|-------|
|        |        |         | yddot        |        | Vehicle CG acceleration along vehicle-fixed y-axis               | Θ        | gn    |
|        |        |         | zddot        |        | Vehicle CG acceleration along vehicle-fixed z-axis               | Computed | gn    |
|        | Forces | Body    | Fx           |        | Net force on vehicle CG<br>along vehicle-fixed x-axis            | Computed | N     |
|        |        |         | Fy           |        | Net force on vehicle CG<br>along vehicle-fixed y-axis            | Θ        | N     |
|        |        |         | Fz           |        | Net force on vehicle CG<br>along vehicle-fixed z-axis            | Computed | N     |
|        |        | FrntAxl | Fx           |        | Longitudinal force on front axle, along the vehicle-fixed x-axis | Computed | N     |
|        |        |         | Fy           |        | Lateral force on front axle, along the vehicle-fixed y-axis      | 0        | N     |
|        |        |         | Fz           |        | Normal force on front axle, along the vehicle-fixed z-axis       | Computed | N     |
|        |        | RearAxl | Fx           |        | Longitudinal force on rear axle, along the vehicle-fixed x-axis  | Computed | N     |
|        |        |         | Fy           |        | Lateral force on rear axle, along the vehicle-fixed y-axis       | 0        | N     |
|        |        |         | Fz           |        | Normal force on rear axle, along the vehicle-fixed z-axis        | Computed | N     |
|        |        | Tires   | FrntTir<br>e | F<br>x | Front tire force, along vehicle-fixed x-axis                     | Θ        | N     |
|        |        |         |              | F<br>y | Front tire force, along vehicle-fixed y-axis                     | Θ        | N     |
|        |        |         |              | F<br>z | Front tire force, along vehicle-fixed z-axis                     | Computed | N     |
|        |        |         | RearTir<br>e | F<br>x | Rear tire force, along vehicle-fixed x-axis                      | 0        | N     |
|        |        |         |              | F<br>y | Rear tire force, along vehicle-fixed y-axis                      | Θ        | N     |
|        |        |         |              | F<br>z | Rear tire force, along vehicle-fixed z-axis                      | Computed | N     |
|        |        | Drag    | Fx           |        | Drag force on vehicle CG along vehicle-fixed x-axis              | Computed | N     |

| Signal  |       |      | Description                                                 | Value    | Units |
|---------|-------|------|-------------------------------------------------------------|----------|-------|
|         |       | Fy   | Drag force on vehicle CG along vehicle-fixed y-axis         | Computed | N     |
|         |       | Fz   | Drag force on vehicle CG along vehicle-fixed z-axis         | Computed | N     |
|         | Grvty | Fx   | Gravity force on vehicle CG along vehicle-fixed x-axis      | Computed | N     |
|         |       | Fy   | Gravity force on vehicle CG along vehicle-fixed y-axis      | 0        | N     |
|         |       | Fz   | Gravity force on vehicle CG along vehicle-fixed z-axis      | Computed | N     |
| Moments | Body  | Mx   | Body moment on vehicle<br>CG about vehicle-fixed x-<br>axis | 0        | N·m   |
|         |       | Му   | Body moment on vehicle CG about vehicle-fixed y-axis        |          | N·m   |
|         |       | Mz   | Body moment on vehicle CG about vehicle-fixed z- axis       |          | N·m   |
|         | Drag  | Mx   | Drag moment on vehicle CG about vehicle-fixed x-axis        | Θ        | N·m   |
|         |       | Му   | Drag moment on vehicle CG about vehicle-fixed y-axis        | Computed | N·m   |
|         |       | Mz   | Drag moment on vehicle<br>CG about vehicle-fixed z-<br>axis | Θ        | N·m   |
| FrntAxl | Disp  | Х    | Front axle displacement along the vehicle-fixed x-axis      | Computed | m     |
|         |       | У    | Front axle displacement along the vehicle-fixed yaxis       |          | m     |
|         |       | Z    | Front axle displacement along the vehicle-fixed z-axis      | Computed | m     |
|         | Vel   | xdot | Front axle velocity along the vehicle-fixed x-axis          | Computed | m/s   |
|         |       | ydot | Front axle velocity along the vehicle-fixed y-axis          |          |       |
|         |       | zdot | Front axle velocity along the vehicle-fixed z-axis          | Computed | m/s   |

| Signal |              |        | Description | Value                                                        | Units    |     |
|--------|--------------|--------|-------------|--------------------------------------------------------------|----------|-----|
|        | RearAxl Disp | Disp   | x           | Rear axle displacement<br>along the vehicle-fixed x-<br>axis | Computed | m   |
|        |              |        | У           | Rear axle displacement along the vehicle-fixed yaxis         | 0        | m   |
|        |              |        | Z           | Rear axle displacement along the vehicle-fixed z-axis        | Computed | m   |
|        |              |        | xdot        | Rear axle velocity along the vehicle-fixed x-axis            | Computed | m/s |
|        |              |        | ydot        | Rear axle velocity along the vehicle-fixed y-axis            | Θ        | m/s |
|        |              |        | zdot        | Rear axle velocity along the vehicle-fixed z-axis            | Computed | m/s |
|        | Pwr          | PwrExt |             | Applied external power                                       | Computed | W   |
|        |              | Drag   |             | Power loss due to drag                                       | Computed | W   |

#### xdot — Vehicle body longitudinal velocity

scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.

### ydot — Vehicle body lateral velocity

scalar

Vehicle CG velocity along vehicle-fixed y-axis, in m/s.

#### psi — Yaw

scalar

Rotation of the vehicle-fixed frame about earth-fixed Z-axis (yaw), in rad..

#### r - Yaw rate

scalar

Vehicle angular velocity, r, about the vehicle-fixed z-axis (yaw rate), in rad/s.

#### **Parameters**

#### Longitudinal

#### Number of wheels on front axle, NF — Front wheel count 2 (default) | scalar

Number of wheels on front axle,  $N_F$ . The value is dimensionless.

## Number of wheels on rear axle, NR — Rear wheel count 2 (default) | scalar

Number of wheels on rear axle,  $N_R$ . The value is dimensionless.

#### **Vehicle mass, m — Vehicle mass**

2000 (default) | scalar

Vehicle mass, m, in kg.

# Longitudinal distance from center of mass to front axle, a — Front axle distance 1.4 (default) | scalar

Horizontal distance a from the vehicle CG to the front wheel axle, in m.

# **Longitudinal distance from center of mass to rear axle, b — Rearaxle distance** 1.6 (default) | scalar

Horizontal distance b from the vehicle CG to the rear wheel axle, in m.

# Vertical distance from center of mass to axle plane, h — Height 0.35 (default) | scalar

Height of vehicle CG above the axles, h, in m.

# Initial inertial frame longitudinal position, $X_o - Position \theta (default) | scalar$

Initial vehicle CG displacement along earth-fixed *X*-axis, in m.

# Initial longitudinal velocity, xdot\_o — Velocity 0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed *x*-axis, in m/s.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set **Axle forces** to one of these options:

- External longitudinal forces
- External forces

#### Lateral

# Front tire corner stiffness, $Cy_f - Stiffness$

12e3 (default) | scalar

Front tire corner stiffness,  $Cy_f$ , in N/rad.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

- **1** Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces

#### Clear **Mapped corner stiffness**.

## Rear tire corner stiffness, Cy\_r — Stiffness

11e3 (default) | scalar

Rear tire corner stiffness,  $Cy_r$ , in N/rad.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

- Set **Axle forces** to one of these options:
  - External longitudinal velocity
  - External longitudinal forces
- Clear **Mapped corner stiffness**.

# Initial inertial frame lateral displacement, Y\_o — Position

0 (default) | scalar

Initial vehicle CG displacement along earth-fixed Y-axis, in m.

## Initial lateral velocity, ydot o — Velocity

0 (default) | scalar

Initial vehicle CG velocity along vehicle-fixed y-axis, in m/s.

#### Yaw

## Yaw polar inertia, Izz — Inertia

4000 (default) | scalar

Yaw polar inertia, in kg\*m^2.

#### Initial yaw angle, psi\_o — Psi rotation

0 (default) | scalar

Rotation of the vehicle-fixed frame about earth-fixed *Z*-axis (yaw), in rad.

#### Initial yaw rate, r\_o — Yaw rate

0 (default) | scalar

Vehicle angular velocity about the vehicle-fixed *z*-axis (yaw rate), in rad/s.

#### **Aerodynamic**

#### Longitudinal drag area, Af — Effective vehicle cross-sectional area

2 (default) | scalar

Effective vehicle cross-sectional area,  $A_{f_i}$  to calculate the aerodynamic drag force on the vehicle, in  $\mathrm{m}^2$ .

#### Longitudinal drag coefficient, Cd — Air drag coefficient

.3 (default) | scalar

Air drag coefficient,  $C_d$ . The value is dimensionless.

# Longitudinal lift coefficient, Cl-Air lift coefficient

.1 (default) | scalar

Air lift coefficient,  $C_l$ . The value is dimensionless.

## Longitudinal drag pitch moment, Cpm — Pitch drag

.1 (default) | scalar

Longitudinal drag pitch moment coefficient,  $C_{pm}$ . The value is dimensionless.

## Relative wind angle vector, beta\_w — Wind angle

[0:0.01:0.3] (default) | vector

Relative wind angle vector,  $\beta_w$ , in rad.

#### Side force coefficient vector, Cs — Side force coefficient

[0:0.03:0.9] (default) | vector

Side force coefficient vector coefficient,  $C_s$ . The value is dimensionless.

## Yaw moment coefficient vector, Cym — Yaw moment drag

[0:0.01:0.3] (default) | vector

Yaw moment coefficient vector coefficient,  $C_{vm}$ . The value is dimensionless.

#### **Environment**

#### Absolute air pressure, Pabs — Pressure

101325 (default) | scalar | scalar

Environmental absolute pressure,  $P_{abs}$ , in Pa.

#### Air temperature, Tair — Temperature

273 (default) | scalar

Environmental absolute temperature, T, in K.

#### **Dependencies**

To enable this parameter, clear **Air temperature**.

#### **Gravitational acceleration, g — Gravity**

9.81 (default) | scalar

Gravitational acceleration, q, in m/s $^2$ .

#### Nominal friction scaling factor, mu — Friction scale factor

1 (default) | scalar

Nominal friction scale factor,  $\mu$ . The value is dimensionless.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter:

**1** Set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces
- Clear **External Friction**.

#### **Simulation**

#### Longitudinal velocity tolerance, xdot tol — Tolerance .01 (default) | scalar

Longitudinal velocity tolerance, in m/s.

# Nominal normal force, Fznom — Normal force

5000 (default) | scalar

Nominal normal force, in N.

#### **Dependencies**

For the Vehicle Body 3DOF Single Track or Vehicle Body 3DOF Dual Track blocks, to enable this parameter, set **Axle forces** to one of these options:

- External longitudinal velocity
- External longitudinal forces

## Geometric longitudinal offset from axle plane, longOff — Longitudinal offset 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed *x*-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

#### Geometric lateral offset from center plane, latOff — Lateral offset 0 (default) | scalar

Vehicle chassis offset from center plane along body-fixed y-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

## Geometric vertical offset from axle plane, vertOff — Vertical offset 0 (default) | scalar

Vehicle chassis offset from axle plane along body-fixed z-axis, in m. When you use the 3D visualization engine, consider using the offset to locate the chassis independent of the vehicle CG.

#### Wrap Euler angles, wrapAng — Selection off (default) | on

Wrap the Euler angles to the interval [-pi, pi]. For vehicle maneuvers that might undergo vehicle yaw rotations that are outside of the interval, consider deselecting the parameter if you want to:

- Track the total vehicle vaw rotation.
- Avoid discontinuities in the vehicle state estimators.

# References

[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.

# Introduced in R2018a

# **Driver Commands**

Configure driver

# **Description**

The Driver Commands block implements the driver model that the reference application uses to generate acceleration, braking, gear, and steering commands. By default, if you select the Reference Generator block parameter **Use maneuver-specific driver, initial position, and scene**, the reference application selects the driver for the maneuver that you specified.

| Vehicle Command<br>Mode Setting | Implementation                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Longitudinal Driver             | Longitudinal Driver block — Longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1. Use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle. |  |  |  |
| Predictive Driver               | Predictive Driver block — Controller that generates normalized steering, acceleration, and braking commands to track longitudinal velocity and a lateral reference displacement. The normalized commands can vary between -1 to 1. The controller uses a single-track (bicycle) model for optimal single-point preview control.                     |  |  |  |
| Open Loop                       | Implements an open-loop system so that you can configure the reference application for constant or signal-based steering, acceleration, braking, and gear command input.                                                                                                                                                                            |  |  |  |

#### **Ports**

#### Input

#### VehRef — Vehicle reference signals

Bus

Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and steering.

# VehFdbk — Vehicle feedback signals

Bus

Bus containing vehicle displacement feedback signals.

### **Output**

#### **Driver** — Command signals

Bus

Bus containing the commands, including steering, acceleration, braking, and gear commands.

# **Parameters**

# **Vehicle command mode — Enable 3D visualization**

Predictive Driver (default) | Longitudinal Driver | Open Loop

Specify driver model.

# **See Also**

Longitudinal Driver | Predictive Driver

Introduced in R2019a

# **Reference Generator**

Generate maneuver reference signals

# **Description**

The Reference Generator block sets the parameters that configure the maneuver and 3D simulation environment. By default, the block is set for the constant radius maneuver with the 3D simulation engine environment disabled.

#### Model

Use the Maneuver parameter to specify the type of maneuver. After you select the maneuver, use the parameters to specify the maneuver settings. By default:

- Use maneuver-specific driver, initial position, and scene Set to on
- **Maneuver start time** Set to 3s
- **Longitudinal velocity reference** Set to 30s
- Longitudinal entrance velocity setpoint units Set to mph

| Maneuver Setting   | Implementation                                                                                                                       |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Double Lane Change | "Double-Lane Change Maneuver"                                                                                                        |  |  |
|                    | Vehicle width — Lane signals for the Visualization subsystem; used for the left and right lane boundaries                            |  |  |
|                    | • Lateral reference data — Lateral reference trajectory as a function of the longitudinal distance                                   |  |  |
|                    | Distance after target speed to begin reference — Start the maneuver at specified distance after the vehicle reaches the target speed |  |  |
| Increasing Steer   | "Slowly Increasing Steering Maneuver"                                                                                                |  |  |
|                    | Handwheel rate — Linear rate to increase steering wheel angle                                                                        |  |  |
|                    | Maximum handwheel angle — Maximum steering wheel angle                                                                               |  |  |
| Swept Sine         | "Swept-Sine Steering Maneuver"                                                                                                       |  |  |
|                    | Steering amplitude — Sinusoidal wave amplitude                                                                                       |  |  |
|                    | • Final frequency — Cut off frequency to stop the maneuver                                                                           |  |  |

| Maneuver Setting | Implementation                                        |  |  |  |
|------------------|-------------------------------------------------------|--|--|--|
| Sine with Dwell  | In the test, the vehicle:                             |  |  |  |
|                  | Accelerates until it hits a target velocity.          |  |  |  |
|                  | Maintains the target velocity.                        |  |  |  |
|                  | Responds to a sinusoidal with dwell steering command. |  |  |  |
|                  | Steer frequency — Sinusoidal wave frequency           |  |  |  |
|                  | • Steer amplitude — Sinusoidal wave amplitude         |  |  |  |
|                  | Dwell time — Dwell time                               |  |  |  |
| Constant Radius  | "Constant Radius Maneuver"                            |  |  |  |
|                  | Radius value — Turn radius                            |  |  |  |

#### **3D Engine**

The 3D engine implements the 3D simulation environment. Vehicle Dynamics Blockset integrates the 3D simulation environment with Simulink so that you can query the world around the vehicle for virtually testing perception, control, and planning algorithms. For 3D engine requirements, see "3D Visualization Engine Requirements". To enable the 3D engine, on the **3D Engine** tab, select **Enabled**.

To position the vehicle in the scene:

- **1** Select the position initialization method:
  - Recommended for scene Set the initial vehicle position to values recommended for the scene
  - **User-specified** Set your own initial vehicle position
- **2** Select **Apply** to modify the initial vehicle position parameters.
- 3 Click **Update the model workspaces with the initial values** to overwrite the initial vehicle position in the model workspaces with the applied values.

#### **Ports**

#### Input

#### VehFdbk — Vehicle feedback

Bus

Bus containing vehicle feedback signals, including velocity, acceleration, and steering wheel torque.

#### **Output**

## Vis — Visualization reference signals

Bus

Bus containing the visualization reference signals, including longitudinal and lateral displacement, and steering.

#### Ref — Vehicle reference signals

Bus

Bus containing the vehicle reference signals, including longitudinal and lateral displacement, and

#### Fdbk — Vehicle location feedback signals

Bus containing vehicle location feedback signals, including position.

#### **Parameters**

#### Configuration

#### Maneuver — Select maneuver

Constant Radius (default) | Double Lane Change | Increasing Steer | Swept Sine | Sine with Dwell

Specify the scene type.

#### Maneuver start time — Start time

on (default) | off

Specify the name of the 3D scene.

## Longitudinal velocity reference — Target velocity

scalar

Target velocity.

#### Longitudinal entrance velocity setpoint units — Units

mph (default)

Units for target velocity.

#### Simulation time — Simulation time

scalar

Time. in s.

#### **Constant Radius**

#### Radius value — Radius

scalar

Radius value, in m.

# Turn direction — Turn direction

Right (default) | Left

Turn direction.

#### Lateral acceleration threshold — Lateral acceleration

scalar

Lateral acceleration threshold, in g.

# **Stop simulation at lateral acceleration threshold — Selection** off (default) | on

Stop simulation if vehicle exceeds lateral acceleration threshold.

### **Double Lane Change**

# Inertial longitudinal position of gate entrance — Position scalar

Inertial longitudinal position of gate entrance, in m.

# **Distance after target speed to begin reference — Start distance** scalar

Distance after target speed to begin reference, in m.

#### Vehicle width — Vehicle width

scalar

Vehicle width, in m.

The left and right lane boundaries are a function of the **Vehicle width** parameter.

#### Lateral offset — Lateral offset

scalar

Lateral offset, in m.

## Lateral reference position breakpoints — Breakpoints

scalar

Lateral reference position breakpoints, in m.

Use the **Lateral reference position breakpoints** and **Lateral reference data** parameters to specify the lateral reference trajectory as a function of the longitudinal distance.

#### Lateral reference data — Lateral data

scalar

Use the **Lateral reference position breakpoints** and **Lateral reference data** parameters to specify the lateral reference trajectory as a function of the longitudinal distance.

#### Increasing Steer

#### Handwheel rate — Handwheel rate

scalar

Handwheel rate, in deg/s.

### Maximum handwheel angle — Maximum handwheel

scalar

Maximum handwheel angle, in deg.

#### Steering hold time after max angle reached — Steering hold scalar

Steering hold, in s.

#### Lateral acceleration threshold — Lateral acceleration

scalar

Lateral acceleration threshold, in g.

# Stop simulation at lateral acceleration threshold — Selection

off (default) | on

Stop simulation if vehicle exceeds lateral acceleration threshold.

#### **Swept Sign**

#### Swept time — Sweep time

scalar

Sweep time, in s.

#### Steering amplitude — Steering amplitude

scalar

Sinusoidal steering amplitude, in deg.

## Final frequency — Final frequency

scalar

Cut off frequency to stop the maneuver, in Hz.

#### Sign with Dwell

#### Steer frequency — Steer frequency

scalar

Steer frequency, in Hz.

#### Steer amplitude — Steer amplitude

scalar

Sinusoidal steering amplitude, in deg.

#### Dwell time — Dwell time

scalar

Dwell time, in s.

#### **3D Engine**

#### 3D Engine — Enable 3D visualization

off (default) | on

Enable 3D visualization.

#### Scene — 3D scene

Straight road | Curved road | Parking lot | Double lane change | Open surface | US city block | US highway | Virtual Mcity | Large parking lot | Custom

Specify the name of the 3D scene.

## Engine frame rate, dt3D — Graphics

.03 (default)

Graphics frame rate, in s. The graphics frame rate is the inverse of the sample time.

## Recommended for scene — Initial vehicle position

on (default) | off

Use vehicle positions that are recommended for the scene.

#### User-specified — Initial vehicle position

off (default) | on

Specify to set your own initial vehicle position values.

# Initial longitudinal position, $X_o - Initial longitudinal position$

off (default) | on

Initial vehicle CG position along the earth-fixed *X*-axis, in m.

## Initial lateral position, Y\_o — Initial lateral position

off (default) | on

Initial vehicle CG position along the earth-fixed *Y*-axis, in m.

# Initial vertical position, $Z_0$ — Initial vertical position

off (default) | on

Initial vehicle CG position along the earth-fixed *Z*-axis, in m.

## Initial roll angle, phi\_o - Roll

off (default) | on

Rotation of the vehicle-fixed frame about the earth-fixed *X*-axis (roll), in rad.

#### Initial pitch angle, theta\_o — Pitch

off (default) | on

Rotation of the vehicle-fixed frame about the earth-fixed Y-axis (pitch), in rad.

#### Initial yaw angle, psi o — Yaw

off (default) | on

Rotation of the vehicle-fixed frame about the earth-fixed Z-axis (yaw), in rad.

## See Also

3D Engine | Driver Commands

## **Topics**

- "Constant Radius Maneuver"
- "Double-Lane Change Maneuver"
- "Slowly Increasing Steering Maneuver"
  "Swept-Sine Steering Maneuver"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "3D Visualization Engine Requirements"

#### **External Websites**

Unreal Engine

#### Introduced in R2019a

# Classes

# sim3d.Editor

Interface to the Unreal Engine project

# **Description**

Use the sim3d.Editor class to interface with the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. The support package contains an Unreal Engine project that allows you to customize the Vehicle Dynamics Blockset scenes. For information about the support package, see "Support Package for Customizing Scenes".

# Creation

# **Syntax**

sim3d.Editor(project)

## **Description**

MATLAB creates an sim3d.Editor object for the Unreal Editor project specified in sim3d.Editor( project).

#### **Input Arguments**

#### project — Project path and name

string array

#### Project path and name.

Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"

Data Types: string

# **Properties**

#### Uproject — Project path and name

string array

This property is read-only.

Project path and name with Unreal Engine project file extension.

Example: "C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"

Data Types: string

# **Object Methods**

open Open the Unreal Editor

# **Examples**

#### **Open Project in Unreal Editor**

Open an Unreal Engine project in the Unreal Editor.

- 1 Create an instance of the sim3d.Editor class for the Unreal Engine project located in C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject.
- editor=sim3d.Editor(fullfile("C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject"))
- 2 Open the project in the Unreal Editor.

```
editor.open();
```

## See Also

#### **Topics**

- "Support Package for Customizing Scenes"
- "Vehicle Dynamics Blockset Communication with 3D Visualization Software"
- "3D Visualization Engine Requirements"

#### Introduced in R2019b

# open

Open the Unreal Editor

# **Syntax**

[status,result]=open(sim3dEditorObj)

# Description

[status, result]=open(sim3dEditor0bj) opens the Unreal Engine project in the Unreal Editor.

To develop scenes with the Unreal Editor and co-simulate with Simulink, you need the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects support package. The support package contains an Unreal Engine project that allows you to customize the Vehicle Dynamics Blockset scenes. For information about the support package, see "Support Package for Customizing Scenes".

# **Input Arguments**

#### sim3dEditor0bj — sim3d.Editor object

sim3d.Editor object

sim3d.Editor object for the Unreal Engine project.

# **Output Arguments**

#### status — Command exit status

0 | nonzero integer

Command exit status, returned as either 0 or a nonzero integer. When the command is successful, status is 0. Otherwise, status is a nonzero integer.

- If command includes the ampersand character (&), then status is the exit status when command starts
- If command does not include the ampersand character (&), then status is the exit status upon command completion.

#### result — Output of operating system command

character vector

Output of the operating system command, returned as a character vector. The system shell might not properly represent non-Unicode® characters.

#### See Also

sim3d.Editor

#### **Topics**

"Support Package for Customizing Scenes"

"Vehicle Dynamics Blockset Communication with 3D Visualization Software"

"3D Visualization Engine Requirements"

# Introduced in R2019b